
Computing and Informatics, Vol. 31, 2012, 299–329

PARSING WITH CLAUSE AND INTRACLAUSAL
COORDINATION DETECTION
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Abstract. We present a new dependency parsing algorithm based on the decom-
position of large sentences into smaller units such as clauses and intraclausal coor-
dinations. For the identification of these units, new methods combining machine
learning techniques and heuristic rules were developed. The algorithm was evalu-
ated on the Slovene dependency treebank text corpus. Compared to the MSTP
parser, currently the most accurate for Slovene, parsing accuracy was improved by

1.27 percentage points, which equals 6.4% relative error reduction.
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1 INTRODUCTION

Syntactic parsing represents one of the possible intermediate steps of text analysis in
the applications such as machine translation, information extraction from resources
like World Wide Web, question answering, etc. The result of syntactic parsing are
syntactic trees that demonstrate the structure of a sentence. They are the basis for
the next step, the semantic analysis, which discovers the meaning of the text.

In the last decades, dependency formalisms [22] became popular for the descrip-
tion of syntactic structure. They use dependency trees to describe the relations
among the constituents of the sentence in a human and computer readable form.
An example of a dependency tree describing a sentence in Slovene is presented in
Figure 1. In the dependency tree, each token (a word or a punctuation mark) is
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represented by a node. Observing the nodes of the tree from left to right, they ap-
pear in the same order as the corresponding tokens in the sentence. An additional
technical node is added as the root of the tree to ensure that all nodes are connected
into a single tree. The edges connecting the nodes describe the relations between
the tokens. The labels below the tokens indicate the functional role of the relation
between the node and its parent such as subject (‘Sb’), object (‘Obj’), predicate
(‘Pred’), auxiliary verb (‘AuxV’), etc.

Fig. 1. An example dependency tree for a sentence in Slovene. The English word-by-word
gloss is given below Slovene text.

In the following three subsections we present the motivation for the use of ac-
curate syntax analysis and its possible benefits. An example of the positive effect
of syntactic analysis in an application of machine translation is presented in Sub-
section 1.1. The advantages of the use of dependency-based formalisms over the
constituency-based formalisms are discussed in Subsection 1.2. Finally, the role of
the intraclausal coordination and clause detection at parsing is presented in Subsec-
tion 1.3.
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1.1 A Motivating Example

Here, an example problem shows the benefits of the syntactic analysis for machine
translation. The general ideas of two widely used approaches for solving the problem
are presented:

1. the statistical/example-based approach and

2. the approach with the syntax analysis.

The example focuses on the use of passive and active voice. While in English
passive voice is frequently used, in Slovene active voice is preferred1. The example
demonstrates, how the consistent use of the active voice in Slovene translations can
be achieved by the use of syntax analysis.

The approach with syntax analysis is depicted in Figure 2. First, the dependency
tree of the English sentence is produced (Figure 2 a)). By matching it to the source
tree template of the transfer rule (Figure 2 b)), the passive construction in the
English sentence is discovered. The matched entities in Figure 2 are set in bold.
The transfer rule converts the English passive construction to the Slovene active
construction. Finally, the generic entities of the active construction are replaced
with the translations of the English words to generate the Slovene active voice
translation in Figure 2 c).

At the statistical/example based English-to-Slovene translation approach, we
rely upon a parallel sentence-aligned English-Slovene corpus. This is a collection
of the same text written in English and Slovene, where the aligned sentences are
the translations of each other. If a certain phrase in Slovene and a certain phrase
in English appear in aligned sentences very often, it is very likely that these two
phrases are translations of each other. Here are some examples of aligned sentences,
where the translation (italicized) of the phrase “the airplane wings” can be found:

• “The airplane wings provide aerodynamic lift.”←→ “Letalska krila zagotavljajo
dinamični vzgon.”

• “The engines are attached to the airplane wings.” ←→ “Motorji so pritrjeni
na letalska krila.”

• “The airplane wings are delta-shaped”←→ “Letalska krila imajo delta obliko.”

The translations of the phrases “were broken”←→ “so bila polomljena” and “by
the heavy wind”←→ “z močnim vetrom” can be found similarly. By combining the
translations of the phrases, the sentence translation is formed:

“The airplane wings were broken by heavy winds.” −→ “Letalsko krilo je bilo
polomljeno z močnim vetrom.”

1 An example of an English sentence in passive voice: “The airplane wings were broken
by heavy winds.” and in active voice: “Heavy winds broke the airplane wings.”
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Fig. 2. Translation using syntax analysis

Contrary to the translation produced by the approach using syntax analysis,
the sentence in Slovene remains in the passive voice – the statistical/example based
approach offers no mechanisms to directly enforce the use of the active voice in the
Slovene translations.

As demonstrated by this example, the use of syntax analysis raises the quality
of machine translation by allowing for better control of the translation process.
Obviously, this is only possible with accurate algorithms for automatic syntactic
analysis, which are the object of the study of the work described in this paper.

1.2 Why Dependency Trees?

Two types of formalisms, the dependency-based and the constituency-based, are
mainly used for the syntactic structure representation. We advocate for the use of
the first one, and show its advantages over the constituency-based formalisms.

The tree in Figure 3 a) presents how the English sentence from Section 1.1 could
be described with a constituency-based formalism. For the convenience, we show the
dependency tree of the sentence again (Figure 3 b)). In the constituency tree, the
words are represented by the leaves of the tree, while the internal nodes represent
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the constituent phrases of the sentence. They are denoted by the labels ‘NP’ – noun
phrase, ‘VP’ – verb phrase, ‘DET’ – determiner, ‘S’ – sentence, etc. Punctuation
tokens are commonly not included in the constituency trees.
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Fig. 3. The comparison of a) constituency- and b) dependency-based representations of
the English sentence from Section 1.1

Some arguments are presented, why one might prefer a representation that is
based on the notion of dependency [4, 16, 13, 3]:

• In a dependency tree, the head of a phrase can be directly found as it is the root
of the phrase subtree, which is useful if semantic analysis is built on top of the
syntactic representation. Take the subtree of the “The airplane wings” phrase
as an example. The word “wings” is the phrase head, which is clearly indicated
by the dependency tree. On the contrary, the constituency tree gives no clear
information about the phrase head.

• Dependency trees contain no additional nodes but the ones representing the
sentence tokens. Because the parser’s job is only to connect existing nodes, the
task may be regarded as less complicated.

• Dependency formalisms enable better treatment of languages with free word-
order, e.g. Slovene. In such languages, phrases may be constituted of discon-
tinuous sequences of words. With the constituency based formalisms only con-
tinuous blocks of words can be connected to a phrase. On the other hand,
the dependency trees allow for connecting of arbitrary sequences of words into
a subtree – the edges may cross each other – and are thus better suited for the
representation of discontinuous phrases.
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1.3 Parsing, Clause and Intraclausal Coordination Detection

Here a quick overview of parsing and detection of intraclausal coordinations and
clauses is presented. The emphasis is on the role of intraclausal coordination and
clause detection in terms of decomposing the complex problem of the parsing of
a sentence into smaller, simpler tasks.

The parsing algorithms infer syntactic trees from text. There are two possible ap-
proaches, the grammar-driven and the data-driven approach. In the first approach,
the text is described by a formal grammar, which guides the parsing process. In the
second case, the parser is trained directly on a corpus containing sentences manually
annotated with dependency trees. The primary goal of parsers is to achieve the best
possible accuracy of parsing. Generally, the manually annotated corpus serves as
a gold standard and is separated into two parts: the train set and the test set. To
estimate the accuracy of parsing, the test set sentences are parsed and the output is
then compared to the manually created trees. The most common accuracy evalua-
tion metric is the number of correctly assigned dependencies, i.e. the edges between
the nodes, divided by the total number of dependencies.

Tokens inside a sentence are structured into subunits such as clauses and intra-
clausal coordinations. These subunits are represented as subtrees of the dependency
tree. The parsing complexity grows with the number of such subunits in the sen-
tence. While the most successful dependency parsers [12, 16, 2, 15] operate on the
level of a sentence, it makes sense to upgrade the parsing algorithms by identifying
these closed subunits. The parsing problem is thus simplified, because each subunit
can be parsed separately.

Clause identification is a well known problem, too. In [23, 20, 19] clause identi-
fication is modeled as clause border recognition. Several types of machine learning
algorithms have been used to facilitate finding the clause borders. [7] presents an al-
gorithm for retrieving nominal coordinations, which relies on semantic features of
heads of noun conjuncts.

So far, clause identification and parsing have mostly been separately explored
problems – with some exceptions. [1] describes an algorithm for parsing English,
where a clause filter is used to recognize clauses prior to parsing. The algorithm
is limited to finding simple non-nested clauses. In [18], a system for incremen-
tal parsing of Japanese spoken monologue is presented, where text is parsed on
a clause-by-clause basis. A rule-based parser for Czech is presented in [8] with
a short description how clause identification is included in the parsing process. A de-
scription of intraclausal coordination detection combined with parsing can be found
in [11]. [14] deals with coordinations at parsing, including coordinations of clauses,
by applying transformations of annotation schemes of coordinations as subtrees in
dependency trees.

We propose a new algorithm for PArsing with Clause and Intraclausal coordi-
nation Detection – PACID. Our algorithm builds on the synergy of new methods
for clause and intraclausal coordination detection joined with standard parsing al-
gorithms. For training and evaluating the algorithm, the Slovene Dependency Tree-
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bank (SDT) [5] was used, a corpus of Slovene text annotated with dependency trees
containing 38 646 tokens.

2 LINGUISTIC BACKGROUND

The first issue to be resolved is the definition of the clause in Slovene language.
In [24], one of the fundamental grammar books of modern Slovene, we can find the
following theoretical definition: “The clause is a text unit, whose core is a complex
verb form. It can contain optional additional constituents, such as subject, object,
adjunct etc., which describe the verb form more exactly.” Unfortunately, this defi-
nition is not exact enough for formal tasks. To ease the design of our algorithms
and their evaluation, we adopted SDT as a standard for the definition of the clause,
while trying to find such rules that match the grammar book definition as exactly as
possible. As for intraclausal coordinations, to our knowledge there exist no widely
accepted formal definition; SDT was used to define them as well.

The structure of dependency trees provides most of the information needed to
construct the definitions, but some supplementary information contained in SDT is
still needed. Each token is annotated with a MSD-tag (Morphosyntactic description
tag), i.e. a sequence of characters, which describe the features such as category,
number, person, case, gender etc. MSD-tags are formatted according to the Multext-
East standard [6], the character at each position describes one feature. Further, the
lemma is provided for each token. For example, the full MSD-tag of the word ‘bilo’
(Eng.: ‘was’) is ‘Vcps-sna’, while its lemma is ‘biti’ (Eng.: ‘be’). The MSD-tags
and the lemmas were determined by an automatic tagger and lemmatizer. The tags
and lemmas were subsequently manually checked and corrected. However, still some
errors in the annotations exist. In the following text, the tokens are denoted with
small Latin letters, while the nodes in the trees are denoted with small Greek letters.
Additionally, the SDT corpus provides each node with a label, which describes the
functional role of the relation between the node and its parent.

In Table 1, we explain the annotations of the most important types of the words,
which are used in the definitions of the algorihms and in the examples throughout
the article.

Token type MSD-tag

Coordinating conjunction pos.1 = ‘C’ and pos.2 = ‘c’
Subordinating conjunction pos.1 = ‘C’ and pos.2 = ‘s’
Finite verb pos.1 = ‘V’ and pos.3 6= ‘n’
Relative pronoun pos.1 = ‘R’

parent – node edge label

Auxiliary verb label = ‘AuxV’

Table 1. Token types, pos.x denotes the xth position in a MSD-tag
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2.1 Clause Definitions

A clause is represented by a subtree of the sentence tree. According to the syntactic
properties of the clause, they are determined a type, which provides additional
information to the parsing process. Three types have been identified in the SDT
corpus:

• coordinate clauses,

• type 1 subordinate clauses (starting with a subordinating conjunction),

• type 2 subordinate clauses (not starting with a subordinating conjunction).

The definition of a subordinate clause subtree consists of two parts: first, its root
is defined and second, the pruning principle is described. For coordinate clauses,
a third part is added where further nodes are selected beside the pruned subtree.
Before we begin with the definition of the roots of clauses, the root of a coordination
of clauses is defined.

Definition 1. The node ν with the parent edge label l is a clause coordination root

if l = ‘Coord’ and at least one of the children is a non-auxiliary finite verb or another
clause coordination root.

Please note that the definition of the clause coordination root is recursive. We
proceed with the definition of the roots of the subtrees representing the three types
of clauses.

Definition 2. The node ν representing the token t is a coordinate clause root if the
token t is a non-auxiliary finite verb and the node’s parent is a clause coordination
root or the technical root of the sentence.

Please note that the clause coordination root and the coordinate clause root are
different terms.

Definition 3. The node ν representing the token t is a type 1 subordinate clause

root if the token t is a subordinating conjunction and one of its children is a non-
auxiliary finite verb or a clause coordination root.

Definition 4. The node ν representing the token t is a type 2 subordinate clause

root if the token t is a non-auxiliary finite verb, having neither a subordinating
conjunction nor a clause coordination root nor a word with lemma ‘biti’ (Eng.: ‘to
be’) nor the technical root of tree as its parent.

Figure 4 presents a dependency tree decomposed into clauses. The words of the
clause roots are underlined. The clause coordination root is marked with a square
node. The nodes of the words ‘bilo’, ‘stopal’ and ‘počival’ are coordinate clause
roots. The node of the word ‘ki’ is a type 1 subordinate clause root.

We continue with the second part of the definition, i.e. pruning. To eliminate
the embedded structures, a subtree is pruned at all subordinate clause roots and
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Fig. 4. A part of the tree from Figure 1 showing the clauses structure is presented. The
clauses are enclosed in dashed rectangles. For clarity of the presentation, only the
labels (in brackets) and the MSD-tags (italicized) of the tokens, which are related to
the clause definition rules, are shown.

clause coordination roots. For the subtree having the node ‘stopal’ as its root, the
pruning proceeds at the node ‘ki’, which is a subordinate clause root. With pruning,
the subordinate clauses of both types are well defined (the only subordinate clause
in Figure 4 actually does need to be pruned, because it contains no embedded
structures).

In case of a coordinate clause subtree, further nodes not attached to the sub-
tree may be selected after pruning to form a clause. The pruned subtree of the
node ‘stopal’ does not constitute the whole clause: the node ‘in’ with the label
‘AuxY’ is missing. We continue the definition relatively to the clause coordination
root which is the parent of the coordinate clause roots β1, β2, . . . , βn (non-auxiliary
finite verbs, ‘bilo’, ‘stopal’ and ‘počival’). There are other children of the clause
coordination root as well, such as the node of the word ‘in’ labeled with ‘AuxY’ in
Figure 4. The rightmost clause of the coordination consists of the following sub-
trees:
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• the subtree of the node βn (in Figure 4, the subtree of the node ‘počival’),

• the subtrees of the other children residing between the nodes βn−1 and βn (not
present in Figure 4),

• the subtrees of the other children residing right of the node βn (not present in
Figure 4) and

• the clause coordination root.

Other clauses of the coordination consist of the following subtrees:

• the subtree of the node βi (for example, the subtree of the node ‘stopal’ in
Figure 4) and

• the subtrees of the other children residing between the nodes βi−1 and βi (in
Figure 4, the subtree – actually a single node – of the node ‘in’ labeled ‘AuxY’).

2.2 Definition of Intraclausal Coordinations

Intraclausal coordinations are represented as subtrees of the sentence tree as well.
We define the intraclausal coordination subtree in terms of its root.

Definition 5. The node ν with the parent edge label l is an intraclausal coordina-

tion root if l = ‘Coord’ and none of the children of the node is a finite verb.

Pruning the subtree determined by the root proceeds similarly as for clauses:
the subtree is pruned at all clause coordination roots and subordinate clause roots.
The tokens of the nodes that remain in the subtree after pruning constitute the
intraclausal coordination.

The dependency tree in Figure 5 contains two intraclausal coordination subtrees.
Their roots are represented with square nodes. The smaller subtree is embedded
inside the larger one. The point where the larger subtree is pruned is marked with
a cross. The groups of the nodes of the intraclausal coordinations are delimited by
the dashed lines.

The tree corresponds to the sentence ‘V izložbi so bili pladnji z vijaki in popol-
noma neuporabnimi ključavnicami, stare ure, ki se še pretvarjale niso, da gredo, in
mešanica druge ropotije.’ The English translation of the sentence: ‘In the window
there were trays of nuts and barely useful bolts, tarnished watches that did not even
pretend to be in going order, and other miscellaneous rubbish.’ The word-by-word
gloss in English is provided in the figure below the text in Slovene.

An intraclausal coordination consists of several conjuncts, governed by the head
words. The head-word group of an intraclausal coordination can be regarded as
a skeleton of the coordination. In the inner coordination in Figure 5, the conjuncts
are represented by both subtrees of the word ‘in’. The words ‘vijaki’ (Eng.: ‘screws’)
and ‘ključavnicami’ (Eng.: ‘locks’) are the conjuncts’ head words.
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Fig. 5. There are two intraclausal coordinations subtrees, delimited by dashed lines, one
embedded inside another. Only the labels (in brackets) and the MSD-tags (italicized)
needed for the definition of intraclausal coordinations are shown.

3 THE ALGORITHM FOR PARSING WITH CLAUSE

AND INTRACLAUSAL COORDINATION DETECTION

In this section, the new algorithm PArsing with C lause and Intraclausal coordina-
tion Detection – PACID is described. The algorithm embodies a set of heuristic rules
and five machine learning (ML) classifiers. As the base dependency parsers, a newly
developed rule-based parser and the standard MSTP parser [12], version 0.2 in the
non-projective mode with the parser’s original feature pool are used. The algorithm
is composed of two stages:

1. detection and reduction of clauses and intraclausal coordinations,

2. dependency tree construction.
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3.1 The First Stage – Detection and Reduction Stage

This stage is an iteration, where the sentence is decomposed into clauses and intra-
clausal coordinations. The iteration consists of the following steps:

1. Split the sentence into the segments delimited by the punctuation tokens and
conjunctions.

2. Detect intraclausal coordinations and reduce them to the meta nodes.

3. Split the sentence into the segments again.

4. Detect clauses and reduce them to the meta nodes.

The algorithm iterates until no more units can be detected.

3.1.1 Segmentation of the Sentence

This section describes the first and the third step of the first stage. The sentence
is split into the segments as proposed by [9]. Let the sentence be the following
sequence of tokens:

(s1,1, . . . , s1,k1 , d1,1, . . . , d1,l1 , . . . , si,j , . . . , di,j , . . . , sn,1, . . . , sn,kn , dn,1, . . . , dn,ln)

where the tokens di,j are the punctuation marks or conjunctions and the tokens si,j
are other words. The sequences (si,1, . . . , si,ki) are the segments, while the sequences
(di,1, . . . , di,li) are the delimiters. The segments containing at least one finite verb
are verb segments; the others are non-verb segments.

Definition 6. The segmentation of a sentence is the sequence of delimiters and
segments (S1,D1, . . . ,Sn,Dn), where Si = (si,1, . . . , si,ki) and Di = (di,1, . . . , di,li).

In Figure 6, segmentation of the sentence from Figure 5 is shown.

Fig. 6. Segmentation of a sentence. The verb segments are underlined.

3.1.2 The Algorithm for Intraclausal Coordination Detection

and Reduction

This section describes the second step of the first stage. The algorithm is applicable
to prepositional, nominal and adjectival intraclausal coordinations. For each of these
three categories the following steps are performed:
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1. Detect head-word group candidates.

2. Filter the candidates.

3. Reduce the detected intraclausal coordinations to the meta nodes.

The candidate head-word groups are detected as follows. Let (c1, t1,1, . . . , t1,n1
,

c2, . . . , ci, . . . , ti,j, . . . , cn) be an arbitrary uninterrupted sequence of tokens inside
the sentence. The tokens (c1, . . . , cn) represent a head-word group candidate if the
following heuristic rule holds:

Definition 7. The heuristic rule A holds iff all the tokens ci, 1 ≤ i ≤ n have the
same case and the category.

For prepositions, the case of the dependent noun is taken. This covers the
structure of the majority of the intraclausal coordinations. Unfortunately, the rule
does not cover certain cases like the coordinations of the words of different categories,
as for example in this case: “pod stolom ali tukaj” (Eng.: “under the chair or here”).
The rule would not identify that the preposition “pod” (Eng. “under”) and the
adverb “tukaj” (Eng. “here”) are coordinated.

Then, the candidates are filtered. First, they are converted to the pairs of
neighboring head words (ci, ci+1), 1 ≤ i < n. To each pair, additional heuristic rules
are applied in the same order as they are presented. If any of the heuristic rules
does not hold, the candidate group the pair belongs to is discarded.

Definition 8. The heuristic rule B holds iff none of the tokens ti,j is a colon, semi-
colon, dash, bracket, finite verb, relative pronoun or subordinating conjunction.

This rule is motivated by the fact that by definition an intraclausal coordination
cannot be split between two or more clauses. If one of the tokens specified in the
rule appears between the words c1 and cn, it is very likely that the group of words
c1, . . . , cn does not belong to an intraclausal coordination, because the token may
indicate the beginning of a new clause.

Definition 9. The heuristic rule C holds iff for each i exactly one of the tokens ti,j
is either a comma or a coordinating conjunction.

Among the tokens between two of the head words there always has to be exactly
one comma or coordinating conjunction. The reason for introducing this rule is that
the parts of an intraclausal coordination, i.e. the conjuncts, are in most of the cases
delimited by a separator which is either a comma or coordinating conjunctions.

Let ti,l be the separator between the conjuncts containing the head words ci
and ci+1. Since ti,l is a comma or a coordinating conjunction it is also a delimiter
between two segments.

Definition 10. The heuristic rule D holds iff for each ti,l not both of the neighboring
segments are verb segments.
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The rule D takes into account that two neighboring verb segments very likely
reside in two separate clauses, meaning that it is highly unlikely that an intraclausal
coordination would spread over two such segments.

In Figure 7, there is one candidate group of two head words (‘vijaki’, ‘ključav-
nicami’). There are, though, three other words (‘pladnji’, ‘ure’, ‘mešanica’) that
meet the conditions of rule A by having the same category and case. However, they
are not identified as a candidate group; among them, there are several unallowed
conjunctions, commas and finite verbs and the three words fail to comply with the
heuristic rules B, C and D.

Fig. 7. In the sentence, there is a candidate group of two head words (in boldface). The
three words underlined with dotted lines match the conditions of rule A, but fail to
comply with rules B, C and D. MSD-tags (italicized) are shown below the tokens.

The candidate groups are further filtered by ML classifiers. Each pair (ci, ci+1) is
classified; if at least one pair is classified negatively, the group that the pair belongs
to is discarded.

Three separate classifiers were built, one for each category of the head words
PACID can handle. The software package WEKA [25] was used for the implemen-
tation of the classifiers. The AdaBoostM1 algorithm [21] was used with the J48
decision trees (a reimplementation of the C4.5 algorithm [17]) as the base classifiers.
The examples for training the classifiers were extracted from the SDT corpus. To
describe the examples with the attributes, the information is extracted from the
tokens between the head words. Two sections of the tokens are formed: the sec-
tion A consists of the tokens between the first head word and the delimiter, while
the section B consists of the tokens between the delimiter and the second head word.
Every attribute in the list below apart from the class attribute is present two times,
once for each section:

• A preposition in the section; binary values. Motivation for the use of the at-
tribute: in a nominal or adverbial coordination, a preposition would very rarely
be encountered.

• An adverb in the section; binary values. Motivation: adverbs may be more
frequently related to verbs than to prepositions, nouns or adjectives.

• An adjective matching/non-matching with the head word in case, number and
gender in the section; two attributes, binary values, only the case is considered
when matched to a preposition. Motivation: a matching adjective might appear
in a nominal coordination, but not a non-matching one.
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• A noun matching/non-matching with the head word in case, number and gender
in the section; two attributes, binary values, only the case is considered when
matched to a preposition. Motivation: a matching noun almost always appears
in a prepositional coordination while a non-matching noun is less likely to be in
such a coordination.

• The number of words in the section; values: 0, 1, 2, or >2. Motivation: very
long sections A and B are not usual.

• class, binary values.

If all the pairs of the group are classified positively, the algorithm continues
with the third step. The sequence of tokens starting with the leftmost head word
and ending with the rightmost head word is created. A sequence is replaced by
a meta node, which is assigned a MSD-tag containing the same category and case
as the head words of the intraclausal coordination. In Figure 8, the reduction of
an intraclausal coordination is depicted. In Table 2, the attribute-value description
of the head word pair from Figure 8 is presented.

Fig. 8. Reduction of an intraclausal coordination is presented. The text in the example
is a part of the sentence from Figure 5. The head words are set in boldface and the
section B is underlined. The section A is empty in this example. The MSD-tags are
shown below the words.

3.1.3 The Algorithm for Clause Detection and Reduction

This section describes the last step of the first stage. A clause is composed of
one or more segments including the preceding delimiters. In Figure 9, the first,
the second, the third and the last segment, together with the delimiters preceding
them, constitute one clause. The fourth and the fifth segment with the delimiters
that precede each of them represent two one-segment clauses. The algorithm for
clause detection iteratively identifies and reduces one-segment clauses. After the
reduction of a clause, the segments of another clause may join to form a single
verb segment and in the next iteration other, originally multi-segment clauses are
reduced.

The clause detection step is performed only if there are more than one verb seg-
ments in the sentence. Let (S1,D1, . . . ,Sn,Dn) be the segmentation of the sentence.
First, the following heuristic rule is applied to each of the verb segments Si:
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[ empty ] ‘popolnoma neuporabnimi’

Attribute Value

Adverb, sec. A 0
Preposition, sec. A 0

Matching noun, sec. A 0
Non-matching noun, sec. A 0
Matching adject., sec. A 0
Non-matching adject., sec. A 0
Section size, sec. A 0

Attribute Value

Adverb, sec. B 1
Preposition, sec. B 0

Matching noun, sec. B 0
Non-matching noun, sec. B 0
Matching adject., sec. B 1
Non-matching adject., sec. B 0
Section size, sec. B 2

Attribute Value

Class 1

Table 2. Attribute-value description of a head word pair constituting the intraclausal co-
ordination from Figure 8

Fig. 9. There are three clauses in the sentence. Two clauses (underlined with dashed and

dotted lines) are embedded in the third one (underlined with solid lines).

Definition 11. The heuristic rule E holds iff each of the segments Si−2,Si−1,Si+1,
Si+2 is either a verb segment or a non-existent segment.

If the two segments preceding Si and the two segments succeeding Si are verb
segments or some of these segments are missing, the rule E holds and the segment
Si is identified as a one-segment clause. The motivation for this rule is that a clause
rarely consists of segments being very far away. If the segment Si were not a whole
clause, it would most probably imply that other segments of the clause are at least
three positions away, which does not happen very frequently.

If the rule E does not hold, the verb segment is classified by a ML classifier.
Two classifiers (both the AdaBoostM1 algorithm with J48 decision trees as base
classifiers) are used: the first one when both neighboring segments are verb segments
and the second one when at least one neighbor is a non-verb segment. To describe
the segment in the attribute model the delimiter preceding it, two segments left and
two right with the preceding delimiters are included. For each delimiter/segment
pair the following attribute set is used:

• The presence of a coordinating conjunction; binary values. Motivation for the
use of the attribute: a coordinating conjunction in the delimiter before a verb
segment may indicate the beginning of a new clause.
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• The presence of a subordinating conjunction; binary values. Motivation: a sub-
ordinating conjunction in the delimiter before a verb segment practically always
indicates the beginning of a new type 1 subordinate clause.

• The presence of a punctuation token; values: ‘none’, ‘comma’, ‘colon or semi-
colon’, ‘other’. Motivation: a punctuation token in the delimiter before a verb
segment more (colon, semicolon) or less (comma) strongly indicates the begin-
ning of a new clause.

• The presence of a relative pronoun; binary values. Motivation: a relative pro-
noun in the delimiter before a verb segment sometimes indicates the beginning
of a new clause.

• The auxiliary verb appears before the participle; values: ‘yes’, ‘no’, ‘not def’.
Motivation: in Slovene, this word order sometimes indicates if a clause is em-
bedded in another clause.

• The possible existence of a crossing intraclausal coordination, e.g. one head word
lies in the described segment and the others lie in the neighboring segments. To
locate such head word groups, the relaxed versions of the heuristic rules A, B,
C and D are used. In the rule A, numerals, adverbs and infinite verbs are also
allowed. For the latter two word categories, only the category is checked, the case
does not exist. In the rule B, beside commas and coordinating conjunctions the
semicolons are accepted as well. The attribute has binary values. Motivation: if
there is a possibility of a crossing intraclausal coordination, the segment may not
represent a whole clause – other neighboring segments may have to be included
to form the whole clause. Such a segment should not be reduced to avoid making
errors of the type false positive.

To complete the attribute model, the class attribute with binary values is added.
Accordingly, in the attribute-value vector, each of the attributes listed above

appears five times, except for the class attribute. In Table 3, the attribute-value de-
scription of the segment ‘se še pretvarjale niso’ from Figure 9 is presented. The com-
plete attribute-value description comprises the following delimiter/segment pairs:

• [in]/‘popolnoma neuporabnimi ključavnicami’,

• [,]/‘stare ure’,

• [, ki]/‘se še pretvarjale niso’,

• [, da]/‘gredo’,

• [, in]/‘mešanica druge ropotije’.

If the segment is classified positively or the heuristic rule E holds for the seg-
ment, a one-segment clause is identified and the segment is reduced. Although the
whole clause consists of the segment and the delimiter in front of it, the delimiter is
not reduced; the delimiter tokens play a key role in the dependency tree construc-
tion stage, especially for coordination structures. Special attention is paid to the
delimiter to the right of the reduced segment. If the delimiter starts with a comma
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[, ki]/‘se še pretvarjale niso’ [,]/‘stare ure’

Attribute Value

Coordinating conj. 0
Subordinating conj. 1

Punctuation token ‘comma’
Relative pronoun 0
Aux. verb before particip. ‘no’
Segment type ‘verb’
Crossing intracl. coord. 0

Attribute Value

Coordinating conj. 0
Subordinating conj. 0

Punctuation token ‘comma’
Relative pronoun 0
Aux. verb before particip. ‘not def’
Segment type ‘non verb’
Crossing intracl. coord. 0

Attribute Value

Class 1

Table 3. The tables present the attribute-value description of the segment ‘se še pretvar-
jale niso’ from Figure 9. For clarity of the presentation the table shows only the
attributes pertaining to the delimiter/segment pair [, ki]/‘se še pretvarjale niso’ and
the neighboring pair [,]/‘stare ure’.

followed by a coordinating conjunction, the comma always marks the end of the
clause. In this case, the comma is reduced together with the segment.

In Figure 10, processing of the sentence from Figure 5 by the first stage of PACID
is presented. For the example sentence, two iterations are performed. In step a),
reduction of the intraclausal coordination from Figure 8 is depicted. The reduced
sequences are pushed onto the stack for further processing in the second stage of
PACID. The sequences reduced in the same iteration are pushed onto the same
stack level. The algorithm continues with step b), where two one-segment clauses
are identified. The segments are reduced and replaced with meta nodes. Together
with the second segment, the comma from the following delimiter is reduced, because
it is followed by a coordinating conjunction. The meta node is assigned the MSD-tag
of the main verb of the segment.

The name of the meta node is assigned according to the type of the reduced
clause that is determined by the heuristic rules defined as follows. Let Si = (s1, . . . ,
sn) be the segment replaced by the meta node we want to assign the name to, where
Di−1 = (a1, . . . , ak) and Di = (b1, . . . , bl) are the delimiters preceding and succeeding
the segment, respectively.

Definition 12. The heuristic rule F holds iff one of the tokens ai is a subordinating
conjunction and none of the tokens bi is a coordinating conjunction.

If the rule F holds, a type 1 subordinate clause is discovered and the name
‘SUB CLS TYPE1’ is assigned to the meta node. Type 1 subordinate clauses con-
tain a subordinating conjunction. If the next delimiter (Di) contains a coordinating
conjunction, it is very likely that the clause corresponding to the segment Si and the
clause containing the segment Si+1 are in a coordination. In such case, the clause
corresponding to the segment Si can not be treated as a subordinate clause.
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Fig. 10. The execution of the first stage of PACID is presented. There are two iterations.
The reduced sequences are underlined, the head words of the intraclausal coordina-
tions are set in boldface, the delimiters between the segments are enclosed in square
brackets, MSD-tags are italicized, the intraclausal coordination meta nodes are named
‘IACC’, the clause meta nodes are named ‘SUB CLS TYPE1’, ‘SUB CLS TYPE2’ or
‘COORD CLS’.

If the rule F does not hold for the reduced segment, the next rule is applied:

Definition 13. The heuristic rule G holds iff none of the tokens ai is a subordinat-
ing conjunction and one of them is relative pronoun.

If the rule G holds, a type 2 subordinate clause is discovered and the name
‘SUB CLS TYPE2’ is assigned to the meta node. If neither of the heuristic rules
F or G hold, a coordinate clause is discovered and the meta node is named ‘CO-
ORD CLS’.

In the next iterations the delimiter tokens immediately preceding the meta nodes
are temporarily removed during sentence segmentation and intraclausal coordination
detection. Neither they play the role of segment delimiters nor do they influence
the application of the heuristic rules B, C and D. In Figure 10 in step b), there are
two such delimiters: [, ki] and [, da]. In step c), where the sequence ‘, stare ure,
ki SUB CLS TYPE1, da SUB CLS TYPE1’ represents only one segment, another
intraclausal coordination is reduced. The reduction stage terminates after step c),
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since only one verb segment exists and no more intraclausal coordinations can be
retrieved.

3.2 The Second Stage – Dependency Tree Construction Stage

In this stage, the sequences of text reduced in the first stage are parsed, see Figure 11
and Algorithm 1. The resulting trees are merged to form the final dependency tree of
the sentence. A rule-based parser is used plus three different MSTP parsing models
for each of the following types of the token sequences, which have distinct syntactic
structure:

1. the initial sequence which remains unreduced after the end of the first stage,

2. clauses and

3. intraclausal coordinations.

Choosing three different MSTP models enables the parser to focus on specific struc-
ture of a certain type of token sequence.

The stage begins by parsing the initial sequence of tokens, producing the initial
sentence tree, Figure 11 a). Note that the technical root ‘#’ is added in front of the
sequence before parsing. The sequence is parsed using the MSTP parsing model for
the initial sequences. Certain errors in the tree can be detected, as described further
in Section 3.3. In such case, the tree produced by the MSTP parser is discarded and
the rule-based parser is applied to construct a new initial sentence tree.

The stage continues with an iteration, which processes the sequences on the
stack. In the first step of the iteration, the sequences are popped from the upper
level of the stack, Figure 11 b). Then, the sequences are joined with the tokens of
the corresponding meta-node subtrees inside the sentence tree, Figure 11 c). The
meta nodes themselves are not added to the sequences. The extended sequences
are parsed using two separate MSTP models, one for verb segments and the other
for intraclausal coordinations, Figure 11 d). In the sentence tree, the meta node
subtrees are replaced with the newly created subtrees, Figure 11 e).

Algorithm 1 Dependency tree construction stage

1: parse inital-sequence

2: repeat

3: sequences = pop stack
4: for all S ∈ sequences do
5: S := S ∪meta-node-subtree

6: parse S
7: replace meta-node-subtree with new-subtree

8: end for

9: rearrange stack
10: until stack is empty
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Fig. 11. The first iteration of the dependency tree construction stage is presented. On the
left side, the growth of the sentence tree is presented. The right side shows how the
sequences of tokens are popped from the stack and parsed into the subtrees.
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Then, the sequences remaining on the stack are examined. The meta nodes of
some sequences on the same stack level might now appear in the ancestor – descen-
dant relation in the sentence tree. Such an example are both ‘SUB CLS TYPE1’
nodes in Figure 11 e). In this case, the stack is rearranged so that the sequences of
the meta nodes closer to the leaves are processed first, Figure 11 f).

The iteration terminates when the stack is empty. In Figure 11, only the first
iteration is presented. To get the complete sentence tree of this example, two more
iterations are needed.

3.3 Rule-Based Parser

The rule-based parser is used to correct certain errors in the initial dependency
tree created by the MSTP parser. The error correction is tried for trees containing
only punctuation tokens, conjunctions and meta nodes. All the paths starting with
the root and ending with the leaves are inspected, whereby only meta nodes are
considered. If there exists a path having a subordinate clause meta node at the
beginning, this is treated as an error, because a subordinate clause cannot be the
main clause of the sentence, neither can it be coordinated with another coordinate
clause. The initial tree is constructed from scratch by the rule-based parser in three
passes over the sentence.

In the first pass, see Algorithm 2, the skeleton of the initial tree is created
containing the coordinate clause meta nodes. A simplification is used: it is presumed
that there is at most one coordination of clauses in the sentence; if there is one, the
coordination subtree resides on the highest level in the tree, right under the technical
root of the tree.

The first pass proceeds as follows: if there is only one coordinate clause meta
node, it is placed directly below the technical root; otherwise, a subtree is created,
appended directly to the technical root. The root of the subtree is the punctuation
mark or the coordinating conjunction directly preceding the last coordinate clause
meta node. The meta nodes themselves and other delimiter tokens directly preceding
them become children of the root node.

Algorithm 2 Rule-based parser, pass 1

1: if ∃!coord-clause-meta-node then

2: append coord-clause-meta-node to technical-root

3: else

4: append coordination-root to technical-root

5: for all ν ∈ coord-clause-meta-nodes do

6: append ν to coordination-root

7: append delimiter-preceding-ν to coordination-root

8: end for

9: end if
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In the second pass, see Algorithm 3, the positions of the subordinate clauses in
the tree are determined. It is presumed that the subordinate clauses depend on the
nearest clause to the left – if there exists one; otherwise they depend on the nearest
clause to the right. Note that a subordinating conjunction is the root of a type 1
subordinate clause and is always appended to the tree before the corresponding meta
node.

The second pass goes through all the nodes of the sentence, either already ap-
pended to the tree or not, from the left to the right. When a subordinating con-
junction is encountered, it is appended to the closest meta node to the left. If no
meta node to the left exists, the subordinating conjunction becomes the child of the
next coordinate clause meta node to the right. The type 1 subordinate clause meta
nodes are appended to the subordinating conjunctions preceding them. The type 2
subordinate clause meta nodes are appended to the closest meta node to the left; if
there are no meta nodes to the left they are appended to the closest meta node to
the right.

Algorithm 3 Rule-based parser, pass 2

1: ζ := leftmost-coord-clause-meta-node

2: for all ν ∈ all-nodes-of-sentence do

3: if ν is subordinate-conjunction or sub-clause-meta-node then

4: append ν to ζ
5: end if

6: if ν is subordinate-conjunction or clause-meta-node then

7: ζ := ν
8: end if

9: end for

Finally, in the third pass, the commas directly preceding the subordinate clause
meta nodes are appended to them. All the remaining nodes are appended to the
closest meta node to the left, except for the final punctuation mark, which is placed
directly under the technical root-node.

4 EVALUATION

PACID was tested on the SDT corpus. All the experiments were done with 10-fold
cross-validation (except for the experiment on the CoNLL-X shared task data [2]),
by dividing the corpus into 10 disjunctive parts. In each fold, one of the parts was
used for testing, the other nine for training. The input data for the train phase
as well as for the test phase were obtained from the SDT corpus, meaning that
no automatic MSD-tagging and lemmatization was used in our experiments. The
first experiment was designed with the aim of evaluating retrieval of clauses and
intraclausal coordinations. In the second experiment, the overall parsing accuracy
of PACID was estimated.
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4.1 Clause and Intraclausal Coordination Retrieval

In this experiment only the first stage of PACID was examined. First, precision
and recall at retrieval of intraclausal coordinations was measured. In the test set
the distribution of different groups of intraclausal coordinations according to the
category of head words as follows: prepositions 6%, nouns 42%, adjectives 31%,
other categories 21%. Each type was analyzed separately. The results are presented
in Table 4. Since PACID detects prepositional, nominal and adjectival coordinations
only, the fourth group is not considered in the measurements.

Coordination type Prepositional Nominal Adjectival All

Recall 60% 72% 81% 79%
Precision 69% 69% 95% 78%

Table 4. Recall and precision of intraclausal coordination retrieval

As expected, the highest recall and precision were achieved on the least com-
plex adjectival coordinations. Among the false positives at nominal coordination
retrieval, 32% were actually appositions. These cases should rather not be viewed
as errors, but as a positive contribution: appositions are represented as subtrees as
well and the same mechanism can be applied to them as to intraclausal coordina-
tions. However, the problem of distinguishing nominal coordinations and appositions
remains out of the scope of this paper.

For prepositional coordinations, recall and precision were the lowest due to their
high complexity compared to the other types of intraclausal coordinations. Further-
more, the prepositional coordinations where the associated nouns do not have the
same case are not considered by the PACID algorithm, since the heuristic rules do
not recognize them.

The performance of clause retrieval was evaluated with the second set of tests.
The results are presented in Table 5. Only the sentences containing two segments
or more were considered. The clause type is determined according to the segment
of the clause’s main verb. The distribution of the types in the test set as follows:
52% coordinate clauses, 36% type 1 subordinate clauses, 12% type 2 subordinate
clauses.

Clause type Coord. Type 1 Subord. Type 2 Subord All

Recall 68% 70% 75% 70%
Precision 91% 95% 95% 93%

Table 5. Recall and precision of clause retrieval

The experiment shows better results for subordinate clauses. In coordinate
clauses one can find embedded clauses more often than in subordinate clauses which
makes retrieval of coordinate clauses a difficult problem. Regarding the type 1
subordinate clauses, the presence of the subordinating conjunction is very important.
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It unambiguously marks the beginning of the clause and thus contributes to better
precision and recall for this type of clauses.

Intraclausal coordination and clause detection can raise the accuracy of parsing
if the positive influence of constraining the parsing process is larger than the impact
of causing additional errors by reducing wrong sequences. Therefore, high precision
at intraclausal coordination and clause detection is preferred, while high recall might
not be crucial, since missing out some valid clauses and intraclausal coordinations
does not introduce new errors.

4.2 Evaluation of Dependency Parsing

In this section the evaluation of the complete algorithm PACID is presented. The
performance measure was UAS (unlabeled attachment score). This is the quotient
between

1. the number of scoring tokens with the correctly assigned parent and

2. the number of all scoring tokens in the test set.

We define the scoring tokens as follows: all words are scoring tokens; a punctuation
mark is a scoring token only if it is the root of a coordination subtree in the gold
tree. Thus, most of the punctuation marks are excluded from the measurements.

The first set of tests was conceived to analyze the differences between various
versions of PACID. The results are presented in Table 6. First, we measured the
accuracy of the plain MSTP parser without clause and intraclausal coordination
detection. The parser scored the best result on the CoNLL-X dependency parsing
shared task for Slovene [2]. This result serves as the baseline. Then, PACID in-
cluding the complete algorithm for intraclausal coordination detection but without
clause identification was used. In the third test, both clauses and intraclausal coor-
dinations were retrieved; since ML filtering was not used, all candidates admitted by
the heuristic rules were reduced. This version did not include the rule-based parser.
In the next version, ML classifiers were turned on while the rule-based parser was
still switched off. Finally, the accuracy of the full version was measured.

PACID version Accuracy

Plain MSTP 80.24%

PACID, intraclausal coord. detection, no clause detection 80.57%
PACID, no ML in reduction stage, no rule-based parser *81.05%
PACID, ML in reduction stage, no rule-based parser *81.34%
PACID, full version *81.51%

Table 6. The table shows the parsing accuracy of various versions of PACID, compared to
the baseline result achieved by the plain MSTP parser. The results marked with *
are statistically significantly better than the baseline at the 95% confidence level.

As expected, the full version achieved the highest accuracy. Compared to
the baseline result, this presents a 6.4% relative decrease of error. Compared to
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the fourth test, the use of the rule-based parser increased the accuracy. In [10],
the accuracy of the MSTP parser on sentences of various complexity was examined.
The lowest accuracy was measured for the sentences without verbs, which are nor-
maly the shortest ones. Since the target of the rule-based parser are short sequences
of meta nodes and delimiter tokens, the rule-based parser might compensate for the
inability of the MSTP parser to deal with very simple sentences effectively. In the
version without ML classifiers, the errors of retrieving false positives among clauses
and intraclausal coordinations contributed to worse results. The version without
clause detection shows that even by using intraclausal coordination detection only,
the algorithm still achieves better results.

Sometimes, only a part of an intraclausal coordination or a clause is retrieved
in the first stage. An example of this phenomenon can be found in Figure 10 in
step c), where the tokens ‘druge ropotije’ are left out although they are part of the
coordination reduced in this step (see Figure 5). If the parser appends these tokens
to the correct meta node as in Figure 11 a), they can still be placed into the correct
subtree by this self-correcting mechanism, as shown in Figure 11 d).

Another test was performed using the CoNLL-X SDT data set. Here, the SDT
corpus was divided into a train set (5/6 of data) and test set (1/6) of the data.
The UAS of the plain MSTP was 82.96% while the accuracy of the full version
of the PACID algorithm was 83.07%. The difference is small compared to the
difference measured with 10-fold cross validation. This could be accounted for by
large variation of results due to the small datasets.

We further inspected PACID at processing sentences of various complexity. The
output of the full version was analyzed separately for test sentences containing one,
two, three, four and more than four clauses. In Table 7, the increase of accuracy in
percentage points (pp) compared to the baseline result achieved on the same set of
test sentences is shown.

Number of clauses 1 2 3 4 >4

Accuracy increase (pp) *2.77 *1.22 1.05 −0.01 0.01

Table 7. The results of parsing sets of sentences containing one, two, three, four and more

than four clauses are presented. The table shows the difference of the accuracy
between the full version of PACID and the plain MSTP on the same data set.
The measurement units are percentage points. The differences marked with * are
statistically significant at the 95% confidence level.

At the first glance it seems surprising that improvement is the largest for one
clause sentences. Two additional tests were performed on one clause sentences, both
compared to the plain MSTP parser:

• PACID retrieving intraclausal coordinations only, no clause retrieval. This ver-
sion improved the accuracy by 3.03 pp.

• PACID retrieving clauses only, no intraclausal coordination retrieval. In this
test, the accuracy increase of 0.24 pp was achieved.
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The first result is statistically significantly different than the baseline while the
second one is not. This confirms the obvious expectation that clause detection
does not help for one clause sentences. The improvement of accuracy can thus be
attributed to intraclausal coordination detection.

4.3 Analysis of Errors

In general, as the complexity of a sentence increases, PACID helps less and less.
A detailed manual analysis has shown that the algorithm is confronted with decisions
exhibiting high probability of error. In such cases PACID does not make a decision
since it was designed to minimize the number of false positives in the reduction
stage. This effectively reduces the algorithm to behave like the plain MSTP parser.

We sum up the following main situations, where the PACID algorithm usually
performs many errors:

• Sentences containing a lot of non-verb segments: errors at determining the
clausal structure by the detection part of the algorithm.

• Ellipsis of the main verb in a clause: the heuristic rules for the detection of
clauses do not detect such a clause.

• Sentences with deeply embedded clauses and intraclausal coordinations: the
most deeply embedded entities are usually successfully retrieved, while the multi-
segment outer entities pose a problem, because they are constituted of a discon-
tinuous sequence of segments.

• Wrong values in the MSD-tags: the heuristic rules do not tolerate some of the
errors in the morphosyntactic annotation. The errors of the type false negative
occur, i.e. valid coordinations are not recognized. The precision of retrieval
remains the same, meaning that such detection errors do not cause additional
parsing errors.

4.4 Comparison with Commercial Products

Since we developed an algorithm that could be used in products interesting for
general public, it would merit a comparison with commercial products used for
the same purpose. However, there are some problematic issues concerning such
a comparison. There are hardly some Slovene language resources annotated on the
syntactic or higher level available for the commercial use. The SDT, which is the
main language resource used in our experiments is unfortunately only available for
non-profit scientific research, meaning that a comparison on the same data set is not
possible. Furthermore, detailed publications about similar technologies and results
of the industrial state-of-the-art are generally not available. All this makes the
direct comparison of our scientific achievements with commercial products almost
impossible in terms of providing concrete relevant numbers.
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5 CONCLUSIONS AND FUTURE WORK

Our experiments have shown that decomposing large parsing problems to smaller
ones is beneficial in terms of improving the overall parsing accuracy. This was
achieved by upgrading the approach as used by the MSTP parser with ML and
rule-based methods that rely on knowledge about the language. Certain language
phenomena, such as the structure of intraclausal coordinations, seem to be hard to
discover even from the text annotated with dependency trees.

Considering the statistically significant improvement of 1.27% percentage points
one should keep in mind that PACID focuses only on multi-clause sentences and/or
sentences containing intraclausal coordinations, which represent 70% of all sentences
in the test set. Since the time complexity of the reduction mechanism equals O(n),
n being the number of tokens in the sentence, compared to the complexity O(n2) of
the MSTP algorithm, additional time consumption is acceptable.

In summary, we have shown that additional information provided by the richly
inflected languages can improve parsing results. Although the PACID algorithm
was tested for Slovene, it could be ported to other languages with similar patterns
of inflection. Not only other Slavic languages are among them, the Baltic languages
seem suitable, some Finno-Ugric as well. For example, in Finnish, prepositional
phrases can be expressed by inflecting the nouns. Some Germanic languages, e.g.
German, show properties that could be exploited by the PACID algorithm as well.
On the other hand, languages like Chinese or English have much poorer inflection
than Slovene. They would not be among the most appropriate target languages,
because some other features would have to be employed for the PACID algorithm
to achieve good results.

Fig. 12. Explanation of MSD-tag positions

There are further ways how to improve PACID. One of the current problems is
rigid treatment of reduced units. PACID either declares a sequence of tokens to be
reduced or not. It would probably be better to raise the weights of the appropriate
edges in the sentence graph and let the maximum spanning tree algorithm in the
MSTP parser find the best solution. Moreover, the set of attributes used in ML
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classifiers could be extended. Also, the rule-based parser could be more elaborated.
The most important further improvement seems to be better treatment of very
complex sentences.

6 APPENDIX

In Figure 12, the most important positions of MSD-tags in SDT are described. Note
that the same feature may be described with different positions for different word
categories.
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[5] Džeroski, S.—Erjavec, T.—Ledinek, N.—Pajas, P.—Žabokrtský, Z.—
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