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Abstract. Out-of-order tuples in continuous data streams may cause inaccurate
query results since conventional window operators generally discard those tuples.
Existing approaches use a buffer to fix disorder in stream tuples and estimate its
size based on the maximum network delay seen in the streams. However, they
do not provide a method to control the amount of tuples that are not saved and
discarded from the buffer, although users may want to keep it within a prede-
fined error bound according to application requirements. In this paper, we propose
a method to estimate the buffer size while keeping the percentage of tuple drops
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within a user-specified bound. The proposed method utilizes tuples’ interarrival

times and their network delays for estimation, whose parameters reflect real-time
stream characteristics properly. Based on two parameters, our method controls the
amount of tuple drops adaptively in accordance with fluctuated stream character-
istics and keeps their percentage within a given bound, which we observed through
our experiments.

Keywords: Data stream processing, sliding windows, buffer estimation, disorder
control, drop ratio

1 INTRODUCTION

Recent years have witnessed the emergence of a new class of applications, which
monitor continuous streams of data items such as stock exchanges, network mea-
surements, web page visits, sensor readings and so on [1, 2, 3]. Since these data
streams are so large or often inherently unbounded, queries on the streams cannot
be easily answered if they involve blocking operators such as joins or aggregations;
these are the operators which cannot start processing until the entire inputs are
ready. A common solution for this issue is to restrict the range of stream queries
into a sliding window that contains the most recent data of the stream [2, 3, 4].

For example, consider a query that asks for the maximum value of sensor read-
ings over the latest 30 seconds. This query can be specified as Q1 which is a SQL-like
query with window specification “[RANGE 30 seconds]”. The query is manipulated
for each tuple arrival. Whenever a new tuple with timestamp t arrives, a window
operator in a stream query processor, also called a DSMS (Data Stream Manage-
ment System), determines the window interval by (t−30, t] and organizes a collection
of tuples belonging to the window. Then, the aggregate function MAX finds the
maximum sensing value among the tuples in the window.

Q1. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds]

In general, window operators assume that tuples arrive in an increasing order
of their timestamps and discard out-of-order tuples to simplify their processing [5].
However, tuples may not arrive in the order since they often experience different
network transmission delays when a stream source is in a remote location. These
out-of-order tuples may lead to inaccurate results in an aggregate query such as Q1.

Existing approaches use a buffer to fix disorder of stream tuples before they are
inputted to window operators. The size of the buffer can be fixed or variable. The
fixed-size buffer is used in Aurora [1] which is one of the well-known DSMSs; but,
such a buffer cannot be used properly when information about stream characteristics
(e.g., network delays) is not available in advance, because it is hard to decide the
buffer size in this case. Too large buffer results in large latency because input tuples
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reside in the buffer long time. On the other hand, too small buffer may cause many
tuples to be discarded since a new tuple is discarded when its timestamp is smaller
than that of the latest tuple outputted from the buffer.

Many other DSMSs including STREAM [6] use a dynamic buffer. When using
the buffer, we need to identify which tuples can be outputted from the buffer at
a certain time; otherwise, the buffer will grow infinitely without any output. Existing
approaches generally determine those tuples based on the maximum network delay
seen in the stream. Let the max delay in the stream be m. Then, at time t, the
buffer keeps tuples whose timestamps are larger than t−m, and other tuples in the
buffer are delivered to a window operator. If a new tuple with timestamp smaller
than t−m arrives after that, it is discarded from the buffer.

Note that in the existing approaches, there is no explicit method to control the
amount of tuple discards. The feature for disorder control is important because
users may want to force the percentage of tuple drops not to exceed a predefined
bound according to application requirements. This feature becomes more useful
when the memory is run out from a huge size of the buffer caused by bursty tuple
arrivals. When the memory is not enough, DSMSs generally discard some tuples
from the memory to shed system load. To maximize the effect of load shedding,
they try to drop tuples as in the early stage of query processing as possible. At
the same time, they need to control the amount of tuple discards to meet the QoS
(Quality of Service) specification given by a user, which describe the criteria about
the percentage of tuples delivered or discarded [1, 7, 8]. These lead to the necessity
of disorder control in window processing.

In this paper, we propose a method to estimate the buffer size while keeping the
percentage of tuple drops within a user-specified bound. We provide an optional
parameter DRATIO (acronym of a drop ratio) that can be described in a window
specification as shown in Q2 below. By specifying the parameter, users can control
the quality of query results according to application requirements; a small value of
the drop ratio provides more accurate query results at the expense of high latency
(due to a large buffer), while a large value gives faster results with less accuracy
(from a smaller buffer).

Q2. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds, DRATIO 1%]

We derive an estimation function based on a stream model where input tuples
are randomly generated and arrive after normally-distributed network delays. The
derived function utilizes tuples’ interarrival times and their network delays for es-
timation, whose parameters reflect real-time stream characteristics properly. Based
on two parameters, our method controls the amount of tuple drops adaptively in
accordance with fluctuated stream characteristics and observes a given drop ratio.
We show through our experimental results that

• it is hard to control the amount of tuple drops in the existing method which
adjusts the buffer size heuristically, and
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• the proposed method observes a user-specified drop ratio in processing data
streams whose characteristics are dynamically changed.

The rest of this paper is organized as follows. Section 2 introduces existing work
for processing windows over disordered streams. Section 3 proposes our method to
estimate the buffer size adaptively based on the two run-time parameters. Section 4
provides our experimental results that compare our method with the existing method
based on the max delay seen in the stream. Section 5 concludes our discussion with
a brief mention of future work.

2 RELATED WORK

In general, DSMSs evaluate queries over potentially infinite streams of tuples. To
produce outputs continuously when the queries involve blocking operators such
as joins or aggregates, they are required to limit the scope of query processing
to the most recent data of streams. Conventional DSMSs including Aurora [1],
STREAM [6] and TelegraphCQ [9] commonly use sliding windows to localize the
scope of input tuples.

Many types of windows have been proposed so far, including time-based win-

dows, tuple-based windows, value-based windows [2], predicate windows [10] and
so on. Among them, time-based windows are most frequently used for continu-
ous queries [11, 12], whose window intervals are determined by tuples’ timestamps.
However, their boundaries and contents may not be easily identified when incoming
tuples are not in the timestamp order [5, 13].

To resolve this issue, Aurora uses a fixed-size buffer to deal with disorder in
stream tuples. Assuming that the max delay is known in advance, it uses a buffer
whose size is large enough to cover the max delay. If we do not have any prior
knowledge about the max delay, the fixed-size buffer may not be used properly
because it is hard to decide the buffer size; too small buffer may cause many tuples
to be discarded, while too large buffer results in large latency because input tuples
reside in the buffer for a long time.

Many other DSMSs including STREAM use a dynamic buffer to fix disorder
of input tuples. As discussed earlier, they usually determine the tuples that can
be outputted from the buffer, based on the max delay seen in the stream. Given
the max delay m at time t, the buffer keeps tuples whose timestamps are larger
than t − m, and other tuples in the buffer are delivered to a window operator.
The k-ordering mechanism [14], the skew bound estimation in [12], the timestamp
mechanism in Gigascope [15, 16] and the ordering mechanism in NiagaraCQ [17] are
similar to this approach.

The timestamp t−m is called a heartbeat [12, 16] or a punctuation [5, 13, 18] in
the literature. The heartbeat h is an assertion indicating that no more tuples with
timestamps smaller than h will be seen in the future. Therefore, given heartbeat h,
it is possible to process tuples with timestamps smaller than h. If new tuples with
values smaller than h arrive after that processing, they will be discarded.
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The heartbeat can be estimated internally by DSMSs or can be given externally
from other remote stream sources such as routers. Ding et al. [19] and Jin Li et al. [5]
assume that the heartbeats are externally given and propose methods for processing
join or aggregate queries gracefully based on the given heartbeats. However, external
stream sources may not provide heartbeats in real-world applications. In addition,
the heartbeats themselves can be out-of-ordered when the stream sources are in
remote locations.
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Fig. 1. Estimation of the max delay in the adaptive method proposed by Srivastava
et al. [12]

When estimating the heartbeat internally, existing approaches generally focus
on saving discarded tuples as many as possible. Consequently, they tend to keep
the buffer size larger than necessary. For example, the adaptive method proposed by
Srivastava et al. [12] estimates the max delay m by (m1 +m2)/2, where m1 is the
max delay seen in the stream at time t and m2 is the second max delay in a time
interval [t, t+W ] (Figure 1). We can easily see that m is kept large in most of time
since it is determined by two largest values of network delays seen in the stream in
a certain period of time.

Moreover, there is no explicit method to control the amount of tuple discards
in the existing approaches. To control the tuple drops, we need to adjust the pa-
rameter W according to fluctuated stream characteristics. However, the adaptive
method did not discuss how to determine W properly. It is hard to expect that the
method based on a heuristically determined W will observe a user-specified bound.

3 OUR METHOD

In this section, we first introduce a stream model that characterizes tuple generations
and arrivals in our method. Then, we derive an equation to estimate a buffer size
based on the stream model; the equation is developed to observe a user-specified
drop ratio. Finally, we provide the structure and the algorithm to fix disorder of
stream tuples using the buffer whose size is estimated by the derived equation.
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3.1 Stream Model

In our stream model, times for tuple generations at stream sources are randomly
distributed, and the number of tuples to be generated follows a Poisson process with
parameter λ. In other words, their generation intervals have an exponential distri-
bution with mean θ ( = 1/λ). In what follows, Ti and Ui are random variables for
timestamps that denote the generation time (given by a remote stream source) and
the arrival time (stamped at a query processor) of the i-th arrival tuple, respectively
(Figure 2).

(Ti − Ti−1) ∽ Exp(θ) (1)

Network delays experienced by tuples follow a normal distribution with mean µ
and standard deviation σ.

(Ui − Ti) ∽ Norm(µ, σ2) (2)

Then, interarrival times of the tuples follow an exponential distribution with
mean θ, whose proof is given in Appendix.

(Ui − Ui−1) ∽ Exp(θ) (3)

Generation

timestamp

Tn Tn-1 T1T2
… (Ti – Ti-1) ~ Exp( )

timestamp

(Ui – Ti) ~ Norm( , 2)…

Un Un-1 U1U2
…

Arrival time

(Ui – Ui-1) ~ Exp( )

Fig. 2. Stream model that characterizes tuple generations and network delays in our
method

Figure 2 depicts our stream model described above. In the figure, U1 and Un

denote the arrival times of the earliest and the latest tuple in the buffer B, respec-
tively, where n is the number of tuples in B. Similarly, T1 and Tn are generation
timestamps of the earliest and the latest tuples, respectively.

3.2 Estimation Function

As mentioned earlier, we support users to specify a drop ratio in a query. The
drop ratio denotes a percentage of tuple discards permissible during the process of
disorder control. A user may choose a small value of the drop ratio to get more
accurate query results at the expense of a large buffer with high latency. On the
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other hand, he/she can choose a large value to have faster results by using a smaller
buffer, but with less accuracy.

The drop ratio can be specified by using an optional parameter DRATIO in our
method. It can be augmented to a window specification. The query Q3 below shows
an example where DRATIO is given to 1%. It indicates that the percentage of tuple
drops (i.e., number of tuple drops per total number of input tuples) should be less
than or equal to 1%.

Q3. SELECT MAX(value)

FROM Sensors [RANGE 5 minutes, DRATIO 1%]

Now, let us derive an equation to estimate a buffer size which observes a drop
ratio specified in a query. Without loss of generality, suppose there are n tuples s1,
s2, . . . , sn in the buffer B. Then, the current heartbeat is less than T1 by definition
since T1 is the smallest timestamp among those tuples. Consider a new tuple that
does not yet arrive in B, whose timestamp is Tn+1. The condition that the tuple
is discarded from B is Tn+1 < T1. Thus, the probability of a tuple drop can be
represented as Pr(Tn+1 < T1), and it must be smaller than a user-specified drop
ratio D.

Pr(Tn+1 − T1 < 0) ≤ D (4)

Tn+1 − T1 can be rewritten as follows.

(Tn+1 − T1) = (Tn+1 − Un+1) + (Un+1 − U1) + (U1 − T1) (5)

For convenience, we use random variables S, X, Y and Z for (Tn+1 − T1),
(Tn+1 − Un+1), (Un+1 − U1) and (U1 − T1), respectively.

Since X and Z are network delays, they have normal distributions from (2). We
can also approximate Y to a normal distribution. Y can be interpreted as a sum of
interarrival times of tuples, that is,

∑

i(Ui − Ui−1) (1 ≤ i ≤ n + 1). If the number
of tuples n is greater than or equal to 30 (we will do so in our method), we can
approximate the sum of (Ui−Ui−1) to a normal distribution from the Central Limit

Theorem [20]. In this case, a mean and a standard deviation of the distribution
become nθ and nθ2, respectively. As a result, all of X, Y and Z have normal
distributions as follows.

X ∽ Norm(−µ, σ2) (6)

Y ∽ Norm(nθ, nθ2) (7)

Z ∽ Norm(µ, σ2) (8)

To get the distribution of S (i.e., the convolution of X, Y and Z), we use the
MGFs (Moment Generating Functions) [20] of the three random variables that have
normal distributions.
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MS(s) = MX(s) ·MY (s) ·MZ(s)

= eσ
2s2/2−µs · enθ2s2/2+nθs · eσ2s2/2+µs

= e(σ
2s2/2−µs)+(nθ2s2/2+nθs)+(σ2s2/2+µs)

= e(2σ
2+nθ2)s2/2+nθs

Note that the result is again in a form of the normal distribution MGF, where
a mean and a standard deviation of the distribution are (nθ) and (2σ2 + nθ2),
respectively. Therefore, the distribution of (Tn+1 − T1) is

(Tn+1 − T1) ∽ Norm(nθ, 2σ2 + nθ2) (9)

By standardizing (9), we can have a function to get the probability of a tuple
drop as shown in the left expression of (10), where Φ is the cumulative distribu-
tion function of a standard normal distribution [20]. Based on the function, the
condition (4) can be rewritten as

Φ(
nθ√

2σ2 + nθ2
) ≥ 1−D. (10)

We solve (10) as an equation and get a solution for n as shown in (11). Below,
z(α) is a function that returns the percentile (also known as the critical point) [20]
for a given percentage α (< 1) in the standard normal distribution (e.g., 1.65 for
5% and 2.33 for 1%).

n =
C +

√

C2 + 8·C·σ2

θ2

2
if n ≥ 30, otherwise, n = 30 (11)

Here,
C = {z(D)}2

If the input rate λ (= 1/θ) is high (e.g., more than 100 tuples per second), which
is common in real-world applications, we can simplify the above equation as follows.

n ≈
√
2 · z(D) · σλ (12)

Note that our method based on the derived equation can provide worse perfor-
mance than the existing method when we need to have highly accurate query results
whose drop ratios are very small. Since z(D) converges to an infinite value as D
gets close to 0, the estimated buffer size can be impractically large when D is very
small.

To resolve this problem, we utilize the existing adaptive method discussed in
Section 2, when D ≤ 0.1%. Regarding this, we show through our experiments
that the buffer size estimated by the adaptive method becomes smaller than that
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of our method when D ≤ 0.1%. The results also show that the method keeps the
percentage of tuple drops within 0.1% when we set the parameter W (the interval
of decreasing the max delay) to be large enough. Actually, we may not control the
drop ratio in this method, nor can we guarantee that it always keeps the ratio within
0.1%. Nevertheless, these results show that the adaptive method can be a practical
solution when we require high accuracy in query results.

3.3 Structure and Algorithm

Estimator
For each 

sampling period

Input tuple with

timestamp t

Only if t > t1

Buffer size n

Output tuples to 
tk tk 1 t2 t1

Buffer

tuple

window operators
tk tk-1 … t2 t1

……

(Array indexing 

based on t)

Buffer

Linked list

Fig. 3. Structure for processing out-of-order tuples

Figure 3 shows the structure to process out-of-order input tuples in our method,
which consists of two main parts: the buffer and the estimator. The former main-
tains input tuples in an increasing order of their generation timestamps (hereafter,
simply timestamps), and the latter estimates the size of the buffer base on Equa-
tion (11).

The buffer needs to be organized to accept input tuples efficiently while observing
their timestamp order. The buffer size may significantly grow due to a high arrival
rate of the input stream. Ordering tuples based on conventional sorting mechanisms
providing O(n logn) time can be an exhausting job when the buffer size becomes
huge.

Fortunately, we can handle each incoming tuple in constant time. Many DSMSs
assume that tuples’ timestamps are values from a discrete, ordered time domain
such that the values can be represented as nonnegative integers starting from zero
(e.g. seconds). Based on this assumption, we can easily group input tuples according
to their timestamps by using an array whose elements correspond to tuples’ time-
stamps. Actually, we organize the buffer as a circular array whose element has a list
of tuples with same timestamps. Then, we map an input tuple to one of elements
directly by array indexing based on the tuple’s timestamp.
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Whenever a new tuple arrives in the buffer, we first check its timestamp to
determine whether we accept it or not. The determination is conducted based on
the earliest timestamp of tuples in the buffer. If the tuple’s timestamp t is smaller
than the earliest timestamp t1, the tuple is discarded. In other words, the earliest
timestamp t1 plays a role of the heartbeat in our method. If t is equal to t1, we
directly output the tuple to the window operator. Otherwise, we keep the tuple in
the buffer. If the buffer becomes full by a new tuple, we send out an earliest tuple
from the buffer whose timestamp is t1. It is also possible to output more tuples with
the same timestamps t1 to make more space available in advance.

Algorithm 1. Periodical estimation of the buffer size

Input: Tuple s with timestamp t

Data: Counter c, Timestamp t1

(1) If c mod Ps = 0, then add s to the estimator buffer

(2) If c mod Pe = 0

(3) Estimate σ and θ from tuples in the estimator buffer(3) Estimate σ and θ from tuples in the estimator buffer

(4) Estimate the buffer size n by using equation (11)

(5) Keep the latest n tuples and send out other ones

(6) t1 The earliest timestamp of tuples in the buffer

(7) End if(7) End if

(8) If t < t1
(9) Discard s

(10) Else if t = t1
(11) Send out s to a window operator(11) Send out s to a window operator

(12) Else

(13) Insert s to the buffer 

(The earliest tuple is sent out if the buffer is full)

(14) End if(14) End if

(15) Increase c

Fig. 4. Algorithm for buffer size estimation in our method

The buffer size is controlled by the estimator periodically. We may estimate
the buffer size for each tuple arrival. But, this approach may degrade overall per-
formance due to heavy estimation cost. Instead, we estimate it for every Pe tuple
arrivals. If the number of tuple arrivals per second (i.e., λ) is smaller than Pe, we
conduct estimation every second. We also sample a tuple for every Ps arrivals from
an input stream and keep at least M (≥ Pe/Ps) tuples in the buffer of the estimator
to obtain the parameters σ and θ of Equation (11) (or Equation (12) if λ is large);
to sample input tuples effectively, we may use more advanced techniques such as the
reservoir sampling [21, 22]. Currently, Pe, Ps and M are predefined values in our
method, and adaptive determination of the values (according to fluctuated stream
characteristics) is left for future work.

Figure 4 shows an algorithm for estimating the buffer size periodically in our
method. Whenever a new tuple s with timestamp t arrives, we first check the
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sampling period by using the internal counter c and add the tuple to the sampling
buffer of the estimator. Then, we check the estimation period also based on c. If
so, we estimate the parameters σ and θ from tuples in the sampling buffer and
calculate the buffer size by using Equation (11). After the buffer size n is identified,
we maintain the latest n tuples in the buffer and send out all other tuples to window
operators. We also refresh the heartbeat t1 based on the remaining tuples in the
buffer. Finally, we determine whether we accept or discard the given tuple in the
buffer based on the earliest timestamp t1 as discussed earlier.

Note that our algorithm in Figure 4 is used only when D is larger than 0.1%.
In other cases, we utilize the adaptive method as discussed in Section 3.2. When
using the method, we keep the parameter W large enough to reduce as many tuple
discards as possible; currently, we set W to be larger than or equal to λ. Our
experimental results in the next section show that the adaptive method with such
a large W keeps the percentage of tuple drops within 0.1% in a typical situation.

4 EXPERIMENTAL RESULTS

In this section, we provide experimental results that compare our method with the
adaptive method proposed by Srivastava et al. [12] whose estimation mechanism
is briefly discussed in Section 2. We implemented a data generator to synthesize
test data sets which satisfies our stream model discussed in Section 3.1. It receives
parameters including a drop ratio D, an average interarrival rate of tuples λ, a mean
of network delays µ and their standard deviation σ. To simplify our experiments,
we currently set λ to 10 000 tuples per second and fixed the size of each data set
to 1 000 000 tuples. Our experiments were conducted on Intel Pentium IV 2.4MHz
machine, running Window XP, with 1G main memory.

We first tried to see the behavior of the adaptive method over streams whose
characteristics are dynamically changed. To simulate the fluctuated stream, we
change the parameters µ and σ periodically during the experiment. The parameters
are randomly chosen among the values of “0 ≤ µ ≤ 6” and “0 ≤ σ ≤ 5” in every 1, 3
or 5 seconds during the experiment. Then, we varied the parameterW and observed
its influence to the buffer size and tuple drops. Figure 5 shows the progresses of
the buffer size and the percentage of tuple drops according to changing W . As W
increases, the buffer size becomes larger since W determines the period of decreasing
the max delay m in the adaptive method; a large W will result in a large m as well
as a large buffer. It is clear that the percentage of tuple drops gets reduced as the
buffer size increases, which is shown in Figure 5 b).

Note that in this method, it is hard to determine the parameter W properly
regarding to observing a user-specified drop ratio. Suppose that we need to keep
the percentage of tuple drops within 1%. Then, we may choose W between 100 and
1 000, but it is not clear which value satisfies the given drop ratio while providing
a smaller buffer than other choices. Even though we obtain a proper value of W
by trial-and-error, the chosen value may not satisfy the drop ratio in other streams
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Fig. 5. Adaptive method: a) buffer size (left) and b) percentage of tuple drops (right)

which have different characteristics (e.g., “0 ≤ σ ≤ 10”).
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Fig. 6. Our method: percentages of tuple drops over a) a constant stream (left) and
b) a changing stream (right)

On the other hand, our method enables a user to specify a drop ratio and
adjusts the buffer size automatically to observe a given drop ratio. Figure 6 shows
experimental results where our method observes a given drop ratio in most cases.
The left figure shows the percentages of tuple drops when stream characteristics are
not changed during the estimation. We set σ from 1 to 5, then observed tuple drops
when the drop ratios are given to 1%, 0.5% and 0.1% for each case. As we can see
in the figure, there is no case violating a given drop ratio in this experiment.

When stream characteristics are dynamically changed, the drop ratio may not
be strictly observed in the proposed method. In this experiment, we changed the
stream characteristics in the same way of the previous one (i.e., “0 ≤ µ ≤ 6” and
“0 ≤ σ ≤ 5”) and observed the percentages of tuple drops. Figure 6 b) shows its
result for each case of the drop ratio given to 1%, 0.5% and 0.1%. The viola-
tion occurs when we need to have highly accurate results as in the case of D =
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0.1%. The result leads to the necessity of more elaborate disorder control in our
method.
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Fig. 7. Adaptive method vs. our method (D = 0.1%): buffer sizes over a) a constant
stream (left) and b) a changing stream (right)

As discussed earlier, our method can provide worse performance (i.e., a larger
buffer) than the adaptive method whenD is very small. To see this, we compared the
buffer sizes estimated by our method (when D = 0.1%) and the adaptive method.
Figure 7 a) shows the buffer sizes of two methods according to increasing σ when
stream characteristics are not changed. In this case, two methods provide simi-
lar performance. On the other hand, when stream characteristics are dynamically
changed, the adaptive method shows better performance than our method, which is
depicted in Figure 7 b); the performance gap between two methods increases up to
15%.

The last two experimental results of Figures 6 and 7 show that more elaborate
disorder control is required in our method. Note that, when stream characteristics
are not changed, our method observes a given drop ratio and estimates the buffer size
similar to that of the adaptive method. From this, we can see that our estimation
function (i.e., Equation (11)) works properly. It seems that the estimation error and
the larger buffer are due to the parameters µ and σ which are improperly estimated
when stream characteristics are dynamically changed. Regarding this, we will have
more study on this issue later (e.g., choosing proper sampling periods and sampling
buffer sizes in Algorithm 1).

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to control disorder in continuous data streams.
The proposed method enables a user to specify a drop ratio in a query, which
denotes a percentage of tuple drops permissible in the disorder control process. By
specifying the drop ratio, users can control the quality of query results according to
application requirements. We derived our method based on a stream model where
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tuples are randomly generated and arrive after normally-distributed network delays.
The derived function utilizes a mean of tuples’ interarrival times and a standard
deviation of their network delays. This enables our method to control disorder
adaptively in accordance with fluctuated stream characteristics. Our experimental
results show that

• it is hard to control the amount of tuple drops in the existing method which
adjusts the buffer size heuristically and

• the proposed method observes a user-specified drop ratio when it is larger than
0.5%.

As shown in the experimental results, our method may violate a given drop
ratio and provide a larger buffer than the existing method. This is when we need to
have highly accurate results (whose drop ratio D ≤ 0.1%) over fluctuated streams.
The results lead to the necessity of more elaborate disorder control in our method.
Regarding this, we are planning to study how to choose a sampling period and
a sampling buffer size properly over streams whose characteristics are dynamically
changed.
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Appendix: Distribution of tuple arrivals in our stream model

We will show that, if tuples are randomly generated with rate λ, their arrivals
also become a Poisson process with rate λ, regardless of the distribution of network
delays. As described in our stream model (Section 3.1), the i-th tuple Si is generated
from a remote source at time Ti and arrives at the destination at time Ui. Here,
we assume that the network delay (Ui − Ti) is an IID (Independent and Identically
Distributed) random variable with distribution given by

F (x) , Pr{Ui − Ti ≤ x} (13)

with density

f(x) ,
dF (x)

dx
. (14)

Let us consider another stream model in a discrete time domain. We discretize
time in small intervals δ. In this model, we assume that tuple arrivals on the intervals
(i.e., discretized time slots) are independent and identical Bernoulli process with
probability p.

Suppose that the i-th tuple Ŝi occurs at time slot T̂i and arrives at time slot Ûi.
The network delay (Ûi − T̂i) can be represented as the number of slots between the
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tuple occurrence and arrival, which is assumed to be an IID random variable with
distribution given by

f̂(x) , Pr{Ûi − T̂i = x}. (15)

When δ converges to 0, two stream models based on a discrete and a continuous
time domain become identical as long as

p = λδ (16)

and
f̂(x) = δ · f(xδ). (17)

To prove that the arrivals of tuples Sis are Poisson process is identical to showing
that the arrivals of tuples Ŝis are Bernoulli. To prove it is Bernoulli, we have to
prove the probability of a tuple arrival at each time slot of the destination is λδ and
it is memoryless.

The former one can be easily proven. The probability of a tuple arrival at
a certain slot can be calculated as

Pr{tuple arrival at ith slot}

=
∑

j

Pr{tuple occurs at (i− j)th slot} · Pr{delivery takes j slots}

=
∑

j

λδ · F̂ (j)

= λδ
∑

j

F̂ (j) = λδ.

The proof completes with the memoryless property. Let us assume that the
arrival history during time q is known before a certain slot χ. q is finite time in
a continuous time domain, but is able to have infinite number of slots with interval δ.
However, there can be only finite number of arrivals during time q with probability 1
if the Poisson rate λ is finite. Thus, we assume that the history of arrivals during
q is known and finite. Let Q be a set of slots with tuple arrivals during q. Now, we
have the conditional probability of a tuple arrival on slot χ as

Pr{tuple arrival on χ – arrivals on Q during q}

=
Pr{arrival on χ} · Pr{arrival on Q during q — arrival on χ}

Pr{arrival on Q during q}

=
Pr{arrival on χ} · Pr{arrival on Q during q}

Pr{arrival on Q during q}
= Pr{arrival on χ}.

From the above, tuple arrivals are memoryless. Based on the two results, we can
see that tuple arrivals become a Poisson process if their generations have a Poisson
distribution.
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