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Abstract. With the recent development of high-performance graphical process-
ing units (GPUs), capable of performing general-purpose computation (GPGPU:
general-purpose computation on the GPU), a new platform is emerging. It con-

sists of a central processing unit (CPU), which is very fast in sequential execution,
and a GPU, which exhibits high degree of parallelism and thus very high perfor-
mance on certain types of computations. Optimally leveraging the advantages of
this platform is challenging in practice. We spotlight the analogy between GPGPU
and hardware/software co-design (HSCD), a more mature design paradigm, to de-
rive a design process for GPGPU. This process, with appropriate tool support
and automation, will ease GPGPU design significantly. Identifying the challenges
associated with establishing this process can serve as a roadmap for the future
development of the GPGPU field.
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1 INTRODUCTION

Graphical processing units (GPUs) are increasingly powerful and programmable.
Programmability opens the possibility to use GPUs for general-purpose, i.e., non-
graphical, computation that is normally carried out by the central processing unit
(CPU). General-purpose computing on the GPU (GPGPU) is thus a fascinating
opportunity to share the load between the CPU and the GPU in compute-intensive
applications, such as matrix multiplication [15], collision detection [6], scientific
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simulation [9], ray tracing [26], electronic design verification [3], and genetic algo-
rithms [8].

Despite numerous success stories, GPGPU is still far from becoming a main-
stream technology. The current development of the field is driven by the competi-
tion of two GPU vendors: AMD and NVIDIA. Both vendors introduce new system
generations with more features, higher performance, and improved programming
facilities with a neck-breaking pace. With compatibility issues unaddressed and
lacking a roadmap for the future development, the target platform for GPGPU
practitioners is a moving target [25].

Our aim is to put the current development of GPGPU in a larger technologi-
cal context by relating it to a now mature technology, hardware/software co-design
(HSCD). We demonstrate the similarities between GPGPU and HSCD in their goals,
scope, and inherent complexity. We identify concepts from HSCD that can be read-
ily transferred to GPGPU, but also analyze basic differences that pose special chal-
lenges in the transfer of ideas. Through the analogy with HSCD, we can provide
a technologically sound roadmap for the future development of GPGPU, centered
around a proposed GPGPU design flow. The presented roadmap can help practi-
tioners anticipate what is coming their way; it can help researchers in deriving the
scientific challenges that need to be tackled; and it can help GPU vendors in defining
focus areas for future technical innovation.

Most previous papers on GPGPU report on the experiences of implementing
some specific programs on the GPU. We feel the need to complement these reports
with a more abstract view. Thus, in contrast to most previous work, this paper is
intentionally pitched at a higher level of abstraction.

2 GPGPU: HISTORY AND STATE OF THE ART

For many years, researchers have found it tempting to “mis-use” the resources of the
GPU for general-purpose computation. In the 1990s, several isolated attempts were
made that can now be seen as the precursors of modern GPGPU [16, 22, 11, 12]. The
main characteristic of these approaches was the direct use of graphics APIs. That
is, they had to formulate in graphical terms (such as vertices and textures) the non-
graphical problems that they wanted to solve. These attempts were more of a black
art than engineering practice, but they proved the general feasibility of GPGPU.

In subsequent years, GPUs became more and more programmable through shad-
ing languages of increasing level of abstraction, like the OpenGL Shading Language.
The first programming languages for GPUs, in which the programmer could express
general computation without using graphics terms, were introduced in 2004 [2, 21].
Since then, further programming languages with a C-like syntax have been pro-
posed [28, 20]. The two big GPU vendors have also come up with their own pro-
gramming environments: AMD offers CTM (Close To The Metal) for low-level and
CAL (Compute Abstraction Layer) for high-level access, whereas NVIDIA provides
the CUDA (Compute Unified Device Architecture) environment.
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To allow for the special characteristics of GPUs, current GPGPU programming
platforms are based on a stream-computing paradigm. A program is composed of
kernels, each kernel processing one or more input data streams to create an output
data stream. Technically, data streams are read from/written to the graphics card’s
onboard memory.

The strength of GPUs is the number of instructions executed per second, much
more than latency, i.e., the time to process one instruction. This is in contrast
with traditional CPUs, which offer lower latency at the cost of fewer instructions
per second. GPUs are optimized for running the same sequence of instructions
on a large number of data items in parallel. This is known as the SPMD (Single
Program Multiple Data) paradigm. With today’s GPGPU platforms, it is possible
for the program to take different paths for different inputs, but this incurs substantial
overhead [25]. GPUs excel when the application provides sufficient data-parallelism
to leverage the hardware’s high degree of parallelism.

Some parts of a program1 can be more efficiently carried out by the GPU,
whereas others may be more suitable for a traditional, CPU-based implementation.
Typically, compute-intensive tasks with low variance in control flow are good can-
didates for a GPU implementation; for the other tasks, the CPU implementation
may be more suitable. Therefore, it is often beneficial to partition the application
between the two available processors. This also implies that communication be-
tween the CPU and the GPU is necessary. Technically, this involves data transfer
between the system’s main memory and video memory. This may lead to a signi-
ficant time penalty, which can have a negative impact on the performance of the
whole system [29]. Minimization of this overhead is one more aspect to consider
when partitioning the tasks between CPU and GPU.

For specific problem domains, first attempts to automate the partitioning be-
tween GPU and CPU have already been proposed [13, 24].

3 THE HSCD PERSPECTIVE

In the early 1990s, hardware/software co-design (HSCD) emerged as an approach to
combine the advantages of fast but expensive special-purpose hardware with cheap
but slow software-based solutions [5, 7, 18, 4, 23, 30]. The idea is to combine, in
a single design, both special-purpose circuits and a general-purpose processor, on
which the appropriate software can run. HSCD targets mainly embedded systems
with strict constraints on performance, area, and energy consumption. By carefully
partitioning tasks between hardware and software, an appropriate trade-off between
the conflicting requirements can be found. During partitioning, it has to be taken
into account which tasks are more suitable for a hardware implementation and which
ones for a software implementation. Moreover, the communication overhead between
hardware and software also has to be taken into account [14, 17, 19, 1].

1 The program parts of interest will be called tasks in the rest of the paper. Tasks can
be of different granularity, see later.



1250 Z. Á. Mann

Fig. 1. Hardware/software co-design process

A possible HSCD design flow is depicted in Figure 1. It starts with a high-level
specification, defining the functionality of the system. At this stage, non-functional
requirements such as performance or area constraints are specified in a declarative
way, without explicitly defining how the system should be implemented. The im-
plementation is determined in subsequent steps. For partitioning, a graph represen-
tation is extracted from the functional specification, in which nodes represent tasks
and edges represent dependency and communication between tasks. Each node is
associated with one or more hardware cost (e.g. required area on the chip), which
is only relevant if the given task is implemented in hardware. Likewise, each node
is associated with one or more software cost (e.g. running time on the processor).
Finally, each edge is associated with a communication cost, relating to the amount
of communication between the given pair of tasks. These costs are determined based
on the high-level system specification, using static analysis, high-level synthesis, pro-
filing etc. Based on the extracted information, the system is partitioned by mapping
each task to either hardware or software. Afterwards, the hardware and software
implementation of the tasks are synthesized based on the partitioning decisions.
Communication interfaces are synthesized to allow the seamless communication be-
tween tasks in hardware and tasks in software. The result is a fully synthesized
and optimized system implementing the original specification and obeying the given
constraints.

As a result of intensive research in the last 15 years, now all these steps are
well understood. In particular, design automation support exists for all the steps.
Today, HSCD is a mature and mainstream approach in embedded system design.
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HSCD GPGPU Explanation

Software
implementation
of a task

Implementation
of the task
on the CPU

In both cases, the task is implemented
in a traditional, CPU-based way

Hardware
implementation
of a task

Implementation
of the task
on the GPU

In both cases, the task is implemented
on a non-CPU-like platform, offering
a high degree of parallelism, thus
potentially – if the task is suitable –
offering a significant speedup over
the CPU-based implementation

Hardware/software
communication
overhead

CPU/GPU
communication
overhead

In both cases, the communication
between the two parts of the system
incurs a non-negligible time penalty

Hardware/software
partitioning

Deciding which
tasks to assign
to the CPU

and which ones
to the GPU

In both cases, it is a crucial decision which
tasks to implement in which part of the
system. The decision must take into

account the different cost factors
associated with the implementation
options for each task, as well as
the incurred communication overhead

Hardware area
constraint

Available parallel
hardware resources
of the GPU

In both cases, the speed-up achievable
through moving tasks from the CPU
to the other implementation option
is constrained by the available resources

Performance
optimization
of the whole
hardware/software
system

Performance
optimization
of the whole
GPU/CPU system

In both cases, it is the overall system
performance that needs to be optimized

Table 1. Analogies between hardware/software co-design and GPGPU

4 CONSEQUENCES FOR GPGPU

As can be seen from Table 1, HSCD and GPGPU are analogous, at least at a suf-
ficiently high level of abstraction. This makes it possible to transfer some of the
results of the HSCD community to the field of GPGPU:

• Typically, most of the runtime of a program is spent in some relatively small
loops. These loops, or parts of them, are the candidates for acceleration in
hardware/GPU.

• With appropriate algorithms (e.g., genetic algorithms, integer linear program-
ming etc.), partitioning can be automated. A carefully implemented partitioning
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algorithm can outperform the human expert concerning the quality of the found
solution, and needs only a fraction of the time that human experts need to tackle
the problem.

• Just like with hardware/software partitioning, the decision of what to put into
the GPU can be made at different levels of granularity. One extreme is to
decide for each instruction, on which processor it should run. Alternatively, the
partitioning decisions can be made on the level of basic blocks, functions, objects,
components etc., and a mixture of these granularity levels is also possible. The
chosen level of granularity has significant impact on the effectiveness but also
on the hardness of partitioning: fine-grain partitioning decisions might result
in the best resource utilization; however, they might also lead to high overhead
in terms of communication and management and increase the search space for
partitioning. For more details on how the optimal granularity can be found in
the context of HSCD, see [10] and references therein.

• For both HSCD and GPGPU, it is beneficial if there is little variance in the
control flow of the application. This way, partitioning decisions can be made
a priori with high confidence. Otherwise, dynamic re-partitioning might be
required on the fly. This is possible in GPGPU, just like with some reconfigurable
HSCD platforms [27].

• The “glue code” responsible for establishing the technical context of the GPU-
CPU collaboration – communication, scheduling, and memory management is-
sues – can be implemented in an application-independent manner, thus fostering
reuse. Such code can be made available as a library and linked to the application.

• The proliferation of HSCD was significantly supported by the enhancement of
the capabilities of the underlying hardware platforms, e.g. field-programmable
gate arrays and synthesizable processor cores. Currently, a similar trend can
be observed in the transformation of GPU data paths (e.g., architectural trans-
formation, programmability of the GPU pipeline, support for double-precision
computation etc.), see [25].

Of course, no analogy is perfect. In order to fully understand the implications
and limitations of this analogy, it is vital to also look at the differences between
HSCD and GPGPU, as they are the challenges in transferring ideas from HSCD to
GPGPU:

• In HSCD, moving a function from software to hardware will usually accelerate
it. So, if the goal is to optimize overall performance and if there were no other
constraints, then the optimum would be to implement everything in hardware.
It is due to constraints on cost and/or size that this solution is not applicable.
In contrast, in GPGPU it is not necessarily optimal to put everything into the
GPU. In fact, moving something from the CPU to the GPU might not accelerate
it at all, if the given function does not fit well to the highly data parallel nature
of the GPU.
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• In HSCD, partitioning is based on functionality: some parts of the code are
mapped to hardware, others to software. This is necessary in GPGPU as well.
However, since GPGPU is inherently a platform for highly data parallel applica-
tions, partitioning data between CPU and GPU is also vital. An example of data
partitioning is the GPGPU implementation of 2D FFT calculation as described
in [24]. 2D FFT calculation involves a high number of 1D FFT calculations on
different columns and rows of the 2D matrix. Performance can be optimized by
appropriately distributing the 1D FFT calculations between the GPU and the
CPU. That is, the functionality carried out by the two processors is the same,
but the data are partitioned. In general, partitioning both functionality and
data is possible and should be exploited.

• A more technical, yet important difference is the maturity of synthesis tools.
When HSCD appeared, tools were already available for hardware synthesis
(high-level synthesis, silicon compilation, design simulation and verification tech-
niques etc.) that could be built upon. Today, synthesizing code for GPU is still
in its infantry.

Based on the presented analogy, the idea of a GPU/CPU co-design process
emerges, as shown in Figure 2. The structure of the process is largely the same as
the previously presented HSCD process, with differences in the details.

Fig. 2. GPU/CPU co-design process

The system to implement is given in form of a high-level specification, describing
functionality and the structure and amount of data to be processed. At this stage, it
is not decided yet which tasks will be implemented on the GPU and which ones on the
CPU. These decisions will be made later in the partitioning step. For partitioning,



1254 Z. Á. Mann

the necessary data have to be extracted: dependency and data flow between the
tasks, as well as the associated costs. For each task, it has to be determined how
long it would take to execute that task on the GPU and on the CPU, respectively,
as well as how much it would add to the load of the processors. For each pair of
communicating tasks, the amount of transferred data is determined. For these cost
estimations, static analysis and simulation runs can be used. Then, based on the
extracted data, the partitioning decisions can be made, by mapping each task to
either the GPU or the CPU. Partitioning must also include preliminary scheduling
information about the schedule of the tasks and data transfers. Afterwards, each
task is synthesized to make it executable on the GPU or CPU, respectively, according
to the partitioning decision. In order to allow for communication between tasks on
the GPU and the CPU, the appropriate communication routines are also parame-
terized and linked to the system. The result is an optimized and fully synthesized
system consisting of tasks on the GPU and the CPU.

In a couple of years, the steps of this process could also be automated using
smart optimization techniques. This would bring tremendous benefits for GPGPU:

• Today, adapting a program for GPGPU and optimizing which tasks should be
implemented on the GPU are carried out manually. This is a long and tedious
process, which could be significantly shortened with the appropriate tools.

• Automated synthesis of GPU code and communication routines would add a lot
to the quality of the produced code by reducing the probability of inserting
errors.

• Automated partitioning can be superior to human judgement, especially in the
case of fine-grained (e.g., instruction-level) partitioning that implies a huge prob-
lem space.

• The high-level system specification lets designers focus on application design
instead of low-level implementation details, thus boosting design productivity.

• Using a high-level functional system specification enhances portability between
different GPUs, even of different vendors.

In order to achieve these benefits, a number of challenges need to be addressed:

• Development of a high-level specification language, from which both CPU code
and GPU code can be synthesized.

• Development of appropriate analysis and simulation techniques to quickly and
accurately predict the characteristics of the implementation of a task on the
GPU. In particular, performance and processor load are of interest.

• Development of appropriate GPU/CPU partitioning algorithms to find the best
trade-off between the two implementation options.

• Defining the best granularity for partitioning between GPU and CPU.

• Development of synthesis techniques to automatically convert a task from a high-
level specification to an optimized GPU-based implementation.
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5 CONCLUSIONS

We presented analogies between GPGPU and HSCD, in order to derive, based on
a HSCD process, a possible future design process for GPGPU applications. We
identified the main steps of such a GPGPU design process, the advantages associated
with the approach, and the challenges that need to be tackled to make this reality.

Of course, the GPGPU process that we presented is certainly not the only
possibility: there will be differences in scope, aims, and realization details. However,
we believe that the presented process is a good basis to interpret GPGPU progress,
providing a sound roadmap for the future development for practitioners, researchers,
and vendors alike. The next step will be to elaborate on the presented challenges,
each of which will require a substantial amount of future research.

Acknowledgements

This work was partially supported by the Hungarian National Research Fund and
by the National Office for Research and Technology (Grant Number OTKA 67651),
and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES
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