Computing and Informatics, Vol. 31, 2012, 427-446

SEMANTIC-ORIENTED PERFORMANCE
MONITORING OF DISTRIBUTED APPLICATIONS

Wiodzimierz FUNIKA, Piotr GODOWSKI
Piotr PEGIEL, Dariusz KROL

AGH University of Science and Technology

Faculty of Electrical Engineering, Automatics, Computer Science and Electronics
Department of Computer Science al. A. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: {funika, dkrol}@agh.edu.pl

Communicated by Jacek Kitowski

Abstract. Monitoring services are an essential component of large-scale computing
infrastructures due to providing information which can be used by humans as well
as applications to closely follow the progress of computations, to evaluate the per-
formance of ongoing computing, etc. However, the users are usually left alone with
performance measurements as to the interpreting and detecting of execution flaws.
In this paper we present an approach to the performance monitoring of distributed
applications based on semantic information about the monitored objects involved
in the application execution. This allows to automate the guidance on what to
measure further to come to a source of performance flaws as well to enable reacting
on interesting events, e.g. on exceeding SLA parameters. Our research comprises
the implementation of a robust system with semantics, which is not biased to an
underlying “physical” monitoring system, giving the end user the power of intelli-
gent monitoring functionality as well as the independence of the heterogeneity of
distributed infrastructures.

Keywords: Monitoring, knowledge, ontology, collaborative tools, JMX, SOA, Sem-
Mon

1 INTRODUCTION

The design of distributed applications is in many cases a challenge to the deve-
loper [1, 2]. On the one hand, there are the limitations and performance issues

428 W. Funika, P. Godowski, P. Pegiel, D. Krol

of distributed programming platforms. So one of the most important tasks is to
increase the performance and reliability of distributed applications. On the other
hand, the developer must assure that the application manages and uses distributed
resources efficiently. Therefore, understanding application’s behaviour through per-
formance analysis and visualization is crucial. Applications developed using modern
technologies are difficult to monitor, due to the existence of different, technology-
related factors which distract the developer from focusing on the application business
logic. Thus, some kind of an abstraction layer on top of low level metrics is highly
desirable.

When using performance tools (especially those working “on-line”) the users
are facing their complexity. Thus many users often benefit from less complex but
easier to use tools. So a very important task is to ease user’s interactions with
the monitoring system, and moreover, to turn these interactions into a kind of
collaboration with the system, which involves other users. Nowadays, more and more
developed software tools provide a functionality that guides the user step-by-step. It
can be implemented using a semantic description of software’s features and through
the analysis of user’s behaviour along with the already existing observations to
provide suggestions what to do to achieve a desired result, e.g. in the understanding
of application’s behaviour, flaws or malfinction.

The primary goal of our paper is to present an approach to application monitor-
ing based on knowledge, which can cause a significant increase of a user’s positive
experience from the one hand and a decrease of an effort related to finding weak-
nesses/flaws (in terms of low performance) of an application from the other side.
This goal is going to be achieved by exploiting the Semantic Web paradigm which has
introduced the concept of semantic description of resources (OWL/RDF, DAML)
and services (mostly Web Services — OWL-S, DAML-S).

The second goal is to address the issues stemming from the concept of leveraging
the existing solutions to monitoring data acquisition, to develop a new layer of
abstraction which would be oriented to the business logic aspects of monitoring
process. Summing up, our approach is aimed to automate the detection of problems
related to the malfunction of applications as well as performance issues. The novelty
of our approach is multi-fold:

e the correlation of measurements coming from multiple distributed resources

e the development of a semantic model of relationships among the metrics assigned
to different types of applications

e algorithms for adapting the measurements to the current state of the computa-
tion

e a model for the information to be collected on the execution of applications
(including the latency, and useful lifespan)

e embedding the previous contributions within software agents, so as to address
truly distributed scenarios.

Semantic-Oriented Performance Monitoring of Distributed Applications 429

In addition, we focus on an extensible platform whose aim is to enable connecting
new systems, written by external developers to the developed one as it is rather
difficult to foresee all the possibilities and context of tool re-use scenarios.

The rest of this paper is organized as follows: Section 2 gives a motivation and
system requirements. Related work is discussed in Section 3. In Section 4 we present
our proposed ontology and system architecture for on-line monitoring system with
semantics, while Section 5 shows possibilities for extensions to the tool, followed by
Summary and Future work in Section 6.

2 SYSTEM REQUIREMENTS

The following general use cases show the challenges to be addressed in performance
monitoring from the user’s perspective, should it be an end-user or administrator.
The end-user like developer may be interested in such functions as:

e monitoring the performance of an application running under control of a physical
monitoring system

e using the system in an automatic way with a set of metrics which are meaningful
for the user and a desired result

e geetting information about metrics that should be called in a next step.

The system administrator’s concern relates to the operation of a system they have
under control:

e create, destroy, and insert a semantic description of available metrics and ele-
ments of the monitored system

e provide new metrics in a physical monitoring system, and describe them in
semantic way

e manage historical performance data.

Below we are presenting a semantic-oriented approach to the application moni-
toring process along with an implementation of the approach in form of an extensible
monitoring platform called SemMon, which provides a semantic-based integration
layer for so called physical or low level monitoring systems. These systems may be
oriented to a concrete technology (e.g. JMX!, or J-OCM [6]) and are required to
provide monitoring data about the application, thus the SemMon can be used to
monitor various technologies and applications in the same way.

By introducing semantics into the monitoring process, the system enables “un-
derstanding” what is really monitored, which in turn reduces the time the user
spends to manually search for issues and shortens the system learning curve. Having
a semantic description and taxonomy of the monitored elements and their contexts,
the system is “smart” enough to guide its user throughout the whole monitor-
ing/analysis process. The user can focus on its main task: to find performance

1 Stands for Java Management Extensions

430 W. Funika, P. Godowski, P. Pegiel, D. Krol

issues within limited time, based on the system guidance coming from historic ana-
lysis and being able to add their own measurements when needed.

The developed system should be designed in such a way that it should work with
any existing “native” grid-enabled monitoring system. The system is targeted to be
capable of integrating with existing ontology describing resources and performance
measurements, which can be a great benefit for system administrators. The designed
system should be able to be extended with sensors and metrics strongly related to
the structure of the monitored application to point the actual and the most accurate
source of the data.

3 RELATED WORK

In this section we concentrate on those available monitoring systems where semantics
or flexible monitoring architecture are introduced.

Gemini [3] is a Grid monitoring framework developed within the K-Wf Grid
project [4], which fulfils a gap between resources monitoring components and moni-
toring services clients. It performs measurements on workflows using a set of load-
able modules called sensors which retrieve monitoring data on its own or by using
external applications for this purpose. Although the Gemini framework is powerful
in its flexibility of adding new sensors, it does not use any kind of semantics for
selecting performance metrics to run and analyse or for providing any guidance to
the user.

Autopilot [8] has been developed within the Grid Application Development Soft-
ware (GrADS) Project [5] and is responsible for adaptive control of distributed ap-
plications. Autopilot’s architecture comprises performance sensors and a decision
control unit using fuzzy logic to analyse received data from sensors and preparing
messages to actuators. Autopilot is the very first example of exploiting some kind of
semantics usage, or rather fuzzy logic usage to help with monitoring and adaptation
actions.

PerfOnto [9] is a new approach to performance analysis, data sharing and tools
integration in Grids that is based on ontology. PerfOnto is an OWL ontology de-
scribing experiment-related and resource-related concepts. The experiment-related
concept describes experiments and their associated performance data on applica-
tions. The prototype OPAS/PerfOnto system is able to search data in an ontological
(i.e. using a knowledge base) manner, e.g. to find a code region executed on a par-
ticular node with a metric exceeding a threshold value, thus giving a hint to the
site scheduler to migrate a job to another node. PerfOnto gives a rich description of
performance data, but does not provide any automation for using it. Whereas using
much of PerfOnto’s taxonomy and retaining the main idea of describing resources
in form of ontology, we aimed to significantly extend it and provide adaptation
algorithms.

Semantic-Oriented Performance Monitoring of Distributed Applications 431

4 SEMMON SYSTEM VS. ONTOLOGY

The visual analysis of performance data in a “user friendly” form is one of the
most key features provided by any performance monitoring system. Due to the
great amount of gathered information, proper presentation and interpretation of
observation results becomes a very complicated task. So steering the visualization
of monitoring data involving making decisions on what, when, in what form, under
which circumstances should be presented to the user is a challenge.

An overview of SemMon components is depicted in Figure 1.

<<external>> E:ﬂ <<component>>
Monitored Node Registrar
with agent (JMX)
7777777777 REGISTRAR TOOL

Metrics Values DB

for GUI

[F -y~ -~~~ - T T~ —
<<component>> <<component>> | <<component>> <<component>> |
| |
| Adapter Resource registry | Custom Jena OWL + |
L Ontology API Reasoners
| L — |
| JMXAdapter | | |
| | | |
| JOCM Adapter [l |
I I
| <<component>> <<component>> | | <<component>> E <<component>> |
MetricsLogger Remote interface | PersistencyDB Ontology Store |
I I
| [|
! I
I I
| [|

CORE SUBSYSTEM ONTOLOGY SUBSYSTEM
| |
D i T ~
[\ \ !
<<component>> E

[
! GUI
[
[

GUI SUBSYSTEM

Fig. 1. Overview of system components

The focus of the model is the primary functionality aimed at processing ontology
describing resources and their capabilities as well as metrics or storing monitoring
data.

To support knowledge persistency a database is required. This functionality is
implemented in a subsystem for handling ontologies (Ontology subsystem). Another
focus of this node is support for a “physical” monitoring system. This subsystem has
to provide a functionality for registering monitoring agents as well as for processing
monitoring data.

432 W. Funika, P. Godowski, P. Pegiel, D. Krol

The system contains computers with monitoring agents. The agents expose
monitored resources to our monitoring system. All of them will register to the Core
subsystem, afterwards Core is able to introspect possible resources that are exposed.
Agents are programs on the nodes/computers that access the “physical” monitoring
facility, e.g. OCM-G [12], JMX, J-OCM.

Access to SemMon is realized through GUI clients connected to the Core sub-
system. Moreover, GUI is an environment for collaborative work — the users share
metric ranks between different GUI instances in order to help other users in proper
decision making. In the following we are focusing on a description of the components
of the SemMon monitoring system.

The Ontology subsystem is the most crucial part of the whole system. The key
aspect to understand here is the ontology term. An ontology is an explicit specifica-
tion of a conceptualization. In such an ontology, definitions associate the names of
entities (e.g., classes, relations, functions, or other objects) with a human readable
text describing what the names are meant to denote, and formal axioms that con-
strain the interpretation and well formed use of these terms, formally specified with
the OWL language. The Ontology Web Language (OWL) is intended to be used
when the information needs to be processed in an automatic way by applications,
as opposed to the situations where the content only needs to be presented to hu-
mans. OWL has powerful facilities for expressing meaning and semantics and thus
OWL goes beyond all other similar languages in its capability to represent a machine
interpretable content on the Web.

The Ontology subsystem contains methods for parsing, automatic interpreta-
tion, searching, creating, and, finally, saving and sharing ontology data. It brings
a unique feature to the designed system: the capability of interpreting what is mo-
nitored both for system users and (what is even more important) for the system
itself. Using the knowledge deployed in the underlying ontology data, the system
is aware what is monitored and what should be monitored in a next step within
the monitored application’s lifetime. Every single type of resource accessible to the
monitoring system is described in the OWL ontology and reflects a quasi-hierarchy
structure (one resource can have more than one parent). Any part of the description
or even the whole of it can be updated.

Resources in question are: Resource classes (like Node, CPU, JVM), Resource
instances (i.e. OWL instances of resources available in the underlying monitoring
system, like CPU_1386 node2 clusterl) and the measurable attributes for the re-
source instances. Each Resource class defines which measurable attributes are avail-
able for its instances. A measurable attribute, called ResourceCapability in this
paper, might be both an atomic attribute (like LoadAvgiMin) or an OWL super-
class for a set of ResourceCapabilities. This way a quasi-hierarchy of capabilities can
be constructed. A special property hasResourceCapability is a glue between Re-
sources and ResourceCapabilities. Any type of Resource can contain any number of
Resource Capabilities. Figure 2 shows the Resources ontology class quasi-hierarchy
while Figure 3 presents a fragment of the ResourceCapabilities ontology class quasi-
hierarchy.

Semantic-Oriented Performance Monitoring of Distributed Applications 433

The metrics ontology describes metric concepts like OWL classes or individuals
describing the metrics available to be executed by the user. It reflects a metrics
quasi-hierarchy (i.e. from the most generic metric to the most specific one) in order
to provide a rich description for ontology reasoners. The metrics can be simple, i.e.
a metric is able to measure only one attribute, or custom, which means that the
metric can be applied to as many capabilities as required and it is even possible to
provide custom implementations for metrics (user-defined metrics).

ThirdPartSoftware ClassLoader

OperatingSystem

NetworkInterface

Resource

Hardware

Storage

Fig. 2. Resources ontology diagram

CPUCapability

CPUUsageCapability

AvailableVirtualMemory

MemoryCapability

Capability
StorageCapability
LoadCapability
NetworkingCapability
ThreadCapability
OperatingSystemCapability

MCapability UptimeCapability

Fig. 3. ResourceCapabilities ontology diagram

HardwareCapability
NodeCapability
SoftwareCapability

ResourceCapability

434 W. Funika, P. Godowski, P. Pegiel, D. Krol

The metrics ontology is derived from a flat list of all available metrics to be con-
sidered by the monitoring system. However, having only a flat list without a hier-
archy (specialization) introduced, it is impossible to provide any powerful reasoning
process. This is because no “generic-specific” or “is related to” relationships
are provided. Looking at a flat list of all possible metrics, the next step is to find out
which of them are generic and which are specific. Such relationships can be expressed
in an ontology as the rdfs:subClassO0f property. A sample superclass metric might
be SoftwareMetric with its specific subclass JUMThreadCPUTimeMetric. As a re-
sult, metrics form a tree which can be used for a reasoning process. Figure 4 presents
the Metrics ontology.

Abstract
Metric

Hardw are
Metric JVMThread
Metric

JVMThreadCount
Metric

Fig. 4. Metrics ontology diagram

A special metric property monitors is a glue between the Metrics ontology and
the Resources and ResourcesCapabilities ontology. It is used to express relations
between metrics (how to monitor) and resources (what can be monitored). Pro-
perty monitors has a domain in the AbstractMetric class (and its subclasses)
and a range in the ResourceCapability classes (terms range,domain are defined
as part of the OWL specification). Because the cardinality of this property is not
limited, any type of AbstractMetric is able to monitor any number of capabili-
ties. This means that the total number of measurements available in the system
does not equal to the number of subclasses and individuals of the AbstractMetric
class, but is a sum of cardinalities of the monitors properties in the metrics onto-
logy.

The metric property hasCustomImplementationClass is used to inform the sys-
tem that the metric is a user-defined metric, i.e. has its own implementation. This
property points to the fully qualified Java class name implementing the CustomMetr-
ic interface. CustomMetric has its own implementation rules that is exactly re-
turned as a measurement process, which is explained as follows. Since Custom
Metric can access the Core public API, and the Resources registry, it can request
any number of capabilities’ values from the underlying monitoring system. The only

Semantic-Oriented Performance Monitoring of Distributed Applications 435

contract that a user-defined metric must meet is to return a single number each time
it is requested for.

The metrics ontology contains also some additional properties (DatatypePro-
perty) which are used to store information about user interactions with the metric.
All of the properties are sub-properties of the property hasRankingProperty which
can be applied to any metric. The concrete properties are:

e hasManualRunsCount — describes how many times the user exploits this metric
to investigate the system,

e hasAverageUserRankValue — the user is able to ‘rank’ the metric, a higher value
means that the selected metric is more helpful than other ones (Section 5),

e hasAutomaticRunsCount — describes how many times the system automatically
ran the metric.

The values of the properties are changing during user interactions with the
system and are used to build the history of the metrics usage. This history, together
with the automatic reasoning relations from the ontologies is used to create a list
of metrics that can be run in the current state of the system (please refer to the
sample usage in Section 6.1). The list of the metric is sorted by the weighted mean
of those two indicators. The user is able to provide weights — so e.g. for some user
the system could suggest the most frequently used metric instead of the metric
that is ‘semantically closest metric’ (retrieved from the reasoning). The system is
responsible for saving the properties in the ontology.

It should be noted that the described Ontology subsystem is able to coexist with
any already existing ontology for resources description and matching.

5 HANDLING LOW-LEVEL MONITORING AND VISUALISATION

The Core subsystem is responsible for connecting to the underlying monitoring sys-
tem’s initialization (using its protocol adapter mechanism), deploying, initializing
and executing metrics (including user-defined metrics), providing an interface to
the Ontology subsystem and exposing a public (remote) interface for GUI clients
to connect to. Core also manages GUI clients subscribed to the list of connected
resources, running metrics, running metric values and alarms (i.e. conditional action
metrics notifications). The Core subsystem comprises three components — Adapter,
Resource Registry, and Remote interface for GUI The Adapter component follows
the commonly used Adapter structural design pattern and is used for “translation”
of all Core requests into the requests specific to the underlying monitoring system
(JMX, J-OCM, OCM-G, etc.). Due to the interface incompatibilities of a wide range
of monitoring systems available on the market, a common interface called Protocol
Adapter is designed. Resource Registry is a service that leverages both Core and
Protocol Adapter. Resource Registry holds (with Protocol Adapter) all the resource
instances found as visible in the underlying monitoring system and maps them into

436 W. Funika, P. Godowski, P. Pegiel, D. Krol

Core identifiers. Protocol Adapter also resolves incompatibility issues between dif-
ferent physical monitoring systems. User-defined metrics have full access to the
public Core API. Therefore a user-defined metric (implementing the CustormMetric
interface) can introspect Resource Registry and with a Protocol Adapter implemen-
tation is capable to send a specific query to the underlying monitoring system. This
feature is useful when the user wants to create a metric used to perform measure-
ments on more than one resources (e.g. a metric that counts the number of the host
in the network).

Remote interface for GUI allows remote GUI clients to connect to SemMon to
enable collaborative work and provides:

e notifications for: the newly attached and detached monitoring systems, started
and stopped measurements on the Core subsystem, and, finally, notifications for
measurement values

e interface for alarms — Alarms are conditional action metric notifications. When
some action metric is running on the Core subsystem and its value exceeds a user
defined threshold action wvalue, all the unconditional action metrics that are
declared in the underlying ontology are sent as notifications to all the subscribed
GUI users. The user is enabled to take an action to resolve the alarm (e.g.
to start a new metric from within a list of metrics suggested by the system).
Currently only one type of notification (alarm) is supported — the graphical
alarm presentation in the GUI. In the future other notifications can be provided
(like sending an e-mail, run a selected program).

One of the main objectives of GUI is to enhance performance visualization ca-
pabilities and to make system use much easier both for advanced users and for
beginners.

The key GUI component in SemMon is the Visualisation manager that creates
visualisation windows. This component allows the user to create, configure, show,
and delete visualisations. It comprises two lists:

Running metrics list — the user can select which metric (started /running metric)
he/she would like to add to the visualisation. The user is allowed to add more
than one metric to one visualisation (please refer to the next paragraph for more
details). By using this form the user has to be able to see an average metric
rank (based on the rank from all users) and add an own rank. The rank is a
number in range 1-5 and means how helpful the metric is for the user. Ranks
are shared through all users and stored in the metric ontology for each metric.

List of visualisations — a list of the currently created visualisations. This list is
private for the user — it is not shared with other users like the running measure-
ments metrics list.

The Visualisation component is responsible for managing and displaying a single
visualisation. The visualisation term is related to the presentation of data provided
by the launched metric(s). The presentation layer uses different types of charts

Semantic-Oriented Performance Monitoring

of Distributed Applications

24 IMT2 CPU & Memory

Visualisation ssttings
auto scroll domain axis @

Visualisation Chart
1%

o
=}

=
a

Wisyalisation log

| New series: [NodeMetric CPUUsageCapability clustert.nadet cpu_i386]
| New series: [H apability slusterl.ne

) ___
®s

| | 470 000 000

|1, (]

|| 485 000 000

@
a

o
]

| [460 000 000
' | 455 oo ooo

| | 460 000 000

437

w
a

| | 446 000 000

I
=}

| | 440 000 DOD

=
eMOLUANIEIISAUEICE|BAY JLI3WAIEMPIEH

NodeMetric CPUUsageCapability clustar!.n...
[

435 000 000

o

21:18:00 21:12:00

Seconds

21:18:30

5

21:17:00 21:17:30

— ModeMetric CPUUsageCapability cluster! .node1 cpu_i386
— HardwareMetric AvailablePhysicalMemoryCapability cluster! .node1 currentMemory

() Start visualisation FE

&3 Close visualisation

Fig. 5. Performance visualisation window

and options for these charts. A window with a sample visualisation is presented
in Figure 5. This visualisation involves two metrics — the CPU Usage metric and
Available Physical Memory metric. The visualisation is provided in panel 1. This
panel contains a chart based on some JFreeChart? components.

The main features of the chart are as follows:

e capability of dynamical creation of Y axis separately for different metrics on the
same chart

o all the time (before visualization starts or afterwards) it is possible to add a new
metric to the chart. Obviously, it possible to remove a metric, even after the
visualization has been started;

e adding dynamically a new data to the chart (or updating it), the axis is auto-
matically scaled (it is possible to control auto-scaling by using settings marked
by 2). If auto-scale is disabled the user can scroll the chart scroll box 3.

Other functionalities supported by GUI include:

GUI Logic Center — it provides a universal model for many different system as-
pects, like: Resource structure, Metric structure, Alarm notification model.

2 http://www.jfree.org/jfreechart/

438 W. Funika, P. Godowski, P. Pegiel, D. Krol

GUI Alarm Manager — It is responsible for presenting to the user the actions
that could be taken when an alarm occurs. It shows a list of available metrics
to run in case of alarm.

Remote Adapter — It is a component which connects GUI with the Core sub-
system. It also works as a fagade that hides communication details from the
components that store GUI's logic.

6 CASE STUDIES

In this section we explore a case of performance analysis of a Web application guided
by SemMon, extending the system with a new functionality, and a study of the
scalability of the system operation.

6.1 Performance Analysis of a Web Application

The below real-life example shows a few of the key SemMon features. A SemMon
system user is monitoring a complex distributed application with critical problems
relating to unstable memory usage over the application life time occurring only on
a single node of the cluster. The memory usage is oscillating between 40 % and
99 % — the user can use SemMon to see the current state of the system. The moni-
tored application is a WebService-enabled Java server, deployed across a cluster of
processing nodes placed behind a restrictive firewall with a load balancer. The usual
behaviour on the correctly deployed system in question is connected with consuming
50 % of the CPU time for each node and creating no more than 100 threads per JVM
instance.

Userstarts The closest semantically @
p CPUUsageMetric cemmEe el e
NetworkBandwithMetric
+ 100%
NS
Suggested N4 100%
JVMThreadsCountMetric

Performance problem:

Unstable memory + 200
usage - \
€ 4 User starts

FreeMemoryMetric Load Balancer is broken!

Fig. 6. Sample analysis with SemMon

At first, the user decides to monitor CPU usage on the heaviest loaded node
(see step I in Figure 6). When a CPU burst lasts for at least 3 minutes, SemMon
deduces a “critical” situation from the metrics ontology, and tries to build a list
of the metrics suggested to start with. Since CPU load is semantically connected

Semantic-Oriented Performance Monitoring of Distributed Applications 439

with the number of JVM live threads (result of the metric ontology reasoning), the
adequate metric is suggested and the user follows this guidance (2). Again, the
number of threads is irrationally high (over 200 threads), so a new alarm is raised
and SemMon “reasons” that since the CPU load and number of threads were already
monitored, it would be reasonable to monitor memory usage (&). Since the memory
usage is at the 80 % level of the available virtual memory, a new alarm is raised.
This moment is the key in the described monitoring scenario: since the observed
CPU load, memory usage, and JVM threads count are extremely high, the algorithm
selects the Network Bandwidth metric to run (4). A motivation for doing this is
that this metric had been frequently selected by other system users in the past and
it is semantically connected (closest relation in the metric ontology) with memory
usage, CPU load, and JVM threads (there is a possibility that application threads
are processing data incoming from the network). SemMon has calculated the best
matching metric and the user is able to see that almost the whole available network
bandwidth is consumed by the incoming traffic. This suggests that either the cluster
system is overloaded (which is not the case since we observe high load on a certain
node only), or the load balancer is broken. The user checks the network bandwidth
on the rest of the cluster nodes and does not observe any significant incoming traffic.
This leads to the conclusion that the problem lies not in the monitored application,
but in the load balancing component ().

The analysis path followed by the user comprises both hardware (low level)
and software (high level) metrics. It shows how flexible a reasoning process might
be when the knowledge stored in SemMon holds possibly a full description of the
environment. It is also possible to track down performance issues not only in the
monitored application, but also in its environment.

6.2 Extending SemMon for SLA Monitoring

Below we focus on a case of integrating SemMon into the IT-SOA project®. The main
goal of the project is to research novel methods and tools for practical application
of the paradigm of Service Oriented Architecture (SOA) in the process of creating
innovative solutions for improving the competitiveness of Polish enterprises, the
development of the e-economy and information society. The SemMon platform is
applied to monitor Service Level Agreements which describe the Quality of Service
of partners within a Virtual Organisation. SemMon’s features, e.g. the notification
mechanism and support for different, physical monitoring systems, are crucial when
considering different types (in terms of technology which was exploited) of services
exposed by different companies [14].

During the research in the IT-SOA project a new requirement arose. The moni-
toring of SOA-oriented applications requires dedicated tools depending on an SOA
framework. In the project, the Enterprise Service Bus (ESB) platform is widely
exploited. It allows to build scalable applications from loosely coupled components,

3 Home Page of the IT-SOA project — http://www.soa.edu.pl

440 W. Funika, P. Godowski, P. Pegiel, D. Krol

each one being connected to the bus which exposes a coherent environment for mes-
sage routing between the connected elements but at the same time can be distributed
across multiple nodes.

For this type of environment a dedicated monitoring approach has to be de-
signed. The IT-SOA project develops a novel solution for this issue (for more de-
tails please see [10]). To connect this monitoring with the SemMon system, an
adapter component, which transforms data generated by the ESB monitoring sys-
tem to the SemMon model, had to be developed. The implementation of the adapter
uses a database in which the ESB monitoring system stores data gained from the
performed observations. The schema of the database is generic in terms of met-
rics which are monitored, thus it can be used to store all the information from the
ESB monitoring system. Apart from the measurement data, the database contains
information about the monitored resources and metrics which can be monitored.
The adapter for the SemMon system is responsible for connecting to this database
and retrieving the requested information, e.g. on available resources, or the current
value of a particular metric. Then, the adapter component transforms the data from
a database specific form (tuples) to the SemMon model (semantic-oriented objects).

The most important lesson learned from this case study is the fact that the
SemMon platform can be extended with new adapters to new monitoring systems
without changing the code of the original SemMon code. The only new element is
an adapter component which is separated from the core SemMon functionality. The
user is enabled to monitor new types of applications with the same tool and the
already assimilated functionality, e.g. step-by-step guidance through the monitoring
process and an orientation to the factors which are important from the developer
viewpoint, which allows to concentrate on application business logic rather than on
low level aspects of application execution.

6.3 Performance Tests

We have studied the scalability issue of SemMon’s operation due to its importance
in large distributed systems. The implementation work has revealed that the main
bottleneck in the SemMon system is the ontology processing engine. The main rea-
son for this is that the Jena Semantic Web Framework [11] algorithms are rather
brute-force and only the additional caching layer added in Jena improves the per-
formance of ontology processing issues to a small extent. However, the more data
is stored in the ontology, the slower the ontology subsystem works. Therefore the
prepared test scenario concentrates on the measurement how the growth of ontology
data affects either Core or GUI responsiveness. The test is based on SemMon usage
performed during regular monitoring. The measurements are targeted at the fol-
lowing indicators: time spent by Core in the Resourcesintrospection, time spent by
the GUI to re-built the Resources tree, consumed network bandwidth used during
communication between the Core and GUI.

The following environment was used to measure the responsiveness of SemMon
Core and its GUIL:

Semantic-Oriented Performance Monitoring of Distributed Applications 441

o PC station (Intel Pentium D 3 GHz, 4GB RAM) for the SemMon Core and
database application

e PC station (Intel Pentium Celeron M 1.6 GHz, 2 GB RAM) for the SemMon
GUI

e PC station (Intel Pentium Celeron 2 GHz, 2 GB RAM) running up to 5 different
Java applications with enabled JMX connector.

All nodes were running the GNU/Linux operating system and were connected using
100 Mbit isolated LAN network. Each node was running the latest Sun JVM 1.6
available (1.6.0.01). Each node has also the Pellet reasoner running for local queries
(i.e. either GUT or Core uses its own reasoners to minimize querying queues, network
latency and query-to-XML serialization overhead). The described configuration was
chosen after preliminary tests which had shown that the best configuration should
have the database (containing all the ontology data) running on the same node as
the SemMon Core application. It also showed that the performance of SemMon is
not limited by the prepared LAN configuration or memory available on each node.

For the purposes of testing a specially prepared Java application was invoked
with JMX connector enabled. At start-up this application creates 100 threads,
half of them communicating with the rest of threads using synchronized queues to
pass simple 1024 bytes long random “messages” at a random interval. Such an
application should be a good example of a loosely coupled application exchanging
calculation results with its environment.

Attached | Statements | Introspection | GUI refresh
nodes time [s] time [s]

1 250 20 1

2 500 50 2

3 750 120 4

4 1000 280 6

Table 1. SemMon test results for RDBMS ontology model

Table 1 shows test results for the described environment, while Table 2 shows
results when all the ontology data is stored in memory (Core and GUI are embedded
in the same application, no RMI involved). When presenting the measured results
graphically (see Figure 7), it is obvious that the introspection time grows exponen-
tially with the growth of the number of ontology statements, where each statement
represents an ontology triple?. However, when the relational database backend is
removed, allowing Jena to use its “optimized” in-memory model, processing time
growth is not so that visible as when used with database.

4 An RDF triple: subject, predicate, object — http://www.w3.org/TR/rdf-concepts/
#dfn-rdf-triple

442

W. Funika, P. Godowski, P. Pegiel, D. Krol

Attached | Statements | Introspection | GUI refresh
nodes time [s] time [s]

1 250 5 1

2 500 7 1

3 750 10 1

4 1000 15 2

Table 2. SemMon test results for in-memory ontology model

%0 280
RDBMS
ontology model
250 -
in—-memory
ontology model
200
)
(0]
£
S 150
o
(7]
§ 120
E
100
50
50
20
5 . 10 15
0) Q?\ 'zf’\ Q?\
S S S S
O ® > ® > & NS
CHES S& &L)
§ 2@ N N & &
& & © & O & O
'l?ge P‘réer fzr&DQe 'Zébg&)
NP QAN & > ,\QQ

Fig. 7. Ontology processing times when using different ontology backend models

7 SUMMARY AND FUTURE WORK

The main objective of this paper was to present the design and implementation of
a robust and flexible semantics-oriented monitoring system, SemMon. It seems to
be one of the first complete approaches to the joint “worlds” of on-line distributed
monitoring and Semantic Web.

The SemMon system extensively uses ontology for semantic description of all
concepts used in. It is a flexible system, starting with picking up automatic on-
tology changes, through automatic metric selection assistance, collaborative users’
knowledge leveraging, user-defined metrics, and finally, to extensible and clear visu-
alisation options.

Due to the fact that SemMon is written in Java it can be run on every plat-
form and operating system on which the Java Runtime can be found. We have

Semantic-Oriented Performance Monitoring of Distributed Applications 443

intensively tested SemMon on the following platforms: Linux/x86, Windows/x86,
Windows/x64 and Solaris/SPARC. We used the SemMon system to monitor the
operating system and Java based applications — all the metrics described in this
article are ready to use.

There are still places for improvements. One of the unresolved issues concerns
performing part of the computations on the clients to improve system scalability by
reducing the size of performance data sent to the central database. An important
task is to explore algorithms for reasoning in the ontology frameworks. Although
there are some improvements in the query algorithms, they are just based on an
additional caching layer rather than optimizing algorithms. Some of the new func-
tionalities are described in next paragraphs.

Today’s world is now focusing on the Internet and Web interfaces to applica-
tions. A Web interface could also be provided for monitoring systems. In our case
we would still need the Core subsystem, but it might be possible to replace a heavy-
weight GUI client (which needs specialized software installed on the client machine)
by a lightweight Web interface for performing a remote monitoring session. Us-
ing Ajaz® and a modern Web framework (like Ruby on Rails® or Symphony”) the
implementation of a Web interface should be relatively easy and quick.

The introduction of ontology and therefore a higher level of abstraction into
the monitoring process enabled to overcome the problem of heterogeneity of the re-
sources involved in computations and data storage [13]. There are further interesting
domains which can be tackled based on the SemMon functionality: collaboration of
humans and collaboration of tools. While the former kind of collaboration is quite
popular in the research community, the second one, which concerns the ability of
tools to co-operate with each other starting with making available some monitoring-
related data up to synchronizing activities based on the notifying on coming actions,
is less explored [15]. SemMon allows to introduce a high-level ontology-based pro-
tocols to enable co-operation between tools.

Integration with the K-Wf Grid Grid Organizational Memory (GOM) is also an
interesting topic. GOM, a framework for knowledge deployment and management,
uses the Jena Semantic Web Framework, too, but its design is more generic. It
could be used as a knowledge centre which enhances the current Ontology subsystem
with such features like automatic notifications about ontology changes, switching
between different ontology management frameworks, etc.

In the next version of the SemMon system, dynamic instrumentation in the
JMX Adapter will be supported. Using the dynamic JMX MBean loading service
MLet®, it will be possible to dynamically instrument a monitored application when
monitoring with JMX. JMX Adapter could be enhanced by providing a set of cus-

5 Asynchronous JavaScript and XML, a flavour of the XML-RPC protocol

6 http://www.rubyonrails.org/

" http://www.symfony-project.com/

8 http://java.sun.com/j2ee/1.4/docs/api/javax/management/loading/MLet .
html

444 W. Funika, P. Godowski, P. Pegiel, D. Krol

tom MBeans (sensors) (e.g. network throughput and network latency MBeans) and
dynamically injecting them into the monitored application.

A cknowledgements

We are very grateful to Professor Jacek Kitowski and our colleague Pawel Koperek
for valuable discussions. The research is partially supported by the POIG.01.03.01-
00-008/08 “IT-SOA” project. Dariusz Krol thanks to the UDA-POKL.04.01.01.01-
00-367/08 project.

REFERENCES

[1] GERNDT, M.—WISMULLER, R.—BALATON, Z.—GoMBAs, G.—KAacsuk, P.—
NEMETH, ZS.—PODHORSzKI, @ N.—TRUONG, H.-L.—FAHRINGER, T.—
BuBAK, M.—LAURE, E.—MARGALEF, T.: Performance Tools for the Grid:
State of the Art and Future. APART-2 Working Group, Research Report Series,
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation (LRR-TUM), Technische
Universitat Miinchen, Vol. 30, Shaker Verlag, ISBN 3-8322-2413-0, 2004.

[2] MARCO, J. et al.: The Interactive European GRID: Project Objecives and Achieve-
ments. In: Computing and Informatics, Vol. 27, 2008, No. 2, pp. 161-171.

[3] BALls, B.—BuBAK, M.—LABNO, B.: GEMINI: Generic Monitoring Infrastructure
for Grid Resources and Applications. In: M. Bubak and S. Unger (Eds.)., Proc.
Cracow Grid Workshop 2006. The Knowledge-based Workow System for Grid Appli-
cations, pp. 60-73, ACC Cyfronet AGH (Poland) (2007).

[4] K-Wf Grid web site: http://wuw.kwfgrid.eu/.

[5] BERMAN, F.—CHIEN, A.—COOPER, K.—DONGARRA, J.—FOSTER, I.—
JOHNSsON, L.—GANNON, D.—KENNEDY, K.—KESSELMAN, C.—REED, D.—
TorczoN, L.—WoLsk1, R.: The GrAds Project: Software Support for High-Level
Grid Application Development. Technical Report Rice COMPTRO00-355, Rice Uni-
versity 2000.

[6] FuNniKA, W.—BUBAK, M.—SMETEK, M.~WISMULLER, R.: An OMIS-Based Ap-
proach to Monitoring Distributed Java Applications. In: Yuen Chung Kwong (Ed.):
Annual Review of Scalable Computing, Vol. 6, Chapter 1. pp. 1-29, World Scientific
Publishing Co. and Singapore University Press, Singapore 2004.

[7] Z1eLINSKI, K.—JARZAB, M.—WIECZOREK, D.—BALOs, K.: JIMS Extensions for
Resource Monitoring and Management of Solaris 10. In: V.N. Alexandrov, G. Dick
van Albada, P. M. A. Sloot, J. Dongarra (Eds.): Proc. ICCS 2006, Reading, UK, May
28-31, 2006, LNCS, Vol. 3994, pp. 1039-1046, Springer 2006.

[8] RIBLER, R.L.—VETTER, J.S.—SivmiTci, H—REED, D.A.: Autopilot: Adap-
tive Control of Distributed Applications. In: Proc. 7*" IEEE High-Performance Dis-
tributed Computing Conference 1998.

[9] TRUONG, H.-L.—DUSTDAR, S.—FAHRINGER, T.: Performance Metrics and On-
tologies for Grid Workows. In: Future Generation Comp. Syst., Vol. 23, 2007, No. 6,
pp- 760-772.

Semantic-Oriented Performance Monitoring of Distributed Applications 445

(10]

(1]

(13]

(14]

(15]

Psiuk, M.: AOP-Based Monitoring Instrumentation of JBI-Compliant ESB. In: 2009
Congress on Services 1, pp. 570-577.

CARROLL, J. J.—DICKINSON, I.—DoLLIN, C.—REYNOLDS, D.—SEABORNE, A.—
WILKINSON, K.: Jena: Implementing the Semantic Web Recommendations. In: Pro-
ceedings of the 13'" International World Wide Web Conference on Alternate Track
Papers & Posters, New York (NY, USA) 2004, pp. 74-83.

Baris, B.—BuBak, M.—FunNika, W.—WISMUELLER, R.—RADECKI, M.—
SzZEPIENIEC, T.—ARODZ, T.—KURDZIEL, M.: Grid Environment for On-Line Ap-
plication Monitoring and Performance Analysis. In: Scientific Pogramming, Vol. 12,
2004, No. 4, pp. 239-251, http://grid.cyfronet.pl/ocmg.

Kuna, D.—JAMRO, E.—RUSSEK, P.—WIATR, K.: Using Standard Hardware Ac-
celerators to Decrease Computation Times in Scientific Applications. In: Computer
Science, Vol. 10, Annual of AGH-UST, Krakow 2009, pp. 65-74.

KrOL, D.—FUNIKA, W.—SLOTA, R.—KIiTowskI, J.: SLA-Oriented Semiauto-
matic Management of Data Storage and Applications in Distributed Environments.
In: Computer Science, Vol. 11, Annual of AGH-UST, Krakow 2010 (to appear).
FunikA, W.—JANIK, A.: Interoperability of Monitoring-related Tools. In: Com-
puter Science, Vol. 7, Annual of AGH-UST, Krakow 2006, pp. 63-76.

Wlodzimierz FUNIKA works at the Institute of Computer
Science of the AGH University of Science and Technology in
Krakow (Poland). His main research interests are in distributed
programming, tools construction, performance analysis and vi-
sualization, machine learning. He is involved in EU Cross-Grid,
CoreGRID, K-Wf{Grid, ViroLab, GREDIA, UrbanFlood pro-
jects.

Piotr GopowskI graduated from the Institute of Computer
Science of the AGH University of Science and Technology, Kra-
kow, Poland in 2007. His main interests are in distributed sys-
tems, online monitoring, semantic analysis of performance re-
lated computing areas.

446

W. Funika, P. Godowski, P. Pegiel, D. Krdl

Piotr PEGIEL received his M. Sc. in computer science at the
AGH-UST in Krakow, Poland, in 2007. He is employed in
Sabre Holding, participated in EU IST projects (ViroLab, Gre-
dia). His interests refer to monitoring-related issues: knowledge
based monitoring steering, self-healing of distributed systems,

SOA/ESB/WS.

Dariusz KROL received his M. Sc. in computer science at the
AGH-UST in Krakow, Poland, in 2009. Now he is a Ph.D.
student at the same university. His main research interests are
in cloud computing, data storage management, performance mo-
nitoring and distributed systems. He is involved in EU IST
ViroLab and GREDIA projects as well as in the Polish national
PL-Grid project.

