
Computing and Informatics, Vol. 31, 2012, 161–171

OPTIWEB: AN OPTIMIZATION APPLICATION
FOR STEEL CUTTING INDUSTRIES PORTED
TO THE GRID IN THE FRAMEWORK
OF PIREGRID PROJECT

Jaime Ibar, Gonzalo Ruiz, Ruben Valles

BIFI: Instituto de Biocomputación y F́ısica de Sistemas Complejos

Universidad de Zaragoza

50018 Zaragoza, Spain

e-mail: {jibar, gruiz, rvalles}@bifi.es

Alfonso Tarancón

BIFI: Instituto de Biocomputación y F́ısica de Sistemas Complejos

Universidad de Zaragoza

50018 Zaragoza, Spain

&

Departamento de F́ısica Teórica

Universidad de Zaragoza

50009 Zaragoza, Spain

e-mail: tarancon@unizar.es

Abstract. PireGrid [1] (Project Number EFA35/08) is an INTERREG IV A
project which has two main objectives, namely the deployment of a production Grid
Computing infrastructure in the regions of Aragon, Aquitaine and Midi-Pyrenees
and the achievement of successful cases in execution of applications from small and
medium size companies of the named regions, in order to demonstrate its usage of
these emerging technologies to the companies. In the framework of this project we
present Optiweb, which is the first successful porting of an application from Schnell
Software [2] company, and the process followed to adapt it to a web interface and
its transparent execution in a gLite grid infrastructure.

Keywords: Grid, optimization, company, python, glite

162 J. Ibar, G. Ruiz, R. Valles, A. Tarancón

1 INTRODUCTION

In any building work, taking the rebar element lists (like beams, piles and floor
structures) as a starting point, a computerized procedure is performed in order to
take data, process it, cut the elements and classify them. The steel segments cutting
optimization is the most demanding part in computer resources terms. In fact,
Schnell Software and the University of Zaragoza have been collaborating for 9 years
in the development of internationally competitive software based on techniques used
to study complex systems. Optimo is the result of this close collaboration, a product
commercialized in more than 20 countries.

Last year, some facts made us think about changing some important aspects of
the application basis. On one hand, the product needed to take part in more steel
demanding markets, more computational demanding markets like Obra Publica, or
other cutting systems from Latin America. On the other hand, BIFI took part in
GRID technology, which would offer some performance improvements to this kind
of application executed at that moment in the clients computers. Thus, we decided
to turn it into a distributed and more efficient one. This very ambitious aim called
Optiweb would allow Schnell clients to optimize their steel cutting on a distributed
environment, with no CPU and storage limits like before, and with no need for these
clients to buy dedicated high power computers. This would reduce their costs, and
also it would permit them to get better results in order to save steel, money and
energy, reducing the environmental impact of this process.

This project was the first successful case of an Aragonese company using GRID
technologies and was awarded with the first prize of the 2011 research transfer contest
organized by the University of Zaragoza. Currently, Schnell Software has granted
access to this application to its more important clients in order to show them how
powerful it is, and in the coming future is planing to charge them for using it selling
licenses.

In order to satisfy the company needs and give it an available product as soon
as possible, this project was divided into two phases:

1. Adapting local Optimo to a web environment, Optiweb. This would permit
the company clients to run their optimizations from anywhere, using any device
which had a browser and an Internet connection (like desktops, notebooks, net-
books, smartphones, and so on). This would remove the computing load that
their computers had before, because it would be supported by the application
server. This server had not power enough to deal with a lot of clients running
their optimizations at the same time, and that was the reason why we planned
another phase to introduce GRID technology on it.

2. Porting the optimization process to a working GRID. For this purpose, the
PireGRID platform was chosen. It has hundreds of cores available for running
optimizations. This would allow Schnell Software clients to perform better op-
timizations using less time than in their own dedicated computers.

OptiWeb 163

2 PHASE I: THE WEB APPLICATION

The original application is a command line C program developed by the researcher
Alfonso Tarancon. Thus, the first study done was to look for the best way of adapting
it to a web based application. Due to Schnell Software company mainly to works with
Microsoft environments, we tried to make a first approach using ASP technology,
but it was soon ruled out due to the program complexity and resource consumption.
As BIFI has deep experience in Linux and free software, these could speed up the
development process, so the technologies finally used are described below.

Once the platform where the application would be executed had been chosen,
different technologies were considered for the final implementation of the solution.
Although a UNIX based operating system would be used, we tried to use multi-
platform technologies, because it may be necessary in the future to migrate it to
a Windows Server belonging to Schnell Software. The three main possibilities which
arose were Java, PHP and Python [6]. The last one was finally selected because its
easiness of integrating it with other programming languages, the existence of an API
to access the grid resources and the BIFI previous experience in the development of
all kinds of applications with this technology.

With this topic decided, the next step was to face the implementation of the
web interface, including all the features that Schnell Software required during the
analysis. The used server is Pylons [7], which is one of the most extended servers for
Python development. The system was designed from scratch to be compliant with
all the browsers of the different platforms, including mobile ones. JSON [5] has also
been used, which is an increasing client-server technology. It allows to speed up the
communications and make lighter systems without being necessary to reload entire
web pages with each operation. With this objective the jQuery [8] framework was
also selected, which facilitates all the previous tasks mentioned. In order to store
all the data, a MySQL [9] database was developed ad hoc for the project. The main
features grouped by sections are as follows:

Protection: a user can access the system with the user and password or access the
registration web

Register: a user can create an account to use the system introducing different
data, some of them are compulsory to trace the usage of the system by means
of Schnell Software.

Main: a user can configure and submit optimizations of the cutting process. It has
the following subsections:

Input: where language can be selected (now available in Spanish and English
although Italian, German, even Japanese will be available soon) as well as
the metric system in which data is entered.

Data: the user adds the input data, that is, the steel bars needed to form the
different elements of rebar. They can be introduced both manually and by
loading a file.

164 J. Ibar, G. Ruiz, R. Valles, A. Tarancón

Machine: the user configures the cutting machine, the optimization parameters
and the stock of bars in the store.

Standard cut: some advanced options can be added to optimize a special cut.

Optimization: the execution is released locally or GRID and in which the
progress of the optimization with partial results of best solution found so
far.

Results: final results are shown and the user can print or download files that
go directly to the cutting machines.

My account: the user can edit data as well as a historical list with all optimiza-
tions, see the way they ended and download input, configuration and result
files.

Admin: this section is only accessible for system administrators, that is, Schnell
Software staff and BIFI. It is possible to get a list of all users and to change
their permissions in a way that a user can be disabled in case of misuse of the
application, to change the privileges only to local version, to give permissions
to execute in GRID or to make the user administrator. There is also a list with
all the system activities as well as the optimizations done by all the users.

The next step was the integration of the binary program in charge of the opti-
mization process. Some modifications were necessary in order to allow the commu-
nication between the program and the web application, and this way being able to
trace the status of the execution. Each optimization runs in an independent thread
on background, letting the concurrency of optimizations from different users at the
same time. The major problem of this so-called local version, is the performance
degradation if the number of optimizations/users increases remarkably. The input
and output data are stored in different directories depending on the execution in or-
der to avoid interferences between the optimizations and also to allow the availability
of the results once the machine operator needs them.

3 PHASE II: PORTING TO THE GRID

This phase consisted in the adaptation of the application to the GRID infrastruc-
ture and its integration in the web site previously developed. The application is
a stochastic optimization, which means that the results of each execution may vary
independently of using the same input parameters. So, the bigger the number of
execution the higher is the probability of finding an optimum solution. This is the
key point of the advantage of using a grid infrastructure, because it allows to run
hundreds of optimizations simultaneously, getting a better solution and in less time
compared with a unique computing machine.

To achieve the porting, the first step was to test the application in a standalone
version. This was possible making some modifications to the source code, compiling
again, submitting it as batch jobs and checking the integrity of the obtained results.

OptiWeb 165

Fig. 1. In this image we can see a real optimization executed in GRID. The system shows
us the progress of the simulation, as well as the best solution results till the moment.
We can observe that the amount of managed data is quite big because the solution
found was 3 500 steel bars in a casting of 60Tm

The following issue was to develop a Python script which would deal with all the
complexity of authentication, communication, checks, etc. with the grid. In order
to deploy it and have a full control of the jobs submission the gLite APIs [3, 4] has
been used executed from a User Interface, which is the machine in charge of finally
sending the optimization jobs to the grid. This script is, in fact, the mediator

WEB Server

GRID

Fig. 2. Scheme of the system running with all its actors

166 J. Ibar, G. Ruiz, R. Valles, A. Tarancón

between the web application and the supercomputing platform, which in our case is
a gLite grid. From the web interface, in a transparent way for the user, the input
parameters and the configuration for the job submission are sent to the script, as
well as the number of job optimizations that we want to be done in a parallel way.

GRID

WEB Server User Interface

N Jobs...

Fig. 3. Scheme of the application running in grid mode

The Python script is in charge of sending submitting the jobs to the PireGrid
WMS, which selects the final execution environment depending on the workload of
each node. It checks the status of the job, warning in case of any failure, and it is
also responsible of automatically collecting the data of all the succeeded jobs. Once
it has compiled all the outputs, it starts a local program to select the best solutions
among all of the ones computed in the grid sending it back to the web server and
showing it to the final user.

In this way, the final operator does not feel any difference selecting the local or
the GRID process. It is just a matter of configuring the input data via web, pressing
a button to launch the optimization and it is the system which deals with the issues
to obtain the final result and show it to the user, provided that GRID results will
be better in most of the cases due to the fact that the space of solutions is much
bigger.

Obviously, the security in the approach of communication has been handled with
secure protocols, always sending the information encrypted, which is one of the main
requirements of data used by companies.

3.1 How the Web Server Works

The web server is the mediator between the operator using the application and the
user interface. There are three main steps in the use case of the application.

• The job submission: The user inputs the data filling up the web forms or uploads
an input file with all the initial parameters for the application. Then the web
server prepares a tar file which is sent via ssh to the User Interface that contains
the Python script, which is invoked and started.

• The execution: During execution of the jobs in the grid the user needs to know
how the application is progressing, but all the complexity of the computing
platform is hidden for him/her. This way, s/he is not the one who asks how
everything is going on, but it is the web server which reads the status file from

OptiWeb 167

the User Interface to know if the execution is yet in progress and how many
jobs have already finished to update the status showing the percentage of the
optimization task that has been completed.

• The results: When the status bar reaches 100% means all grid jobs have finished
properly and the final output has been copied from the UI to the Web Server, so
the final results can be formatted and be shown in the web page to the operator.

WEB Server

User inputs data

User Interface

Run + Data

Request

1. Check & Pack Data

2. Send it to UI

3. Call script

Start

Worker PC

Fig. 4. Communication workflow client computer, web server and User Interface starting

the optimization

WEB ServerWorker PC

User Interface

Periodic Status

Request

Periodic Status Read

Running

Status

Response

Fig. 5. Communication workflow client computer, web server and Python script while the
jobs are running in the grid

3.2 How the Python Script Works

First of all, it checks whether a valid voms proxy exists, in order to be able to get
authenticated in every operation with the services of the grid infrastructure. Only
in case it detects there is no valid proxy enabled it creates a new one.

After that, the jdl file with the description of the job is generated, according
to the specification of the parameters that the web server has sent to the script as

168 J. Ibar, G. Ruiz, R. Valles, A. Tarancón

WEB Server
- Machine input files

- Sta s cs User Interface

Forma!ed

Results Best Result

Packed Files

Finished

Worker PC

1. Pack Best Result

2. Mark Status=Finished

3. Wait un l WEB Server picks it

Fig. 6. Finished status: retrieving the output results from the grid to the web server

input parameters. In the case of this application, also an optimization of the way
the jobs are sent to the grid has been performed. It consists in generating a jdl file of
type collection, which lowers the load of the WMS service, because it only receives
one big job composed of several ones and the input data is only transferred once.
This approach is possible because, once the parameters are fixed in the web server
interface, they are the same for all the jobs sent to the grid.

Having created the jdl file there are two options depending on the InputSandbox:

• If there are no files in the InputSandbox, only a jobStart is required, so the job
will be directly submitted to execution.

• In our case, there are input files, so there is a previous step to be done. First
we have to do a jobRegister to obtain the id of the job collection and the url
where the input files will be stored in the WMS (of the type gsiftp:///path_
to_input_files).

This URL is then used to uploaded the input file to the WMS using the lcg util
API. As they are quite small and as using the job collection approach they are
transmitted only once, the usage of the Storage Element Service is not required.

When the input files have been properly uploaded to the WMS, the jobStart
can be done in order to submit the job to the WMS. The later is obviously the one
in charge of deciding in base of his algorithms to decide the most suitable site to
execute the jobs.

The jobStart command returns the list of the unique ids of the jobs which
conform the collection. This list is constantly used in the main loop of the script,
because once they have been submitted they are treated as independent jobs and
not as a collection.

The main sequence of tracing the job execution is checking the status of all the
job ids. In case of its termination, the output is retrieved from the WMS and it is
deleted from the list to avoid future checks. At the same time, in each iteration the
status file where the execution profile is stored is updated with the correct number
of jobs sent, running, done, etc.

OptiWeb 169

When the number of finished jobs equals the input parameter received from the
server, the execution of the Python script finishes and the control is delegated to
the web server.

One of the most interesting advantages that we have using the Python API is
the abstraction of the command line, the simplicity and speed to develop this kind
of script, but above all the complete control that you have at low level to interact
with the different services and steps of the workflow of submitting jobs and handling
their data.

VOMS SERVER

WMS

PYTHON SCRIPT

STATUS FILE

CREATE

VOMS

PROXY

getProxyReq()
jobRegister()

WEB SERVER

CALL/INIT SCRIPT

WEB SERVER

RETRIEVE

THE OUTPUT

SUBMIT JOB

jobStart()

JOB FINISHED

jobPurget()

UPLOAD INIT FILES

getSandboxBulkDestURI()

Fig. 7. Scheme of the communication of the Python script with the different services of
the grid infrastructure and the web server

4 ANALYSIS OF RESULTS

Below we show two graphs where the improvement in the performance of the imple-
mented system solution can be observed. In the first one we can see the execution of
1 000 optimization jobs in the grid for a casting of 60Tm. In the y axis we observe
the percentage of remains, and in the x axis the number of jobs. The lower the point
the better the solution. This example would be equivalent to 1 000 local executions,
which would last for a very long period. If we only executed one local solution the
probability says that it would be very close to the mean, represented with a blue
line. Thanks to the power of the grid we can observe a 2.5% of improvement, which
in our example would mean a saving of 2 Tm of steel, storage, transport, time, etc.

170 J. Ibar, G. Ruiz, R. Valles, A. Tarancón

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 200 400 600 800 1000

R
es

to
s

(%
)

Numero de Trabajo

media

Fig. 8. Execution in GRID of 1 000 optimizations for a casting of 60Tm

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 0 100 200 300 400 500 600 700 800 900 1000

R
es

to
s

(%
)

Numero de trabajos enviados
Fig. 9. Representation of the improvement while the number of jobs/optimizations in-

creases

OptiWeb 171

In the second graph, we can observe the improvement of the solutions with the
growth of the jobs. If the client would execute it only on his/her PC, the obtained
solution would have been in point 1 of the abscissas and would have a little bit more
than a 7.4% of remains. In the grid approach, when executing 100 jobs the remains
would be reduced to 5.8%.

Acknowledgements

A special acknowledgement goes to the Schnell Software colleagues (Miguel Caro
and Mari Mar Lahuerta) who have collaborated with all the technical issues related
to analysis requirements of the web application. Thanks also to all the PireGrid
partners and all the people collaborating in deploying and monitoring the PireGrid
infrastructure.

REFERENCES

[1] PireGrid web page: http://www.piregrid.eu/.

[2] Schnell Software web page: http://web.schnellsoftware.net.

[3] Python API Web page: http://trinity.datamat.it/projects/EGEE/wiki/3.1/

htmlpython/wmproxyapipython.html.

[4] Python API web page alternative: http://egee-jra1-wm.mi.infn.it/

egee-jra1-wm/api_docwmproxy_python.html.

[5] Json web page: http://www.json.org/.

[6] Python: http://www.python.org/.

[7] Pylons: http://pylonshq.com/.

[8] jQuery: http://www.jquery.com/.

[9] MySQL: http://www.mysql.com/.

Ruben Valles studied computer engineering at CPS (Centro
Politecnico Superior de Ingenieros) in Zaragoza. He started to
work at BIFI in 2005 collaborating in different projects related
to software development and at the beginning of 2006 he joined
the cluster and grid computing research group. He is currently
the responsible of the Distributed Computing area in which he
manage both grid infrastructures and the participation of BIFI in
national and international grid projects like AraGrid, PireGrid,
Ibergrid, EGI-InSPIRE, etc.

