
Computing and Informatics, Vol. 30, 2011, 1131–1146

A SHADOW-LIKE TASK MIGRATION MODEL
BASED ON CONTEXT SEMANTICS FOR MOBILE
AND PERVASIVE ENVIRONMENTS

Feilong Tang

School of Software
Shanghai Jiao Tong University, Shanghai 200240, China
e-mail: tang-fl@cs.sjtu.edu.cn

Can Tang

Department of Finance
Heilongjiang University, Harbin 150080, China

Minyi Guo

Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, China

Shui Yu

School of Information Technology
Deakin University, Burwood, VIC 3125, Australia

Song Guo

School of Computer Science and Engineering
The University of Aizu, Fukushima 965-8580, Japan

1132 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

Abstract. Pervasive computing is a user-centric mobile computing paradigm, in

which tasks should be migrated over different platforms in a shadow-like way when
users move around. In this paper, we propose a context-sensitive task migration
model that recovers program states and rebinds resources for task migrations based
on context semantics through inserting resource description and state description

sections in source programs. Based on our model, we design and develop a task
migration framework xMozart which extends the Mozart platform in terms of con-
text awareness. Our approach can recover task states and rebind resources in the
context-aware way, as well as support multi-modality I/O interactions. The ex-
tensive experiments demonstrate that our approach can migrate tasks by resuming
them from the last broken points like shadows moving along with the users.

Keywords: Task migration, pervasive computing, context-aware computing

1 INTRODUCTION

Pervasive computing is a new distributed computing paradigm that provides mo-
bile users with preferred services at anytime and anywhere. Owing to the high
mobility of users, pervasive softwares have to be migrated among extremely hete-
rogeneous platforms. As a result, context-sensitive task migration is an important
enabling technology to achieve the attractive human-centric goal of pervasive com-
puting [1, 2]. Task migration in pervasive environments should be aware of and
self-adaptive to software and hardware platforms, mobility, network connection and
resource constraint of pervasive devices. However, none of existing proposals on task
migration have sufficiently addressed the new requirements for mobile and pervasive
applications.

In this paper, we investigate the problem of context-sensitive task migration,
especially focusing on the approach adjusting execution and display behaviors based
on run-time context automatically to enable task migration in a shadow-like way.
We demonstrate the key issues in task migration considering the following scenario.
A student Steve watches an online movie in his lab on a Windows-based PC that is
connected with Internet through a wired network. He, then, takes a bus to attend
a meeting held in another campus a few minutes later. On the bus, he resumes
playing the movie from the last broken point on his Mac-based iPhone through
a wireless network. We outline the characteristics of such task migrations as follows:

Heterogenous software and hardware platforms. Not only video players and
operating systems but also devices, before and after the migration, are highly
heterogeneous.

Delay-sensitive migration process. Long delay is always undesirable to users.

Lightweight task migration. Data migrated actually should be as little as pos-
sible because of the limited bandwidth of wireless networks and the requirement
of the prompt migration.

A Shadow-Like Task Migration Model 1133

Multi-modality representation. A lower-resolution movie is preferred, after this
migration, to adapt to the small screen of the iPhone as well as the lower band-
width of wireless networks.

This paper is motivated to solve the above issues by providing a context-sensitive
task migration service for users moving in different contexts. In the paper, we pro-
pose a shadow-like task migration model based on context semantics by capturing
various migration-related contexts. Compared with existing works, our model adds
sections of state description and resource description which are used for state re-
covery, resource rebinding and multi-modality interaction. We then develop a light-
weight task migration framework xMozart based on our task migration model, which
can migrate tasks among different platforms in a shadow-like way. Furthermore, the
migrated tasks can resume execution from their broken points, and interact with
users through multiple modality interfaces.

The rest of this paper is organized as follows. In Section 2, we review related
work. Section 3 proposes a semantics model and a context-sensitive task migration
model. In Section 4 we present a shadow-like task migration framework xMozart
built on our migration model. The implementation and performance evaluation are
presented to demonstrate the effectiveness of our model and framework in Section 5.
Finally, Section 6 concludes this paper with a discussion on our future work.

2 RELATED WORK

Existing research on task migrations falls into three categories, desktop-level migra-
tion, application-level migration and process-level migration [3–5, 9, 10].

The desktop-level migration, like Windows Remote Desktop and XWindow,
transfers the remote desktop visualization to a target platform. After the migration,
users still use the original computer systems in a remote way that requires a stable
connection with a sufficient bandwidth. Furthermore, this method lacks the control
on the migration granularity.

The application level migration scheme includes two methods. The first one
packets source files and then transfers them to a target node. The limitation is that
it is not practicable to migrate tasks among heterogeneous systems. The second
method is based on the C/S pattern, where the source node is a server and the
target platform is a client. The application-level UI rather than the whole desktop
is migrated to the target node. In this paper, we use the C/S pattern to build
a context-sensitive migration model and a migration framework because

1. it can migrate tasks among heterogeneous platforms through persisting programs
in the source node and then recovering them in the destination, and

2. it is easy to incorporate the context with the migration process, enabling the
shadow-like task migration.

The process-level migration focuses on the kernel level. It only migrates some
active execution images from a source node to a target. Although this migration

1134 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

mechanism has the highest flexibility, it is very complex due to the kernel-level
state maintenance, especially when tasks are migrated among different operating
systems [6].

Mozart programming system supports multiple platforms: UNIX and Windows.
It consists of two main components: Oz language and programming interfaces [7]. Oz
is a multi-paradigm programming language that supports declarative programming,
object-oriented programming, as well as constraint programming. Mozart supports
GUI programming through QTK toolkit [8], an extension of TK module. QTK uses
Oz records to introduce a partly declarative programming approach, where UIs are
calculated on the fly and loaded at runtime. This is a desirable property for our
migration scenarios.

3 CONTEXT SEMANTICS BASED TASK MIGRATION MODEL

3.1 Task Migration Model Based on Sections

We model an Oz based program as a set of sections. As shown in Figure 1, an original
Oz program (i.e., file.oz) is re-organized as three sections (i.e., file.“oz”): main Oz
section, state description section and resource description section before a migration.
The latter two sections introduced in our model are responsible for recovering the
runtime context after the migration.

file.oz file."oz"file.'oz'

Main OZ section

State descrption section

Resource description section

Initialization section

Main OZ section
OZ source code

Context
saving

Context
recovery

Fig. 1. Section based task migration model

More specifically, the main Oz section is the original Oz program. State de-
scription section is used to keep and recover various state information during the
task migration. Resource description section prescribes the migrated Oz program
on how to access data resources, e.g., video files, in the target node.

In our model, data resources are not actually migrated. Instead, they are stored
in the source node or a third-party server. After a migration, our xMozart de-
serializes the state and resource sections and maps them to a set of Oz records,
which form the initialization section of the file.“oz”. Migrated tasks firstly execute
the initialization section to recover various states and then rebind data resources.
As a result, Oz programs can be resumed from their individual broken points.

A Shadow-Like Task Migration Model 1135

3.2 Semantics Model for Context-Sensitive Task Migration

3.2.1 Semantics Extension for Oz Language Compiler

As aforementioned, our migration model introduces new sections: resource descrip-
tion section, state description section and initialization section. To enable Oz com-
piler to understand these new elements, we extend the Oz compiler, focusing on

1. section based programming,

2. new reserved words for state recovery and resource rebinding, and

3. multi-modality interfaces.

This section introduces semantics support for state variables, resource variables,
and multi-modality interfaces. In the next section, we will present how to enable
Oz compiler to support section based programming.

3.2.2 Semantic Support for State Variables

State variables are used to describe the task execution context and to recover the
migrated task state to the same one before the task is migrated. We introduce a new
reserved word StateAttribute to mark state variables.

State variables fall into two categories: local and global state variables. The
global variables can be easily extracted because any code can access them. We em-
ploy a compiler-generated procedure to collect all global states and then serialize
them in the state description section. By comparison, however, it is very compli-
cated to get local states because any procedure can not guarantee to extract all local
state variables. So, we propose a shadow function technique for keeping these local
state variables, which will be presented in Section 3.3. Based on a state declaration,
for example “Declare WatchPoint {[StateAttribute], x}”, the extended compiler will
handle the state of WatchPoint according to its category (global or local). If Watch-
Point is a local variable, the shadow function for the WatchPoint will resume the
video play from the broken point.

3.2.3 Semantic Support for Resource Variables

In our model, we do not actually migrate data resources (e.g., a video file) to avoid
undesirable transmission latency. Instead, we use resource variables to indicate how
to access these data files after tasks are migrated.

To indicate resource variables, we introduce a new reserved word ResourceAt-
tribute. We extend the Oz compiler to accept this reserved word when parsing Oz
source files. Similarly, a resource variable declaration looks like “Declare ImageHan-
dler [ResourceAttribute], . . .”. With the resource declaration, the migration module
of our xMozart will be notified of initiating the serialization when a migration is trig-
gered.

1136 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

Algorithm 1: Resource Rebinding

 if (originalHandler is an URI)
 rebindingHandler=originalHandler;
 else { if (originalHandler is a relative LRI)
 originalHandler=pathPrefix+originalHandler;
 rebindingHandler="//"+hostName+originalHandler; }

Fig. 2. Resource rebinding

We categorize all resources as two categories: local and global resources. The lo-
cal resources are stored in the source node while the global resources refer to the ones
provided by third-party servers. The global resources can be globally accessed using
the URI (Uniform Resource Identifier), e.g., “//HostServer/Resources/truck.gif ”,
where HostServer is the server accessible from the Internet. Correspondingly, the
local resources are accessed through the LRI (Local Resource Identifier). LRI re-
sources may be represented in an absolute path, like “C://Resources/truck.gif ”, or
a relative path, for example “Resources/car.gif ”.

We propose an algorithm to rebind resources, as illustrated in Figure 2, where
originalHandler and rebindingHandler refer to resource handlers before and after
a migration, respectively. Our xMozart intercepts the incoming resource resolution
request in the target node, maps it using algorithm1 and returns the new resource
handler. Essentially, our xMozart acts as a proxy between a source node and a target
node for the resource rebinding.

3.2.4 Semantic Support for Multi-Modality Interfaces

Due to the heterogeneity of pervasive devices, I/O interfaces used in a source node
may be inappropriate or even unavailable in a target node. Multi-modality interfaces
are designed to interact with users through appropriate I/O means for better user
experiences, which are very important in pervasive environments. For this purpose,
we introduce a new reserved word Interchangeable, which is declared like “Declare
InputModule [Interchangeable]”, to indicate multi-modality interfaces.

We extend the Oz compiler to understand this reserved word when parsing Oz
source files. Our xMozart provides multi-modality support for extended Oz pro-
grams through separating application logic with I/O modules. These I/O modules
are managed by a standard adapter through a general interface.

3.3 Shadow Functions and Local State Recovery

As aforementioned, any single procedure can not access all local state variables due
to their locality. We use a shadow-function-based mechanism to collect the value
of local state variables. In our model, a shadow function refers to the procedure
that the compiler generates for recovering the specified local states. The basic idea

A Shadow-Like Task Migration Model 1137

behind the shadow function is to save variable-value pairs in a predefined symbol
table during the program execution and then to recover the variables through reading
the symbol table after a migration. We show how to generate a shadow function
using the following example.

for(int i = 0; i < 10; i++) {
. . . ; // normal codes
shadow function; // to persist the variable i. }

In the example, we use the shadow function to keep the last value of variable i.
As a result, every loop will write the state variable i in the state section of the
extended Oz program. After a migration, the program will be resumed at the very
beginning of the interrupted iteration.

3.4 Oz Setter Generation

Our model saves state and resource information in the initialization section. After
a task migration, the task will firstly execute the initialization section to recover
various states and then rebind resources as discussed in Section 3.2.3. This section
presents how to generate Oz setters for the state recovery.

We map state variables in the variable-value pairs, i.e., Oz setters. As shown
in Figure 3, algorithm2 generates Oz setters for global state variables. It firstly
deserializes variable-value (simplified as V-v) pairs and set up a hash table HT, and
then inserts these V-v pairs in the initialization section. Consequently, each variable
and its value in the state description section is mapped as an “Oz setter” record,
e.g., TruckPositionX = 50. When a migrated program is resumed, all the generated
Oz setters will be executed sequentially to recover the corresponding states.

Algorithm 2: Oz Setter Generation

deserialize V-v pairs;
set a HT;
while (HT 6=∅)

generate Oz setter V=v;
insert V=v in initialization section;
HT=HT-{V=v};

endWhile

Fig. 3. Oz setter generation

By comparison, local state recovery is more challenging. We employ the code
injection technique to achieve the local variable recovery, illustrated as follows.

int i = 5; //code injection here to recover variable i
for(; i < 10; i++){ // the original i assignment will be suppressed

. . . ; //normal execution }

1138 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

4 TASK MIGRATION FRAMEWORK

Our task migration model extracts resource handlers and serializes computing con-
texts in a source node, and then rebinds resources and recovers the contexts in a tar-
get node. In this section, we present a task migration framework xMozart based
on our model, focusing on two aspects: migrate management and multi-modality
adaptation.

4.1 Migration Management

Migrate management modules initiate and control the task migration process, shown
in Figure 4. On receiving a task migration request, the Migration Trigger Handler
module halts the current program execution. The State Serialization module, then,
submits the executing program to compiler-generated functions. The latter collects
the values of state variables and resource variables, and then stores them in the
state description section and resource description section, respectively. From then
on, xMozart will prepare the two endpoints for the task migration.

Migration
Trigger Handler

Source
Endpoint

Mozart Platform

State
Serialization

halt execution
parse & serialize state

prepare network

Oz program

migrate

Target
Endpoint

Resource
Recovery

State
De-serialization

Mozart Platform

obtain Oz program
de-serialize state

generate Oz setters

Migrated Oz program

resume execution
migrate

Fig. 4. Task migration framework xMozart

Migration process transfers the file.“oz” with three sections from a source node
to a target one. De-serialization module in the target node recovers runtime states
by extracting the resource handlers and variable states from the resource description
section and the state description section, respectively. Using resource handlers, the
Resource Recovery module can address resources through our algorithm1 (Figure 2).
At this moment, an Initialization section in file.“oz” is formed and the migrated
program is ready to resume its execution. Figure 5 shows the whole task migration
process.

4.2 Multi-Modality Adoption

Multi-modality adoption provides appropriate I/O interaction means based on the
contexts (see Figure 6). We separate I/O interfaces with program logic to imple-
ment the multi-modality adoption using two key modules: Device Discovery and
Evaluation (DDE) module and I/O Adapter Management (IOAM) module.

A Shadow-Like Task Migration Model 1139

Fig. 5. Task migration process

Fig. 6. Synchronization among multiple modality interfaces

The IOAMmodule manages all the supported I/O adaptors. These I/O adaptors
can be added in a plug-in way. For instance, our framework provides the standard
input module such as a keyboard, and at the same time it supports voice input as
well.

The DDE detects which kind of interaction is the best and whether the cor-
responding devices are available. Based on the detection results, the DDE no-
tifies users which I/O interface will be used. Usually, the DDE enumerates all
potential I/O capabilities based on the context and comes up with its recommenda-
tion.

5 IMPLEMENTATION AND EVALUATIONS

We have developed two prototypes to evaluate our task migration model and frame-
work. Computers are configured with Intel T5870 2.00GHz CPU with 2GB memory
and Intel E8600 3.00GHz CPU with 2GB memory, respectively. They are connected
through our campus network and are installed with Windows 7 and Ubuntu Linux,
respectively. We adjusted the router rate at 128 kbps, 256 kbps and 512 kbps to

1140 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

simulate different network bandwidths during the experiments. We conduct testing
and evaluation of our task migration approach in the following aspects.

5.1 Application Migration

Distinguishing from other related work, our approach supports application state re-
covery and resource rebinding in a shadow-like way. To evaluate the effectiveness
of our xMozart, we have tested the state recovery and resource rebinding of our
scheme through migrating a text compiler across both homogeneous and heteroge-
neous platforms.

Items Type Denotation

C++Primer.txt resource variable [ResourceAttribute]
Page Number state variable [StateAttribute]
Line Number state variable [StateAttribute]

Table 1. Key variables in the text compiler migration

Task migration between two heterogeneous platforms. In this experiment, net-
worked nodes run on a Windows and a Linux operating system, respectively. Firstly,
a text compiler that runs in the Linux-based workstation opens the file named as
C++Primer.txt and locates it at a specified page and line. We, then, trigger a task
migration process. In this experiment, key variables used in this task migration are
set as in Table 1, where C++Primer.txt is a resource variable and is restored in our
Linux platform, while the other two are state variables, which are the page number
and line number that are being read.

a) b)

Fig. 7. Text compiler migration, a) Text compilation before migration, b) Text compilation
after migration

The compiler screens before and after the migration are shown in the Figures 7 a)
and 7 b), respectively. We find that the text compiler does migrate to the Windows-
based PC, and the file C++Primer.txt is opened again and located at the same page
and line.

A Shadow-Like Task Migration Model 1141

Task migration between two homogeneous platforms. In the experiment, we mi-
grate a classic Mozart sample, the TruckRace [11] program, between two Linux-based
workstations. In the TruckRace program, 3 trucks start running after a click. We
mark corresponding variables based on Table 2. The TruckRace.mp3 is a resource
variable and plays a music as trucks keep on running. The picture Truck.gif is also
a resource variable. The RaceTime refers to the time that the trucks start running.
It is set as a state variable. Finally, the TruckPositions is set as a state variable that
represents the current locations of the 3 trucks.

Items Type Denotation

TruckRace.mp3 resource [ResourceAttribute]
Truck.gif resource [ResourceAttribute]
RaceTime state [StateAttribute]
TruckPositions state [StateAttribute]

Table 2. Item types and denotations in TruckRace

Fig. 8. State recovery in TruckRace

We find From Figure 8 that TruckRace is migrated from a Linux workstation
to another. The states (i.e., locations of trucks) are recovered and the resources are
rebound so that the music can be played and picture can be shown in the target
Linux workstation.

5.2 Average Migration Latency

We define average migration latency as the average time interval from a migration
request in a source node to program rerunning in a target platform. It is relevant
to the size of modified Oz source program (i.e., file.oz) and the network bandwidth.

We use 19 Oz programs to test the average migration latency. As Figure 9 illus-
trates, we conduct our experiments with the bandwidth of 128.0 kbps, 256.0 kbps and

1142 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

Fig. 9. Average migration latency

512.0 kbps, respectively. The size of Oz programs is set in the range [0.01 kb, 1.0 kb],
which, we think, can cover most applications. Figure 9 shows that the migration
latency grows significantly with the increase of program size. One reason is that
the larger a file size is, the longer its transmission takes. Another more important
reason is that a larger file typically needs more time for state recovery and resource
rebinding.

5.3 Multi-Modality Interaction

Multi-modality interaction is another advantage of our approach that provides most
desirable I/O interfaces for users. We have built our second prototype to exhibit
the ability of our xMozart that can support multi-modality interaction through the
above TruckRace scenario.

The source and target workstations use a standard mouse and a speech recogni-
tion system as input devices, respectively. We add a new reserved word InputModule
to represent a car control module with interchangeable interfaces in this experiment.
As a result, those two I/O adapters are successfully discovered and managed by our
IOAM.

In the source workstation, we convert the events of left and right click on a mouse
into a “start” and a “stop” text, respectively. In the target workstation, however,
similar conversion is achieved by the speech recognition system. We find that after
a migration, the TruckRace can be resumed in the target platform, i.e., the trucks
start running or stoping when we speak “start” or “stop”, respectively. Furthermore,
the TruckRace program has no response when we speak other words. In summary,
our approach can support the multi-modality interaction very well.

A Shadow-Like Task Migration Model 1143

5.4 Persisted Data Control

Our approach persists resource and state variables before a migration. The persisted
data, then, are moved to a target platform, consuming the network bandwidth
significantly. In this experiment, we test how the amount of persisted data grows
with the size of the migrated programs.

We modified 27 classical Oz programs through adding new resource and state
variables. The experimental results are shown in Figure 10 a). There is not a sig-
nificant relationship between the persisted data and the program size because many
large programs possibly do not need proportionable resource and state variables.
Figure 10 b) indicates that the amount of persisted data is proportional to the num-
ber of declared variables. The reason is that more declared variables need more
data persistence. On the other hand, in Figure 10, we notice that all the persisted
data are below 1KB. So, data persistence does not affect the performance of the
networks and systems significantly.

6 CONCLUSIONS AND FUTURE WORK

We present a context semantics based task migration model and a migration frame-
work xMozart. Our approach has the following advantages. Firstly, it can mi-
grate tasks among homogeneous and heterogeneous platforms. Secondly, migrated
tasks can resume their execution in the target platform from the last broken point.
Thirdly, our approach does not actually migrate data resources. Instead, it rebinds
the data resources in the target node, which saves the network bandwidth and re-
duces the average migration latency. Finally, it supports multi-modality interfaces
for desirable user experience. The experiments demonstrate that our approach can
migrate tasks like a shadow as users move in changing contexts.

As a part of our future work, we are going to improve our shadow function
mechanism for local variables to further shorten the average migration latency.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC)
with Grant Nos. 61073148 and 60725208. An earlier version of this paper was
presented in IMIS 2010 [12].

Feilong Tang would like to thank The Japan Society for the Promotion of Science
(JSPS) for providing the excellent research environment during his JSPS Postdoc-
toral Research Fellow (ID No. P 09059) Program in Japan.

REFERENCES

[1] Yu, Z.W.—Zhou, X. S. et al.: Supporting Context-Aware Media Recommenda-
tions for Smart Phones. IEEE Pervasive Computing, Vol. 5, 2006, No. 3, pp. 68–75.

1144 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

P
e

rs
is

te
d

 d
a

ta
 (

K

B
)

Size of Oz source file (KB)

a)

P
e

rs
is

te
d

 d
a

ta
 (

K

B
)

Number of variables

b)

Fig. 10. Persisted data control, a) Persisted data and Oz program size, b) Persisted data
and declared variables

[2] Kiriyama, S.—Wakikawa, R.—Xia, J.W. et al.: Context Reflector for Proxy
Mobile IPv6. Journal of Wireless Mobile Networks, Ubiquitous Computing, and De-
pendable Applications (JoWUA), Vol. 1, 2010, No. 2/3, pp. 36–51.

[3] Chang, X.—Cheung, S. C.—Chan, W.K. et al.: Heuristics-Based Strategies for
Resolving Context Inconsistencies in Pervasive Computing Applications. Proceedigns
of ICDCS ’08, 2008, pp. 713–721.

[4] Chu, H.-H.—Song, H.—Wong, C. et al.: Roam: A Seamless Application Frame-
work. The Journal of System and Software, Vol. 69, 2004, pp. 209–226.

A Shadow-Like Task Migration Model 1145

[5] Kafle, V.P.—Inoue, M.: Locator ID Separation for Mobility Management in the

New Generation Network. Journal of Wireless Mobile Networks, Ubiquitous Comput-
ing, and Dependable Applications (JoWUA), Vol. 1, 2010, No. 2/3, pp. 3–15.

[6] Jonathan, M. S.: A Survey of Process Migration Mechanisms. Technical Report

CUCS-324-88, Computer Science Department Columbia University New York, NY.
10027.

[7] Smolkal, G.: The OZ Programming Model. Proceedings of EURO-PAR ’95,

Vol. 966, 1995, pp. 5–8.

[8] Grolaux, D.—Roy, P.V.—Vanderdonckt, J.: QTk-A Mixed Declara-
tive/Procedural Approach for Designing Executable User Interfaces. Proceedings of
EHCI 2001, 2010, pp. 109–110.

[9] Gitzenis, S.—Bambos, N.: Joint Task Migration and Power Management in Wire-
less Computing. IEEE Transactions on Mobile Computing, Vol. 8, 2009, No. 9,
pp. 1189–1204.

[10] Oikonomou, K.—Stavrakakis, I.: Scalable Service Migration in Autonomic Net-
work Environments. IEEE Journal on Selected Areas in Communications, Vol. 28,
2010, No. 1, pp. 84–94.

[11] Miller, M.—Schulte, C.: Truck Race. Availaible on: http://www.mozart-oz.

org/home/doc/demo/trucks.html.

[12] Wang, M.—Shen, Y.—Tang, F. L.—Guo, M.Y.: xMozart: A Novel Platform
for Intelligent Task Migration. Proceedings of IMIS 2010, pp. 800–805.

Feilong Tang received his Ph.D. degree in Computer Science
and Technology from Shanghai Jiao Tong University (SJTU) in

2005. Currently, he is a JSPS (Japan Society for the Promo-
tion of Science) Postdoctoral Research Fellow. He works with
the Department of Computer Science and Engineering of SJTU,
China. His research interests include grid and pervasive comput-
ing, wireless and sensor networks, and distributed transaction
processing.

Can Tang studies finance and computer science at Heilongjiang University, China. Her
current research interests focus on computational finance and distributed computing.

1146 F. L. Tang, C. Tang, M.Y. Guo, S. Yu, S. Guo

Shui Yu received his B.Eng. and M. Eng. degrees from Univer-

sity of Electronic Science and Technology of China in 1993 and
1999, respectively. He received his Ph.D. (Computer Science)
from Deakin University in 2004. He is currently a lecturer of
the School of Information Technology, Deakin University, Aus-
tralia. His research interest includes networking theory, network
security and mathematical modeling.

Minyi Guo received his Ph.D. degree in Computer Science from

University of Tsukuba, Japan. He is now a Full Professor at
the Department of Computer Science and Engineering, Shang-
hai Jiao Tong University, China. His research interests include
pervasive computing, parallel and distributed processing, paral-
lelizing compilers and software engineering.

Song Guo received the Ph.D. degree in Computer Science from the University of Ottawa,

Canada in 2005. He is currently an Assistant Professor at School of Computer Science
and Engineering, the University of Aizu, Japan. His research interests include protocol
design and performance analysis for communication networks

