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Abstract. A longest increasing subsequence problem (LIS) is a well-known com-
binatorial problem with applications mainly in bioinformatics, where it is used in
various projects on DNA sequences. Recently, a number of generalisations of this
problem were proposed. One of them is to find an LIS among all fixed-size windows
of the input sequence (LISW). We propose an algorithm for the LISW problem based
on cover representation of the sequence that outperforms the existing methods for
some class of the input sequences.
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1 INTRODUCTION

The problem of finding a longest increasing subsequence (LIS) in a sequence of
integers is to find a longest subsequence (subsequence is obtained from a sequence
by removing zero or more symbols) that symbols are increasing.1 It is a well-known
combinatorial problem with applications in bioinformatics. It was used in MUMmer

1 Note that there may be many subsequences satisfying the problem requirements, since
only the LIS length is unique.
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project to make an alignment of whole genomes [12, 13, 24]. In [18] an application
in preparing gene maps were given. The LIS problem was used in Celera Genomics
to discover new genes [32]. In [25] a discussion on applications of this problem in
preparing probes for virus identification can be found. The problem was also used
to discover relationships in databases [19]. An algorithm for the LIS problem can
be also used to solve the longest common subsequence (LCS) problem [21] and to
compute cliques in permutation graphs [20, p. 159].

There are a lot of research on LIS properties. In 1935, Erdös and Szekeres proved
that in any integer sequence of unique symbols of length n there is a decreasing or
increasing subsequence of length at least n1/2 [17]. Further research culminated
in 1999, when Baik et al. proved that the LIS expected length is 2n1/2−Θ(n1/6) and
a standard deviation is Θ(n1/6) [4]. Intermediary results are summarised in a survey
paper [2]. The fastest algorithms solving the LIS problem, for a comparison model
of computation need O(n log `) time [27, 21], where ` is the result length, which is
known to be a lower bound of time complexity in this model. O(n log log n) time
complexity is possible [22, 6] if the input sequence is a permutation of integers from
range [1, n] and a more permissive WordRAM model is allowed.

Recently, a number of variants of this problem, motivated by various reasons,
were formulated. In a minimal/maximal weight/height/sum LIS problem [29, 10],
some extremal LISs are looked for. In a slope-constrained LIS problem [30, 11], the
symbols of the resulting subsequence must grow rapidly. Conversely, in a longest
almost-increasing subsequence problem [16], some symbols in the output sequence
may be smaller than the largest of previous symbols by some (usually small) con-
stant. In a longest increasing cyclic subsequence problem (LICS), the result is
a longest LIS among all cyclic shifts of the input sequence [1, 9, 11].

Finally, in a longest increasing subsequence in a sliding window (LISW) problem,
the problem the paper is about, an LIS in any window of fixed size in an input
sequence is considered [3]. This problem can be defined in four ways:

• find the length of a longest LIS among all windows of size u,

• find the above-specified subsequence,

• for each window of size u, find the length of an LIS in it,

• for each window of size u, find an LIS in it.

In this paper, we consider the first two variants. The LISW problem is a generali-
sation of the LICS problem, since to compute an LICS for a sequence A of length n
it suffices to solve the LISW problem for sequence AA (i.e., a concatenation of two
A sequences) and window size n.

For the LISW problem, Albert et al. proposed an algorithm based on Young
tableau representation of the sequence [31] working in O(n log log n + n`) time in
the worst case [3], where ` is the result length. This time complexity was then
improved to O(n`) [7]. Recently, Tiskin presented an algorithm for some related
problem [28]. When adapted to the LISW problem, it is of the worst-case time
complexity O(n log2 n).
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We propose an algorithm based on cover representation of some windows of the
input sequence. (A cover is a list of decreasing lists containing all symbols from
a sequence, where each sequence symbol belongs to exactly of the decreasing list.)
The covers are then merged to obtain covers for some windows, which we prove to be
the only candidates to contain the result. In our algorithm, various data structures
to represent the covers can be used. We examine three possibilities and show that the
worst-case time complexity for our best variant is O(n log log n+min(n`, nd`3/ue)×
logdu/`2 + 1e), which is better than Tiskin’s result if ` = o

(
u1/3 log2/3 n

log1/3 u

)
.

The idea of using a cover-based representation of a sequence to solve some LIS-
related problems was formulated in our recent paper [9]. We considered in it the
LICS problem in which a working cover all the time represents almost the whole
input sequence (in various rotations). Here, for the LISW problem, it is necessary
to represent as a working cover only a small part of the input sequence at a time
and to insert symbols to this cover in a different way than for the LICS problem.
The choice of the parameters of the data structures used in the examined cover
representations is also different.

Algorithms solving the LISW problem could be applied to a system for prepa-
ration of probes for virus identification [25]. The most time-consuming part of this
system is verifying how probe candidates (DNA sequences of length of tens nu-
cleotides) are similar to the sequences from a database. In this verification, the
probe candidates are obtained from some sequence by sliding a fixed-size window
over it. Then, for each candidate probe and each sequence from a database an in-
teger sequence is constructed and an LIS in this sequence is computed. Since the
window is slided by a few nucleotides a time, the probe candidates overlap and a lot
of work is repeated. This problem can be partially solved by computing an integer
sequence for the ‘probe’ sequence and the sequence from the database and then us-
ing an LISW-computing algorithm. The LICS problem, a special case of the LISW
problem, also appears in bioinformatics when working on circular genomes [8].

The paper is organised as follows. Section 2 contains the necessary definitions. In
Section 3, an LIS-computation algorithm based on cover representation is presented.
Section 4 contains description of the main concepts of the proposed algorithm for
the LISW problem. In Section 5, implementation details and complexity analysis
are presented. Last section concludes the paper.

2 DEFINITIONS

Let A = a1a2 . . . an be a sequence composed of unique symbols over an integer
alphabet Σ ⊂ Z. A sequence A′ is a subsequence of A if it can be obtain from A
by removing zero or more symbols from any positions, i.e., A′ = ai1ai2 . . . aik , where
1 ≤ i1 < i2 < · · · < ik ≤ n. A continuous subsequence of A is a subsequence that can
be obtained from A by removing zero or more symbols from the beginning and/or
from the end, i.e., A′ = aiai+1 . . . ai+k, where 1 ≤ i ≤ n− k. The longest increasing
subsequence (LIS) problem for A is to find a longest subsequence A′ = ai1ai2 . . . ai`
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such that 1 ≤ i1 < i2 < · · · < i` ≤ n and ai1 < ai2 < · · · < ai` . The notation Aj
i

means aiai+1 . . . aj if i ≤ j and an empty sequence otherwise. A window of size u
is a continuous subsequence composed of u symbols. For a given window size u
and a sequence A, the longest increasing subsequence in a sliding window (LISW)
problem is to find a longest LIS among all Ai+u−1

i , where 1 ≤ i ≤ n − u + 1. The
length of the result will be denoted by `.

3 LONGEST INCREASING SUBSEQUENCE COMPUTATION

One of the popular ways of computing an LIS for a sequence is to construct for it
a greedy cover [21] and read the result from it. (Since the algorithm proposed in
this paper for the LISW problem relates on the cover representation of a sequence,
we firstly discuss the cover-based solving of the LIS problem.) Let us now start from
some definitions.

Definition 1. A cover of a sequence A is an ordered set of lists containing de-
creasing subsequences of A. Each symbol of A belongs to exactly one list of the
cover.

Definition 2. A cover size is a number of lists the cover is composed of.

A cover of sequence A is denoted by C(A). Cover lists are numbered from 1,
and C(A)[k] is kth list of the cover for A.

Definition 3. A cover C(A) is called greedy iff for each sequence symbol ai, where
1 ≤ i ≤ n holds: ai belongs to C(A)[ki], where ki is the LIS length for a1a2 . . . ai.

We deal only with greedy covers, so for brevity of presentation we always write
‘cover’ instead of ‘greedy cover’ in the rest of the paper. A cover is constructed by
Cover-Make algorithm (Figure 1) [21]. The algorithm processes successive symbols
and for each one finds in the current cover the leftmost list that can be extended by
the current symbol. If there is no such list, the current symbol starts a new list in
the cover. A proof is made as follows:

1. a greedy cover is obtained,

2. its size is the LIS length,

3. a greedy cover is unique,

4. a greedy cover is a cover of minimal size [21].

An example of the algorithm in work is given in Figure 2.
It is easy to obtain an LIS from a cover representation of a sequence. It suffices to

start from any symbol of the last list of the cover and in a loop jump to the largest of
smaller symbols than the current one in the left neighbour list. The visited symbols
form an LIS read from the end. A proof that LIS-Read algorithm (Figure 3) returns
LIS can be found e.g. in [21].
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Cover-Make(A)

1 C ← empty list containing decreasing lists
2 for i← 1 to n do
3 k ← smallest list index of C, which tail symbol is larger than ai
4 if k exists then
5 Append ai to the end of list C[k]
6 else
7 Create new list containing ai and append it to the end of C
8 return C

Fig. 1. Greedy cover making algorithm of the sequence

8 8 8 8 8 8

8 8 8 8 8 8

3 3 3 3 3

3 3 3 3 3 3

4 4 4 4

4 4 4 4 4 4

1 1 1

1 1 1 1 1 1

11 11

11 11 11 11 11 11

2

2 2 2 2 2 27 7 7 7 7 7

9 9 9 9 9

5 5 5 5

12 12 12

10 106

Fig. 2. Example of Cover-Make algorithm finding cover of A = 8 3 4 1 11 2 7 9 5 12 10 6. The
just placed elements are gray. The lists are vertical

Time complexity of Cover-Make algorithm depends on the way the list to extend
is looked for. It is easy to see that the trailing symbols of the lists are ordered
increasingly. Thus, they can be stored in an ordered array and a binary search over
this array allows to find the list to extend in O(log `) time. The same complexity
can be obtained if the trailing symbols of the lists are stored in a balanced binary
search tree, e.g., red-black tree. In these cases, the time complexity of Cover-
Make algorithm is O(n log `). If the input sequence is a permutation of unique
integers from the range [1, n], then van Emde Boas trees [14, 15] can be applied
to determine the list to extend and the time complexity of the algorithm becomes
O(n log log n). In all cases, the space complexity is Θ(n). The time complexity of
LIS-Read algorithm is O(n).

LIS-Read(C)

{C is a greedy cover of sequence A}
1 `← |C|
2 s` ← any symbol of C[`]
3 for i← |C| − 1 downto 1 do
4 si ← largest symbol of C[i] smaller than si+1

5 return s1s2 . . . s`

Fig. 3. An algorithm reading LIS from the cover produced by Cover-Make algorithm
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4 MAIN CONCEPTS OF THE PROPOSED ALGORITHMS

In [9], we proposed Cover-Merge algorithm (Figure 4)2 as a fast way of obtaining
a cover for a continuous subsequence if two covers for subsequences that concate-
nated give this continuous subsequence are known. This utility is useful in the
algorithm proposed below. Let us now remember two definitions and a lemma
from [9].

Cover-Merge(C ′, C ′′)

1 for i← 1 to |C ′′| do
2 if starting element of C ′′[i] is larger than ending element of C ′[|C ′|] then
3 Append to C ′ an empty list
4 j ← |C ′|
5 while C ′′[i] is not empty and j > 1 do
6 Find largest symbol s in C ′′[i] smaller than symbol ending C ′[j − 1]
7 Move symbols larger than s from C ′′[i] to C ′[j]
8 j ← j − 1
9 Append the remaining part of list C ′′[i] (if it is not empty) to C ′[1]

10 return C ′

Fig. 4. A general scheme of the cover merging algorithm. (If there is no such a symbol s
in line 6, all symbols are moved in line 7.) [9]

Definition 4. A cover read of a sequence for a sequence A, denoted by R(A), is
a concatenation of successive decreasing lists forming cover C(A).

For example, in Figure 2, a cover for sequence A = 8 3 4 1 11 2 7 9 5 12 10 6 is
shown. The cover read for it is R(A) = 8 3 1 4 2 11 7 5 9 6 12 10.

Definition 5. The symbols heading lists of cover C(A) for sequence A are called
stop points for A.

Lemma 1. (Lemma 1 in [9]) Let sequence A be concatenation of A′ and A′′, i.e.,
A = A′A′′. The cover of A′A′′ is identical to the covers of R(A′)R(A′′) and of
A′R(A′′).

Proof. See [9]. �

For easier understanding of the proposed algorithm for the LISW problem, it is
convenient to assume that in the first stage covers are computed for the following

continuous subsequences: Au
1 , Au+u

u+1 , . . . , Aiu+u
iu+1 , . . . , A

dn/u−1eu+u
dn/u−1eu+1 (for simplicity, we

2 There is a small mistake in the caption of the pseudocode in [9]. The claim ‘If there
is no such a symbol p in line 06, no symbols are moved in line 07.)’ should be ‘If there is
no such a symbol p in line 06, all symbols are moved in line 07.)’, which is corrected in
this paper.
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assume that n is an integer multiplicity of u, but a generalisation is easy). The LIS
length for Aiu+u

iu+1 will be denoted as `i. Now we need some lemmas.

Lemma 2. An LIS length in any window of size u in Aiu+2u
iu+1 is not larger than

`i + `i+1.

Proof. The proof is immediate. It suffices to note that the LIS length in Aiu+2u
iu+1

must be not larger than `i + `i+1, so the LIS length in any continuous subsequence
of that sequence cannot be larger. �

Lemma 3. Let us consider a continuous subsequence of double-window size, Aiu+2u
iu+1 .

For each window Aiu+u+k
iu+1+k of size u in it (0 ≤ k ≤ u), a symbol heading the last list

of the cover for this window is either a stop point of the rightmost window of Aiu+2u
iu+1 ,

i.e., A
(i+1)u+u
(i+1)u+1 , or a symbol from the leftmost window, Aiu+u

iu+1 .

Proof. From Lemma 1 we know that

C(Aiu+u+k
iu+1+k ) = C(Aiu+u

iu+1+kR(Aiu+u+k
iu+u+1)).

The Cover-Make algorithm constructing a cover for Aiu+u+k
iu+1+k at the beginning com-

putes cover C for Aiu+u
iu+1+k. Then, it can extend C by successive symbols of lists of

C(Aiu+u+k
iu+u+1). Each symbol heading any of these lists is a stop point for A

(i+1)u+u
(i+1)u+1

and may be appended to some list in C or may start a new list in C. Because the
symbols in lists of the appended cover are decreasing, only a stop point may start
a new list in C. From this, we know that the last list of the final cover is headed by

a stop point of A
(i+1)u+u
(i+1)u+1 or a symbol from Aiu+u

iu+1+k. �

Lemma 4. The LISW length for sequence Aiu+2u
iu+1 and window size u is the largest

value of: the LIS length for every window Aiu+u+k
iu+1+k , where 1 ≤ k ≤ u, ended at a stop

point of A
(i+1)u+u
(i+1)u+1 or the LIS length for Aiu+u

iu+1 .

Proof. From Lemma 3 we know that the head of the last list of a cover for any

window of size u in Aiu+2u
iu+1 is a stop point for A

(i+1)u+u
(i+1)u+1 or a symbol from the leftmost

window, Aiu+u
iu+1 . If it is a symbol of Aiu+u

iu+1 , then an LIS in this window ending at that
symbol consists only of symbols from Aiu+u

iu+1 and a longest LIS for such symbols can
be found in Aiu+u

iu+1 .
If the symbol heading the last list of the cover for the considered window is a stop

point for A
(i+1)u+u
(i+1)u+1 , then it is the last symbol of an LIS in that window. For any

such a stop point aj, a longest increasing subsequence ending at aj for all possible
windows of size u can be found in Aj

j−u+1. �

According to the above lemmas we can construct LISW-Range algorithm (Fi-
gure 5) finding an LISW in a continuous subsequence Aiu+2u

iu+1 for window size u.

The algorithm starts from cover C ′′ = C(A
(i+1)u+u
(i+1)u+1) and removes from it the trailing

symbols of A
(i+1)u+u
(i+1)u+1 until some stop point is found. Then, it constructs cover C ′
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and merges covers C ′ and C ′′ using Cover-Merge algorithm. In this way, we obtain
a cover for the window ending at a stop point. In this cover, the LIS length is
determined and it is verified whether we have a new best LISW length. Then, the
procedure is repeated until next stop point is visited. Finally, it is verified whether
the LIS length for the leftmost window of the current range is better or not. Relating
on Lemma 4 we can conclude:

Corollary 1. Algorithm LISW-Range correctly computes the LISW length and the
index of the last symbol of LISW in a continuous subsequence of double-window size.

An example of algorithm LISW-Range in work is shown in Figure 6.

LISW-Range(A, i, C left, Cright)

1 C ′′ ← Cright; j ← (i + 1)u + u
2 if aj is a stop point in Cright then `← |C ′′|; s← j else `← 0; s← 0
3 Remove aj from C ′′

4 for k ← (i + 1)u + u− 1 downto (i + 1)u + 1 do
5 if ak is a stop point in Cright then

6 C ′ ← Cover-Make(Aj−u
k+1−u)

7 C ′′ ← Cover-Merge(C ′, C ′′) {Computes C(Ak
k+1−u) by merging C ′, C ′′}

8 if ` < |C ′′| then `← |C ′′|; s← k
9 j ← k

10 Remove ak from C ′′

11 if ` < |C left| then `← |C left|; s← (i + 1)u
12 return `, s

Fig. 5. A general scheme of the algorithm computing LISW in a range of width twice as
large as window size

The LISW length and an index of LISW last symbol in the whole sequence
can be obtained by running LISW-Range algorithm for each i = 0, 1, . . . , dn/ue − 2
(Figure 7). Let us note that if we know the index of the last symbol of LISW, we
can easily construct the cover for window ending at that symbol and read an LISW.
This needs O(u log log n) time, which is negligible.

Theorem 1. LISW algorithm (Figure 7) computes the LISW length and the index
of LISW last symbol in input sequence A = a1a2 . . . an for window size u.

Proof. LISW-Range algorithm computes the LISW length and the index of its last
symbol for sequence Aiu+2u

iu+1 . This algorithm is executed for each 0 ≤ i ≤ dn/ue − 2,
so each window of size u of An

1 is considered in some execution of LISW-Range.
From the obtained results the longest one is taken, so it must be the LISW length.
Moreover, also the index of the last symbol of an LISW is found. �
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Initial stage
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C (A 12
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Fig. 6. Example of LISW-Range algorithm finding an LISW for A = 8 3 4 1 11 2 7 9 5 12 10
6 and u = 6. There are a few stages: initial (at the beginning of the algorithm) and
after visiting each stop point. Some symbols of the sequence are lowered to show the
current window position. In the initial stage, both input covers C left and Cright are
shown. The gray cells show the symbols that just came to the window since last stop
point: for them cover C ′ is constructed (cover at left side). The middle covers are C ′′

before merging and the right covers – C ′′ after merging

LISW (A)

1 `← 0; s← 0
2 Cright ← Cover-Make(An

n−u+1)
3 for i← dn/ue − 2 downto 0 do

4 C left ← Cover-Make(Aiu+u
iu+1)

5 `′, s′ ← LISW-Range(A, i, C left, Cright)
6 if `′ > ` then `← `′; s← s′

7 Cright ← C left

8 return `, s

Fig. 7. A general scheme of the algorithm computing LISW length

5 IMPLEMENTATION DETAILS AND COMPLEXITY ANALYSIS

According to Definition 1, a cover is composed of decreasing lists; nevertheless, this
is only a concept. An internal organisation of a cover may be various, e.g., for the
Cover-Make algorithm it does not matter how the cover is internally stored and it is
possible to store it as an array without affecting the time complexities. For Cover-
Merge algorithm, the internal representation is important since the algorithm splits
and joins the ‘lists’.

In [9] and [10], three internal representations were proposed. Below we examine
each of them for the current problem, but firstly let us specify the time complexity
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formula of LISW-Range algorithm relating to the formulas introduced for the LICS
problem [11]:

τi = uτdel +

nstop
i∑
j=1

(
τbuild(nj) + τfind(nj) +O(min(nj, `)`)

(
τ split + τ join

))
, (1)

where:

• nstop
i – number of stop points for A

(i+1)u+u
(i+1)u+1 , upper bounded by `i+1,

• nj – number of symbols between jth and (j + 1)th stop point for A
(i+1)u+u
(i+1)u+1 ; by

definition (nstop
i + 1)th stop point is the last symbol of A

(i+1)u+u
(i+1)u+1 ,

• τdel – time complexity of removal of a single symbol from cover,

• τbuild(nj) – time complexity of cover construction for nj symbols,

• τfind(nj) – total time complexity of finding split points in cover lists in a single
merging,

• τ split – time complexity of splitting a single cover list,

• τ join – time complexity of joining two cover lists.

A justification of formula (1) is as follows. Exactly u times we need to remove
a single symbol from the cover (time τdel per symbol). LISW-Range algorithm calls
Cover-Merge procedure Θ(nstop

i ) times. Before each merging, cover C ′ is constructed
from nj symbols. Before the lists are split it is necessary to find the split points
(total time τfind per single execution of Cover-Merge algorithm). Then, the lists are
split and merged, and the total number of times these operations are performed is
a multiple of the sizes of the merged covers, |C ′| × |C ′′|, [9, Lemma 5].

Considering the time complexity of LISW algorithm we should also take into
account that we must construct a cover for each Aiu+u

iu+1 , where 0 ≤ i < dn/ue. The
time complexity of computing such a single cover is denoted by τ init, so the total
time complexity of LISW algorithm can be expressed as:

dn/ue−1∑
i=0

(
τ init + τi

)
. (2)

The actual values of the above terms depend on the internal cover representation
and are determined below.

5.1 List-Based Cover Representation

In the list-based cover representation, time complexity of removal of a single symbol
from a cover is τdel = O(1) due to an auxiliary array of pointers to the symbols on the
lists (we can rapidly localise the list the symbol is part of). The cost of maintaining
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this array is constant per element and has no influence on the total time complexity
of the algorithm. (The same holds for the remaining ways of cover representation.)
The time complexity of construction of small covers, τbuild(nj) = O(nj log `). The
time complexity of finding split points is τfind(nj) = O(min(nj, `)`+u) (by the same

arguments as in [9]). Obviously,
∑nstop

i
j=1 nj ≤ u. Moreover, τ split = τ join = O(1) and

τ init = O(u log `). Putting this values to (1) we obtain:

τi = uO(1)

+

nstop
i∑
j=1

(O(nj log `) +O(min(nj, `)`+ u) +O(min(nj, `)`)(O(1) +O(1)))

= O(u) +O(u log `) +O(min(u`, `3)) +O(u`) +O(min(u`, `3)) = O(u`). (3)

From (2) we have:

Corollary 2. Time complexity of LISW algorithm for list-based cover representa-
tion is:

dn/ue−1∑
i=0

(O(u log `) +O(u`)) = O(n`). (4)

5.2 Balanced-Tree-Based Cover Representation

In the variant with representation of cover as a list of balanced search trees, time
complexities of components of the algorithm are:

τdel = τ split = τ join = O(log u),

τbuild(nj) = O(nj log `),

τfind(nj) = O(min(nj, `)` log u),

τ init = O(u log `).

So, according to (1) we have

τi = uO(log u) +

nstop
i∑
j=1

(O(nj log `) +O(min(nj, `)` log u)

+ O(min(nj, `)`)(O(log u) +O(log u)))

= O(u log u) +O(u log `) +O(min(u`, `3) log u) +O(min(u`, `3) log u)

= O(u log u+ min(u`, `3) log u) = O(min(u`, u+ `3) log u). (5)
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From (2) we conclude:

Corollary 3. Time complexity of LISW algorithm for balanced-tree-based repre-
sentation of the cover is:

dn/ue−1∑
i=0

(
O(u log `) +O(min(u`, u+ `3) log u)

)
= O

(
min

(
n`, n

⌈
`3

u

⌉)
log u

)
. (6)

5.3 List-of-Balanced-Tree-Based Cover Representation

Which of the two above-described cover representations is better depends on the
LISW length. Since it is rather easy to bound it for each double-window-size range
on the LIS lengths of leftmost and rightmost window (Lemma 2) we can always
choose the right representation for the range. It is possible, however, to propose one
more cover representation, which shares the assets of the two above-described ones
in one data structure.

The idea is to store each cover list as an ordered list of balanced search trees
(e.g., red-black trees) of size Θ(e) [11], which will be determined later. Moreover,
each tree is accompanied with a single variable storing its minimal value, so it is
accessible in a constant time.

For this representation, time complexities of algorithm components are:

τdel = τ split = τ join = O(log(e+ 1)),

τbuild(nj) = O(nj log log n),

τfind(nj) = O(min(nj, `)` log(e+ 1) + u/e+ `),

τ init = O(u log log n).

When we put these values to (1) and (2) we obtain:

τi = uO(log(e+ 1)) +

nstop
i∑
j=1

(O(nj log log n)+ O
(

min(nj, `)` log(e+ 1) +
u

e
+ `
)

+O (min(nj, `)`)(O(log(e+ 1)) +O(log(e+ 1)))

= O(u log(e+ 1)) +O(u log log n) +O

(
min(u`, `3) log(e+ 1) +

u`

e
+ `2

)
+O(min(u`, `3) log(e+ 1))

= O

(
u log log n+ min(u`, u+ `3) log(e+ 1) +

u`

e

)
(7)

and the total time complexity of LISW algorithm:∑dn/ue−1
i=0

(
O(u log log n) +O

(
u log log n+ min(u`, u+ `3) log(e+ 1) + u`

e

))
= O

(
n log log n+ min

(
n`, n

⌈
`3

u

⌉)
log(e+ 1) + n`

e

)
. (8)
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Calculating a derivative of the above complexity and equalling it to 0, it can be
found that this value is minimal for e = Θ(du/`2e). Therefore, the time complexity
of this variant is

O

(
n log log n+ min

(
n`, n

⌈
`3

u

⌉)
log
⌈( u
`2

+ 1
)⌉)

. (9)

The value of e may be determined up to the factor 4 relating on Lemma 2 if at
the initial stage of the algorithm the LIS length will be determined for every Aiu+u

iu+1 ,
where 0 ≤ i ≤ dn/ue − 1. This does not affect the total time complexity of the
algorithm.

The last question is how to update the trees in the lists without influencing the
time complexity of the algorithm. Particularly, we have to be sure that after each
operation on the list of balanced search trees, i.e., splitting, removing a symbol,
joining, each tree is of size Θ(e). (The only exception is for a cover list containing
less than Θ(e) symbols, for which the cover list is composed of a single tree.) To
assure that, we require that each tree contains always [e, 2e] symbols. After each
removal of a symbol from a tree (in O(log(e + 1)) time), it is verified whether the
tree size is less than e. If such a case occurred, this tree is joined with one of the
neighbour trees in the list (in O(log(e + 1)) time) and we obtain the tree of size in
the range [e, 3e]. Then, if necessary, i.e., if the tree size is larger than 2e, the tree
is split into two roughly equal-size trees in order to the size of each of the resulting
trees is in the range [e, 2e]. For this task, it may be necessary to find a median
of the elements in a tree. To find a median rapidly, each node of the tree must
be augmented by an additional field containing number of elements in the subtree
rooted at the that node. The data in these additional fields can be updated without
influence on the time complexity of other operations on the tree [23, 5, 26]. Time
complexity of the above-described tree-size normalisation is O(log(e+ 1)), which is
exactly the same as the time of removal of a single element of the tree, so it does
not matter in time complexity analysis.

Similarly, the trees are normalised after split and join operations. After each
split we obtain two trees. One of them is moved to the other cover list. In both
cover lists, it is checked whether the obtained tree is of proper size. If not, it is
joined with the neighbour tree and eventually, the joined tree is split. The time
complexity of this normalisation is O(log(e + 1)), so it does not influence the time
complexity of raw split and join operations. From the above, we can conclude that
it is possible to assure that each tree is of size in the range [e, 2e] without influencing
the time complexity of the algorithm. Therefore:

Corollary 4. Time complexity of LISW algorithm for the list-of-balanced-trees
cover representation is

O

(
n log log n+ min

(
n`, n

⌈
`3

u

⌉)
log
⌈( u
`2

+ 1
)⌉)

. (10)
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It can be noticed that none of the previous variants, i.e., list-based and balanced-
trees-based, is faster, in terms of the worst-case time complexity, than the list-of-
balanced-trees-based variant. Previous variants are easier to implement, so the
result length can be estimated. To this end, it is necessary to compute LIS for
all windows Aiu+u

iu+1 for all valid i in total time O(n log `) and then to estimate `
according to Lemma 2 up to factor 2, so the faster of the list-based and balanced-
trees-based algorithm can be chosen. In all cases, it will be at most as fast as the
list-of-balanced-trees-based algorithm.

6 CONCLUSIONS

We presented three variants of the algorithm finding the LISW length and LISW
position in the input sequence. The variants differ in employed data structures,
which is reflected in the obtained time complexity. The time complexities of the
literature algorithms for the LISW problem are O(n log log n + n`) [3], O(n`) [7],
and O(n log2 n) [28].

The time complexity of the list-based variant is the same as of the second men-
tioned algorithm and better than the first one. Our best variant (list-of-balanced-
tree-based cover representation) is faster if

` = o
(
u1/2/ log1/2 u

)
and not worse if

` = O
(
u1/2

)
.

Comparing our best variant of the worst-case time complexity O(n log log n +
min(n`, nd`3/ue) × logdu/`2 + 1e) to the most recent algorithm by Tiskin [28] we
are better if

` = o

(
u1/3 log2/3 n

log1/3 u

)
. (11)

It is, however, difficult to say which algorithm will be faster in practice, since the
constant hidden in the big-O notation could be large in all the existing algorithms.
The worst-case time complexities suggest that our algorithm could win if the window
size is much smaller than the input sequence and the resulting subsequence will not
be to long.

It is an open question what is the lower bound of the time complexity for this
problem. We only know that it cannot be better than lower bound for the LIS
problem, because in such a case we could break the bound for the LIS problem by
setting u = n and using LISW-computing algorithm.
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