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Abstract. Limited by two time-consuming steps, solving the optimization prob-
lem and labeling the data points with cluster labels, the support vector clustering
(SVC) based algorithms, perform ineffectively in processing large datasets. This
paper presents a novel scheme aimed at solving these two problems and accelerat-
ing the SVC. Firstly, an innovative definition of noise data points is proposed which
can be applied in the design of noise elimination to reduce the size of a data set
as well as to improve its separability without destroying the profile. Secondly, in
the cluster labeling, a double centroids (DBC) labeling method, representing each

cell of a cluster by the centroids of shape and density, is presented. This method
is implemented towards accelerating this procedure and addressing the problem
of labeling the original data set with irregular or imbalanced distribution. Com-
pared with the state-of-the-art algorithms, the experimental results show that the
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proposed method significantly reduces the computational resources and improves

the accuracy. Further analysis and experiments of semi-supervised cluster labeling
confirm that the proposed DBC model is suitable for representing cells in cluster-
ing.

Keywords: Support vector clustering, noise elimination, centroid, semi-supervised
clustering
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1 INTRODUCTION

Inspired by the support vector machines (SVM) [1], the support vector clustering
(SVC) [2, 3, 4] and its variants [5, 6, 8, 7] are recently emerged algorithms to characte-
rize the support of a high-dimensional distribution. Through a kernel function, these
methods map data points from the original space to the high-dimensional feature
space and find a sphere with the minimal radius which contains most of the mapped
data points. This sphere, when mapped back to the original data space, can be
separated into several components, each enclosing a separate cluster of points [6].
For its support to any shape of data sets, the SVC has been successfully applied to
solve some difficult and diverse clustering or outlier detection problems.

Many studies have shown that both solving the optimization problem and label-
ing the data points with cluster labels consume too much time and are, therefore,
two major bottlenecks to the SVC’s application [5, 6, 7, 9, 10, 11, 12, 13]. When
solving the optimization problem, the noise data points not only increase the re-
dundancy of describing a data set but also affect the abilities of classic algorithms
in supporting for geometrical shape and membership decision; for instance, they
would lead to overfitting [14]. Despite of these side effects, the SVC-based me-
thods [2, 4, 17, 5, 6, 9, 11, 15, 16] treat the noise data points as outliers for lack
of a clear definition. These approaches that confuse these two concepts of noise
data points and outliers will cause the removal of outliers like noise data points.
Yet, according to the principle of the SVC, the outliers, as shown in Figures 1 a)
and 1 b), are different from noise data points and affected by the parameters of the
convex quadratic minimization problems. Nath et al. [18] proposed a preprocess-
ing method which exploited the geometry based on R*-tree to reduce the size of
training data and resulted in drastically reducing the run-time of the cluster al-
gorithm. With several pre-specified parameters, including the number of nearest
neighbors k and the average strength of all data points, Wang et al. [19] presented
a data preprocessing method which employs a shared nearest neighbor (SNN) based
algorithm [20] and the concept of unit vectors to eliminate insignificant data points
from the data set; but different pre-specified parameters could lead to extremely
distinguished clustering results.
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On the other hand, the complete graph-based (CG) strategy [2] and proximity
graph-based (PG) strategy [21] are two popular cluster labeling algorithms. Al-
though it is relatively easy to be implemented, the CG will suffer the drawback of
becoming highly intensive (usually O(N 2)) as the number of the data points or free
support vectors increases. In contrast with the CG, the PG can significantly re-
duce the cluster labeling time (usually O(N) or O(N logN)). Unfortunately, it fails
frequently in the accuracy of cluster labeling and becomes highly complex while
handling the high dimensional data sets. In sight of these problems, based on
a topological property of a trained kernel radius function, Lee et al. [5] presented
a robust labeling method, called Reduced Complete Graph (R-CG) for the SVC.
In the R-CG, the stable equilibrium points (SEPs), each one representing a small
number of disjoint groups decomposed from a given data set, are always found after
a series iterative calculations on the trained kernel radius function. Although R-CG
is one of the fastest algorithms with low time complexity of O(N logN), only SEPs
are used to find the connected components among data points which would lead
to relatively big error. In dealing with clusters of low connectivity as illustrated
in Figure 1 b), the R-CG algorithm misclassifies it into two disconnected clusters.
Therefore, in spite of representing data within their neighborhoods well, the SEPs
are not proper substitutes for support vectors (SVs). As a knowledge base for future
classifications or membership decisions, it would cause the accumulation of incorrect
results [5].

In order to improve the performance, Lee et al. [6, 8] defined a transition
point between two SEPs to check the connectivity of any two neighboring basin
cells. Then, in [7], a weighted graph and attractors were constructed to make
cluster labeling more robust. However, these methods, consuming too much time
in searching the redundant SEPs (about 20-30 times of computation in feature
space before achieving the exact SEP for each data point(see Table 3)), are much
slower than the R-CG for the vast operations in addition. Anyway, as well as
the poor performance on drawing the profile of datasets irrespective of noise data
points, the drawback shared by these aforementioned methods [5, 6, 8, 7, 12] is
that they can not label data sets with irregular shape or are accompanied by
noise data points effectively. Another way of reducing the complexity suggested
by [17] is to label the data points using the nearest neighboring labeled data points
or the related SEP. Unfortunately, since the data points in clusters are sparse
or imbalanced, that simple labeling strategy could not perform well while data
points have two or more subequal distances to points in different clusters (see Fi-
gure 1 a)).

By adopting the multi-sphere structure, Jung Hsien [9] enriched the labeling
algorithm in a form of cluster cell growing method which works in the input space
and is able to represent the natural grade of membership in partition. Then it
was implemented in handwriting recognition and document categorization by [22].
Practically, they chose another way of iterative constructing centroids and surfaces
and searching the nearest neighbors when the cells are growing up. Obviously,
similar to the algorithm in [10], they are both time-consuming.
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In summary, the critical problems, ineffectively dealing with noise and outliers,
inappropriately representing data sets with different shape and imbalanced distri-
bution, are the bottlenecks for SVC based algorithms.

To overcome these problems and simplify clustering operations without losing
efficiency and robustness, in this study we propose a novel scheme to accelerate
SVC for large-scale datasets by two phases. In the first phase, to reduce the size of
training data without affecting the profiles of clusters, we eliminate the noise data
points which are clearly defined and differ from the outliers. The second phase starts
following the resolution of optimization problem. In parallel, the connected com-
ponents and stable equilibrium points are found by employing the support vectors.
Then, the whole set of support vectors is decomposed into a number of subsets.
In each subset, a DBC of shape and density is constructed to represent one cell.
For a better support of any shape and distribution, the remaining data points (core
points, outliers) could be labeled following the principle of maximum subordinated
degree among the cells with a weighted distance in the input space. According to
these two phases, the DBC, less than 5% of the whole data points, represent the
data set well and reduce the complexity of membership decision immensely. With
a small knowledge-base of labels, the proposed method can support semi-supervised
clustering efficiently.

The paper is structured as follows. The principle of the SVC is briefly reviewed
in Section 2. Section 3 presents the scheme of two phases of accelerating the SVC,
as well as a short suggestions on the approach of the semi-supervised clustering. We
show experiments results in Section 4. The conclusions are drawn and the future
work is discussed in Section 5.

2 SUPPORT VECTOR CLUSTERING

This overview of support vector clustering follows closely the derivation of [2].
Firstly, assume N points {x1, x2, . . . , xN}, xi ∈ ℜd in a data set described in the
input space, where d is the dimension of the data space. The procedure of cluster-
ing these data points by the original support vector clustering algorithm with CG
strategy could be summarized as follows.

A nonlinear mapping function Φ is used to map the data set into a high-
dimensional feature space such that the radius of the hypersphere, denoted by R,
enclosing all the data points, is as small as possible. This objective can be cast as
a convex quadratic minimization problem:

minR,µ,ξj R
2 + C

∑

j ξj (1)

s.t. ||Φ(xj)− α||2 ≤ R2 + ξj , ξj ≥ 0, ∀j

where || · || is the Euclidean distance, α is the center of the hypersphere, ξj are the
slack variables that loosen the constraints to allow some data points lying outside
the hypersphere, C is a hyper-parameter and C

∑

j ξj is a penalty term controlling
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Fig. 1. Drawbacks of CG and R-CG algorithms. a) CG Algorithm (q = 2, C = 0.08).

The clusters of a 2D data set ring (26 new data points are added) [5] assigned by
CG algorithm which treats outliers as noise data points with no labels. The subequal
distances (d1, d2 or d3, d4) between unlabeled data points a, b and several clusters may
cause the labeling strategy of [17] fail. b) R-CG Algorithm (q = 2, C = 0.1). Incorrect
result occurs to R-CG algorithm while the segmers on the line segment between two
SEPs do not satisfy the condition of connected components.
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the noise data points1 in general. The larger the C(C ∈ [0, 1]) is, the less the
points whose images lie outside the hypersphere are. The solution to the primal
optimization problem (1) can be obtained by solving its dual problem [23]:

max
βj

W =
∑

j

Φ(xj) · Φ(xj)βj −
∑

i,j

βiβjΦ(xi) · Φ(xj)

=
∑

j

K(xj, xj)βj −
∑

i,j

βiβjK(xi, xj) (2)

s.t.
∑

i

βi = 1, 0 ≤ βi ≤ C

where the inner product of Φ(xi) ·Φ(xj) can be replaced by a kernel K(xi, xj) which
usually is the Gaussian kernel:

K(xi, xj) = exp(−q||xi − xj||
2) (3)

where q is the width of the kernel. For any points x in the input space, the distance
from its image in the feature space to the center of the hypersphere is given by

R2(x) = ||Φ(x)− α||2 = K(x, x)− 2
∑

j

βjK(xj, x) +
∑

i,j

βiβjK(xi, xj). (4)

The radius R of the hypersphere can be obtained by

R = {R(xj)|xj is a support vector}. (5)

In the aforementioned equations, βj is the Lagrange multiplier. The Karush-
Kuhn-Tucker (KKT) conditions, necessary and sufficient for optimality of the dual,
lead to a partitioning of the training data points into three categories as given below.
The data points with βj = C are the bounded support vectors (BSVs, or outliers),
βj = 0 are the points lying in the hypershpere called the inners, while all the other
data points with 0 < βj < C are treated as SVs. However, the BSVs, contributing
in solving the optimization problem, should not be treated as the noises.

Upon solving the dual problem, a simple graphical connected-component method
is used in cluster labeling. If there are two data points, xi and xj, we can check
the segmers sampled on the line segment between them by traveling its image in
hypersphere. According to Equation (4), xi and xj should be labeled by the same
cluster index while all the L segmers (usually 10-20 points) are always lying in
the hypershpere. Two data points, xi and xj , satisfying the above condition are
defined as connected components. An adjacency matrix A is defined to identify the
connected components of a cluster. We define the components of A, aij between

1 Generally, the traditional SVC-based algorithms do not distinguish outliers from noise
data points. So we follow this concept in this section.
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pairs of xi and xj with yk(k ∈ [1, L]) on the line segment:

aij =

{

1, ∀yk, R(yk) ≤ R

0, otherwise.
(6)

In the matrix A, aij = 1 means that xi and xj belong to the same cluster. Otherwise,
they are in different clusters.

3 THE PROPOSED METHOD

3.1 Phase I: Eliminating Noise Data Points

In order to eliminate the noise data points, we introduce a case to show the char-
acteristics of such data points. As depicted in Figure 2, there are two clusters
denoted by SA and SB. Obviously, x1 is particularly different from others for its
location. According to the traditional cluster labeling algorithms [2, 10, 9], after
solving the optimization problem of Equation (2), x1 will be labeled identically as
the outliers x4, x5. However, the more the data points like x1 are, the more compu-
tations would be consumed. In contrast to the outliers, whose size is controlled by
the parameters C and q, the noise data points have some particular features which
could be observed in Figure 2 a). Firstly, from the regions of the two dot-line circles
regarding x1 and x2 as centers respectively and R as the radius, a careful obser-
vation would find the distinguished amounts of neighborhoods around x1 and x2.
Accordingly, the frequency of x1 appearing in the neighborhoods of the other data
points would not match up to x2 in a special region. Furthermore, the two pairs of
the subequal distances, {d12, d13} and {d1A, d1B}, would cause the decision failed,
especially for those traditional distance-based labeling algorithms, such as those
in [6, 10].

Apart from the noise data point, following the concept of unit vectors, Wang
and Chiang [19] exploited a preprocessing algorithm to eliminate the core points for
reducing the size of dataset. However, when confronted with a scenario illustrated
in Figure 2 b), this algorithm is not recommended to eliminate the core points for
it would destroy the distributional characteristic of a dataset. Two core points,
denoted by xA and xB in Figure 2 b), are lying in clusters SA and SB, respectively.
x4 and x5 are the outliers of the cluster SB and the inners of cluster SI( 6= SB). In
the former case, x4 and x5, as outliers, are labeled by the index of SB, while di is
greater than their distance to SB. With the core elimination algorithm, SA will be
split into SA1 and SA2 with the removal of xA and xB. In order to maintain the same
cluster label of SA1 and SA2, an appropriate kernel width q will be found and that
would usually cause the border of SB to be enlarged to S

′

B. Then, x4 and x5 will be
the inners of S

′

B. If there is another cluster near the SB, the algorithm would impose
or misguide the decision of cluster labeling. The reason is that the value of di is large
enough to impose the parameter setting of q on finding the bifurcations of clusters.
The compact relationship between the initial value of q and distances among data



620 Y. Ping, Y. Zhou, Y. Yang

R

RSA

SB'

x1

x2

xA xB

x3
d13

d1A d1B

d12

x4

x5
SB

a)

SA

xA
xB

di

dj

dAB

SA1

SA2

x4

x5

SB'

SB

b)

Fig. 2. Analysis of Noise Data Points and Core Data Points. a) Noise Analysis. SA

and SB are two clusters covering an elliptical region and a circular area with dotted
line, respectively. xA and xB are the core of SA and SB , respectively. x1 is a data
point outside the two clusters. x4 and x5 are outliers specified by SVC with width q1
of Gaussian kernel function in Equation (3). b) Core Analysis. After the elimination
of the core points by algorithm in [19], xA and xB denoted by the circle with the
dot-line are removed. However, without the data point xA, SA has been divided into
two clusters denoted by SA1, SA2. di(= dj) is the minimum distance between SA1

and SA2

points had been discussed in [2, 17]. Therefore, a suitable core points elimination
algorithm, not in the scope of this article, is expected to be able to maintain the
profile of a data set and perform well without negatively affecting the clustering.

Throughout the aforementioned analysis, the proposed method of noise elimina-
tion algorithm should distinguish noise data points from outliers and provide with
a self-adapting strategy to deal with any dataset with sparse or imbalanced distri-
bution. Before introducing the noise elimination algorithm, we first give a novel
definition of noise data points for the proposed algorithm.

Definition 1 (Noise Data Points). Noise data points are those sparse distribution
of data points, which are seldom surrounded by similar data points in a certain or
local region, and have a relatively balanced membership degree to their adjacent
clusters.

In order to eliminate these data points, different from using SNN algorithm to
obtain similarity matrix whose components are defined as the similarity measure
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Fig. 3. Definition of noise data point. a) Origin t8.8k. The origin data set t8.8k is a 8 000*2
matrix. b) Clusters with noises. Processed by the proposed algorithm, K = 50, λ = 0,
data points are shown in the form of clusters with different colors and noise data
points denoted by black points. c) Balanced memberships. Noise data points perform
a relatively balanced membership degree to their four adjacent clusters. d) Sparse
distribution of the noise data points. e) Data without noise points. The remaining
data points after the removal of noise data points. f) Histogram of being shared.
The histogram shows the distribution of the frequency of data points being shared by
others.
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between neighboring points [20, 24, 19] in local region, we extend the similarity
measure to the entire data sets in another way called similarity level of being shared
(SLS). Specifically, if Xi and Xj are two data points in dataset X, the strength of
their similarity level is defined as

sim level(Xi, Xj) =
min{KNNi(X),KNNj(X))}

max{KNNi(X),KNNj(X))}
(7)

where KNNi(X) =
∑

r∈[1,N ]
r 6=i

KNN(Xr) is the notation of point Xi occurring in Xr’s

k nearest neighbor lists denoted by KNN(Xr), N is the number of the data points
in X. Obviously, the similarity level reflects the similarity degree of any two data
points being shared by others.

According to the definition, the proposed noise elimination algorithm could be
expressed by the following steps:

Step 1: Initialization. Set K and get the lists of K nearest neighbors for each
point.

Step 2: Calculating the average degree of points’ being shared by others. Here, we
denote this parameter by α:

α = freq(X) =
1

N

N
∑

i=1

KNNi(X). (8)

Step 3: Removal of noise data points. With an adjustment factor λ, the threshold
δ of low-similar data points is defined as

δ = λα (9)

where λ is between 0 and 1, default value is:

λ =







1, if KNNi(X) ≥ α

1−
{ 1

N−1

∑N
i=1

[KNNi(X)−α]2}
1

2

α
, if KNNi(X) ≤ α.

(10)

For a specific point Xi, if the ratio of SLS to the average degree is lower than λ,
KNNi(X) ≤ λα, Xi will be considered as noise and removed from the data set in the
preprocessing stage. Actually, to achieve an complete judgement for the whole data
set, in the proposed scheme, these data points will be collected into a candidate set
and will be assigned labels by the following algorithm of Phase II.

By employing t8.8k, one of the chameleon datasets [25], Figure 3 shows the
principle of the proposed noise elimination. The original data set which is plotted in
Figure 3 a) contains 8 000 data points. Since K is 50, the proposed algorithm checks
50 nearest neighbors for each data point to find out the degree of being shared by
others (see Figure 3 f)). While λ is set to 0, the noise data points are denoted by black
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points in Figure 3 c). To verify the proposed definition of noise data points, a close
insight into the annular region of Figure 3 b) is depicted in Figure 3 c). Obviously, the
noise data points perform a relatively balanced membership degree to their adjacent
clusters. The sparsity of noise data points can be proved by Figure 3 d). After the
removal of noise data points, the remaining data points shown in Figure 3 e) would
keep the profile of the data set. Moreover, the profile of each cluster is becoming
much clearer and smoother such that the separability among clusters is enhanced
without compromising the labeling result.

3.2 Phase II: Labeling the Data Points in Double Centroids Mode

Considering the kernel function of Equation (4), there exists a unique solution (or
trajectory) x(·) : ℜ → ℜn for each initial condition x(0) = x0 is guaranteed since
it is twice differentiable and the norm of ∇R2(x) is bounded. Lee et al. [5] called
the state vector x satisfying the equation ∇R2(x) = 0 equilibrium point (EP) and
a SEP if all the eigenvalues of its corresponding Jacobian matrix, JR(x) ≡ ∇2R2(x),
are positive.

Instead of CG strategy, SEPs, generated by iterative searching for local mini-
mums from all the data points in the data set, are used to find the connected
components. For the characteristic of convergence, all the data points could be
assigned the same clustering labels as the SEP which would converge to [5, 8]. It
is an excellent characteristic that would be improved and employed in the proposed
procedure of constructing double centroids.

3.2.1 Constructing Double Centroids

Out of the need of computational savings, the bottlenecks, too many redundant
iterative computations, low connectivity of clusters and imbalanced distribution of
data sets, should be resolved appropriately. Therefore, the proposed cluster labeling
algorithm uses only support vectors to check the connected components and find
the SEPs which are treated as shape centroid.

From Equation (5), the distance from any data point in a sphere2 to the center α
of the hypersphere is lower than R. This means we can find at least one data point,
in each sphere, which has the shortest distance to the center of the hypersphere.
Therefore, we can extract the exact data points from a data set by any local op-
timization algorithm. However, for some particular distributions, one cluster with
one sphere may not support all the data set patterns appropriately. Lee [9] thus
proposed a cell growing model to support one cluster with multi-sphere. However,
in high dimension feature space, the sphere is expected to be a regular one to get
an effective performance when calculating the norm of membership degree. There-
fore, it is not good at dealing with data set of strange shape and distribution. In

2 In this paper, we use “cluster” to represent one class of data points, “sphere” defined
in the input space following the reference [9] to denote a number of connected components
in a cluster, “cell/basin cell” following reference [8] as a part of a sphere.
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order to improve the performance, as well as the deviation of one cluster to multiple
sphere, the proposed method decomposes each sphere into multiple cells.

Definition 2 (Shape Centroid)). The shape centroid (SC), the same as SEP in [6],
is a logic data point lying in a basin cell defined in a fresh way:

SC(Cij) = {s|s ∈ ℜn, lim
xi∈Cij ,Cij∈Sj ,

t→∞

xi(t) = s} (11)

where Cij is the ith basin cell unit divided from the sphere Sj .

Lemma 1. Deduced from the principle of convex set and gradient line affecting the
steps to each local minimum, the boundary of the basin cell, denoted by BD(Cij),
can construct any data point lying in Cij though a convex combination.

Proof. Suppose there are two data points, xa and xb, on the boundary of a basin
cell BD(Cij). Taking the result of support vector clustering, the penalty parameter
C = 1 to avoid the outliers3, xa and xb is in the same sphere of a cluster. This means
any data point xi in the basin cell has a distance Ri to the center in hypersphere.
Therefore, there always exists a λ ∈ [0, 1] setting up the following formula.

∃λ ∈ [0, 1] → Ri ≤ R(λxa + (1− λ)xb) (12)

On the contrary, the data points on the boundary of a sphere would not satisfy that
equation because of concave boundary (see Figure 4), so that we can always get
a number of data points {x1, x2, · · · , xn} from the boundary of a basin cell BD(Cij)
to construct a convex set CS(Cij) which can compose all the data points Xbcij lying
in it. Furthermore, a sphere could be divided into one or more cells each consisting
of a number of vertexes and the corresponding convex combinations.

Xbcij =

n
∑

i=1

αixi,
∑

αi = 1 (13)

✷

Lemma 2. For a strongly separable data set, the following requirement should be
met:

1. The number of clusters is finite and much less than the data set size;

2. Without considering the overlapped cases, each cluster should have a profile
consisting of a number of data points to represent itself (not affected by the
cells);

3. To draw the profile of clusters, the number of employed data points should be
relatively stable and independent upon the data set size.

3 The parameter of C = 1 is not a necessary condition.
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Fig. 4. Convex analysis of basin cell. In sphere S2, there are two shape centroids

{SC12, SC22} lying in each owner basin cell {C12, C22}. With a number of support
vectors, we can construct two boundaries of convex sets {CS12,CS22} to enclose all
the data points lying in the two basin cells. The distance, taking dist12 and dist13
for example, between the shape centroid and density centroid of a cell is suggested to
reflect the degree of imbalanced distribution. The larger the distance for a cell, the
more the imbalanced distribution of data points.

Proof. Lemma 2 lists three sufficient conditions for a data set to be strongly sepa-
rable that could be proved by contradiction.

Obviously, the first condition is established. If there is no profile to be used
to represent each cluster, the data set is indistinguishable. According to Lemma 1,
any data point, lying in a cluster, could be constructed by a convex combination of
vertices from the profile. Assuming there is a data point, xnew, there is no convex
combination of vertex set CS(Cij) which consists of xi1, xi2, . . . , xik in data set ℜd. If
the label of xnew is the same as xiq(q ∈ [1, k]), it must be a vertex in CS(Cij). While
updating the BD(Cij), the original data points would lie in a new profile which can
enclose xnew. In contrary, xnew should be subsumed in another cluster or removed
as a noise data point. Therefore, the second condition is established. Furthermore,
if the profile of a cluster is not relatively stable to reflect the characteristics of the
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objective data set but alters with the increase of data size, either the features of
the data set are sampled incorrectly or the data set has too sparse and imbalanced
distribution to be distinguished. One of those separable data sets would have a stable
profile constructed by support vectors (see columns 2–3 of Table 1). The distinct
profiles would be maintained as the size of data set increases. ✷

Definition 3 (Density Centroid). The density centroid (DC) is a logic data point
defined by Equation (14) for a cell:

DC(Cij) =
1

Nij

Nij
∑

i=1

xi, ∀xi ∈ Cij (14)

where Nij is the number of data points in the basin cell Cij .

With a new data point to join the basin cell, the density centroid will get close to
the highest density position of the basin cell dynamically. Following the probabilistic
theory, in this study, only the support vectors are used to construct the density
centroid. Certainly, the density centroid would never locate out of its basin cell.

3.2.2 Membership Decision

Generally, the two centroids of shape and density would not overlap in data set
with imbalanced distribution. The greater the gap of the distance between the two
centroids in a cell, the much more imbalanced the distribution is (see Figure 4). In
consideration of the different contributions from the two centroids, a simple linear
programming problem is constructed and solved by a series of support vectors to
quantify the weight of each centroid. Then, a normalized contribution of the two
centroids, without noise points especially, which is defined in Equation (15) would
express both distribution and shape for a data set.

min
1

Nij

Nij
∑

i=1

(

WSCij
‖ xi − SCij ‖

2 +WDCij
‖ xi − DCij ‖

2
)

1

2

s.t.WSCij
+WDCij

= 1 (15)

WSCij
≥

1

2
, WDCij

≥ 0

where WSCij
and WDCij

are defined to measure the contributions of shape centroid
and density centroid in a basin cell Cij, respectively. The constrained condition of
WSCij

≥ 1
2
is used to emphasize the contribution of shape centroid. Based on the

distance measurement, the optimization problem could be solved either in the input
space or feature space. In the feature space, the distance can be calculated by

‖ Φ(xi)− Φ(xj) ‖
2 = K(xi, xi)− 2K(xi, xj) +K(xj, xj)

= 2− 2 · exp(−q ‖ xi − xj ‖
2) (16)
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where xj denotes one of the centroids SCij and DCij. However, for computational
savings, the computation of the distance in the input space is recommended.

After solving the linear programming problem, the membership decision follow-
ing the principle of the maximum subordinated degree could be simply expressed as
follows:

Step 1: Picking up a data point x from the candidate dataset or the input data set
excluding noise points and support vectors.

Step 2: Calculating the weighted norm distance dist(x, Cij) between x and the
cells Cij

dist(x, Cij) =
(

WSCij
‖ x− SCCij

‖2 +WDCij
‖ x− DCCij

‖2
)

1

2 . (17)

Step 3: Labeling x with the label of its nearest cell with minimum weighted norm
distance.

label(x) = label(argmin
Cij

{dist(x, Cij)}). (18)

3.2.3 Suggestions on Semi-Supervised Clustering for Future Approaches

As mentioned above, the double centroids mode is suitable for standing for cells and
then to represent clusters at the minimum cost. Practically, for a better approach
to represent a dataset, we investigate this mode in semi-supervised clustering for
some special purposes:

• Support vector clustering is poor in handling several overlapped clusters for the
kernel function. If we have got a number of labeled data points which is close
to the exact size of centroids, the proposed method would save much more time
at the minimum error rate by computing in the input space. The comparisons
are listed in Table 3.

• Usually, a data set should be decomposed into a number of spheres, such as
iris [26]. Although the traditional support vector clustering based algorithms
could recognize the spheres, they cannot establish the relationship among these
spheres.

For those reasons, the semi-supervised clustering algorithms are the subject of
attention of researchers and are surveyed in [27]. In the semi-supervised clustering
mode, the proposed method is recommended to be employed as the following steps:

Step 1: Choosing a threshold value γ for merging spheres.

Step 2: Utilizing the proposed method to cluster the data set without considering
labels such that labeling would only be done among the support vectors.

Step 3: A number of cells then can be labeled by the known labels or merged into
one. In addition, the maximum weighted norm distances (denoted by rCij

for
cell Cij) from labeled data points to their cells should be computed by Equa-
tion (17) and referred to in the following decisions.



A Novel Scheme for Accelerating Support Vector Clustering 629

Step 4: Finally, the remaining data points will be labeled in sequence. If the dis-
tance from a labeled cell Cij to an unlabeled cell is lower than rCij

+ γ, the two
cells are suggested to be merged into one.

4 EXPERIMENTS

4.1 Experimental Program

In order to evaluate the effectiveness of the proposed method, denoted by DBC or
DBC with noise elimination (DBC-NE, the DBC labeling algorithm following noise
elimination), we conducted a series of experiments on 7 data sets. The target of
this study is to achieve fair contrast evaluations with the state-of-the-art labeling
methods. Therefore, all the data sets would be preprocessed by the proposed noise
elimination (NE) algorithm. The DBC-NE will be evaluated with a subset which is
extracted from the data set and have unclear profile (see Table 1).

t4.8k, t5.8k, t7.10k and t8.8k are Chameleon data sets obtained from [25] and
the ring data set is from [5]. iris, wine and wisconsin are widely used clustering or
classification data sets from [26].

The proposed method is compared with five different unsupervised SVC me-
thods: Complete Graph (CG) [2], Delaunay Diagram (DD) [28], Minimum Span-
ning Tree (MST), K-Nearest Neighbors (K-NN) [21], and Reduced Complete Graph
(R-CG) [5] algorithms.

To analyze the time complexity of the proposed method, let m (approximate-
ly 20) be the average number of iterations for each data point to locate its corre-
sponding local minimum (shape centroid) via the steepest decent process [5], N be
the number of data points in the data set, l be the sample rate (20 is used here)
between any two support vectors. The time complexity of the noise elimination
procedure is O(N 2). After the removal of noise data points, the remaining data
points which keep the profile of the original data set could accelerate the process
of solving the optimization problem in Equation (2). Although the number of local
minima normally depends on the size of the width parameter of a Gaussian kernel
function [5], a clear and separable profile achieved by the proposed noise elimina-
tion algorithm simplifies the setting of parameters. Consistent with the principle
of SVC and the analysis of Section 3.2, the number of support vectors, denoted
by nSV and ranged from 3% to 15% of total size (see column 1 of Table 1), is
relatively stable in representing the profile of a data set. Actually, the number of
shape centroids, in column 2 of Table 1, is even more stable than the size of support
vectors. The greater the amount of data points, the more obvious the stable size of
support vectors is. Then the time complexity is O(l · n2

SV +mnSV +(N −nSV )nSV )
which could approximately be about O(l · n2

SV ) for large-scale data sets (because of
mnSV < l · n2

SV and (N − nSV ) ≤ l · nSV ).
This observation implies that the total time complexity of the proposed method

desponds on the size of support vectors, which is solely depending on the shape of
the distribution of a data set.
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4.2 Experimental Results

For each method, the performance is affected by different parameters. In order to
make a fair comparison with the other methods, the parameters of each method,
q and C, are set very close but different to achieve their best performances.

t7.10k, t4.8k, t5.8k, and t8.8k are large-scale data sets of Chameleon which
are used in the evaluation of noise elimination with different K. As depicted in
Figure 5 a), as well as K ≥ 30 for t7.10k, the curves become smooth while K

is greater than 25 for t4.8k, t5.8k, and t8.8k. Numerous experiments show that
the number of remaining data points ranges from 0.3% to 0.5% with different K.
Therefore, with the removal of noise data points, the number of remaining data
points is relatively stable as K increases. Similarly, the smooth curves of time cost
shown in Figure 5 b) suggest that the time delay is not so much sensitive to K.

In order to compare the performance on the time cost of cluster labeling for the
six methods, we conduct ten evaluations on t4.8k (2D-data set) without noise data
points that could be observed from Table 1, Table 2 and Figure 6. With an addition
of 500 samples for every round, the number of experimented data points ranges from
500 to 5 000. The proposed methods, both DBC and DBC-NE, are evaluated because
the randomly extracted data points might have unclear profile. The criteria for
comparisons are the cluster labeling error rate and the average CPU time of cluster
labeling. In Table 2, the labeling error rate is the percentage of the mislabeled
data with respect to the cluster labels determined by the trained kernel radius
function. The experimental results and the complexity analysis demonstrate that
the proposed method is substantially fast and sufficiently accurate in comparison
with the conventional cluster labeling algorithms.

Data # # CG DD MST 4-NN R-CG DBC DBC-
size of SVs of SCs NE

500 72 23 21.2 4.8 64.1 4.1 4.9 2.2 1.9

1 000 77 23 156.0 37.0 1 734.7 33.0 10.8 2.9 2.9

1 500 75 23 1 298.3 131.0 8 753.9 96.2 18.5 3.5 3.9

2 000 87 26 – 295.4 – 234.7 26.7 4.2 5.5

2 500 88 32 – 700.0 – 523.3 40.1 7.6 7.3

3 000 135 33 – 1 152.2 – 908.5 52.0 11.8 11.8

3 500 133 36 – 1 951.1 – 1 292.9 64.9 17.9 15.4

4 000 135 38 – 2 059.6 – 3 042.2 87.3 20.0 17.0

4 500 141 41 – 3 346.1 – 4 457.7 103.4 28.7 19.8

5 000 164 41 – 5 069.3 – 6 092.9 139.0 42.9 25.9

Note: “–” means not available.

Table 1. Cluster labeling time for t4.8k with different data sizes N

In addition to the noise elimination and the stable size of support vectors, an-
other factor of speeding up the labeling procedure, shown in Table 3, is less time-
consuming for labeling the inner data points and bound support vectors in the input
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Fig. 5. Performance of different K in dealing with 4 data sets of chameleon. a) Data
remained. shows the number of remaining clean data points after noise elimination.
b) Time cost. shows the run-time for different K.
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Data size CG DD MST 4-NN R-CG DBC DBC-NE

500 0 10 37 18.6 0 0 0

1 000 0 13.2 23 20 0.6 0 0

1 500 0 13.8 42.86 11.8 9.67 0 0

2 000 – 15 – 24.7 1.0 0 0

2 500 – 11.3 – 18.8 0.8 0 0

3 000 – 9.7 – 16.6 1.9 0 0

3 500 – 8.1 – 16.3 0.8 0 0

4 000 – 22.2 – 16.1 1.6 0 0

4 500 – 19.7 – 5.6 1.7 0 0

5 000 – 17.9 – 2.6 1.3 0 0

Note: “–” means not available.

Table 2. Cluster labeling error rate (%) for t4.8k with different sizes N (corresponding
with Table 1)

space than these computations in the feature space. The ratio of CPU time required
by labeling one point in the feature space and in the input space, denoted by TR−CG

TDBC
,

is consistently greater than 100. In consistency with the analysis of time complexity,
the proposed method is mainly affected by the support vectors while the R-CG is
affected by the size of dataset (see columns 2–3 of Table 3).

Data size # of SVs # of SCs TR−CG (sec.) TDBC (sec.)
TR−CG

TDBC

200 36 12 0.008294 0.000057 145.5

500 72 23 0.010069 0.000063 159.8

2 500 88 32 0.012641 0.000069 183.2

3 000 135 33 0.014629 0.000072 203.2

5 000 164 41 0.015235 0.000073 208.7

200 179 99 0.015650 0.000080 195.6

500 472 261 0.015303 0.000110 139.1

Table 3. Run-time for labeling one data point by R-CG [5] vs. the DBC

The final interest of our experiments is to show the performance of “DBC”
on three high-dimensional data sets. To do this, we set the comparison only with
R-CG [5] for too much time consumptions required by the others. The data sets,
iris and wine, are 150 4-dimension and 178 13-dimension, respectively. The wiscon-
sin consists of 683 9-dimensional feature values from two classes after removing the
16 samples with missing feature values. For the purpose of evaluating performance
on large-scale datasets, we extend the three data sets by a convex combination
within each class proportionally. The experimental results are detailed in Table 4
where the column of “proportion” is the proportion of the number of different class.
Although the three data sets are not completely linearly separable, these evalua-
tions are conducted without any additional preprocesses. From columns 6 to 9 of
Table 4, the evidence that the relationship of one to many exists between class and
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Data sets
data set description # of SCs # of Spheres Time cost(sec.) Error rate (%)

dims size proportion classes R-CG DBC R-CG DBC R-CG DBC R-CG DBC

iris 3

100 1-1-0 2 2 2 2 2 2.5 0.35 0 0
150 1-1-1 3 56 60 34 33 4.0 5.9 6 2

2 700 1-1-2 3 40 39 7 7 90.6 49.7 1.73 1.73
5 000 1-1-0 2 2 3 2 2 115.9 2.0 0 0

18 750 000* 1-1-0 2 – 2 – 2 – 889.1 – 0

wisconsin 9
683 458-225 2 59 11 59 8 28.2 6.5 3.95 3.22

4 000 1-1 2 444 19 266 2 456.4 49.3 0.03 0.07

237 473* 3.4-1 2 – 11 – 8 – 17.8 – 0

wine 13
178 59-61-48 3 65 3 55 3 9.5 1.3 0.56 3.37

3 000 1-1-1 3 965 425 684 418 716.9 239.5 11.13 9.57

Note: “*” denotes semi-supervised clustering, “–” means not available.
The size of labeled data points are 20 and 100 for iris and wisconsin , respectively.

Table 4. Cluster labeling time (sec.) and error rate (%) for high-dimensional data sets with different sizes
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Fig. 6. Comparison of run-time among various SVC cluster labeling methods (left coor-
dinate system) and changes of the number of SVs and SCs along with the size of
samples increasing (right coordinate system)

spheres, sphere and cells can be found. The bold italic values highlight the following
characteristics of the proposed method:

• The speed of the proposed method outperforms the R-CG algorithm [5] in deal
with large-scale datasets. A fine adjustment of hyper-parameter C, lessening
the profile [2], could make this better.

• Since only the support vectors are employed to search the SCs, the proposed
method avoids too many local minimums effectively. In contrast, the great
number of SCs found by R-CG (see column 6 of Table 4), especially for wisconsin
and wine, slows the procedure of cluster labeling down seriously.

• By employing the semi-supervised clustering method proposed in Section 3.2.3,
experiments on the expanded data set of iris and wisconsin show that the
proposed double centroids mode is suitable for replacing the cells in cluster-
ing.

• To get a comparable error rate, the proposed algorithm shows significant ad-
vantages in both computational savings and describing the profile for large-scale
datasets.
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In summary, experimental results on the benchmark data sets confirm that the
proposed method indeed accelerates the support vector clustering for large-scale
datasets. Especially, for the data sets with stable profiles, the proposed method
would outperform the traditional clustering algorithms significantly. Meanwhile,
any cell of clusters can be well represented by shape centroid and density centroid.

5 CONCLUSION

In this study, a novel scheme for accelerating support vector clustering for han-
dling large-scale datasets is proposed. The proposed scheme consists of two phases:
a preprocessing of noise elimination and a double centroids labeling algorithm.

In the first phase, our studies discover the differences between the noise data
points and the outliers in both the sparse distribution and the grade of different
memberships. In view of these characteristics, a novel noise elimination algorithm is
proposed to enhance the separability of a data set and dramatically reduce its size.
With the removal of noise data points, a much clearer and smoother profile for each
cluster can be obtained. Actually, one cluster may have several disconnected cells of
imbalanced distribution. Therefore, in the second phase, we define a shape centroid
and construct a density centroid to represent each cell of clusters. According to the
analysis of convex hulls, we find that the distance between the shape centroid and
the density centroid benefits the reflection of the degree of imbalanced distribution
of a data set. Thus a double centroid labeling algorithm is presented which uses
support vectors to locate the shape centroid, construct the density centroid and find
connected components. In consideration of the different contributions of the two
centroids, the proposed algorithm measures the difference by two weights calculated
by solving a linear programming problem. Through a weighted distance measured
in the input space, from data point to each cell, the remaining data points are
assigned by the indexes of their nearest cells respectively. Compared with the state-
of-the-art algorithms, both theoretical analysis and experimental results show that
the proposed scheme is robust and efficient in dealing with large-scale datasets,
especially for the data sets with strongly separable characteristic. Furthermore, the
double centroids model is suitable to represent cell of clusters for the purpose of
clustering for much more large-scale datasets in semi-supervised mode.

Lack of an accurate mechanism to disclose the structure or profile of any data
set, an approach of the proposed method which can control the size of points (in-
dependent with support vectors) for drawing the profile besides tuning the hyper-
parameter C remains to be investigated.
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