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Abstract. A dynamic population variation (DPV) in genetic programming (GP)
with four innovations is proposed for reducing computational effort and acceler-
ating convergence during the run of GP. Firstly, we give a new stagnation phase
definition and the characteristic measure for it. Secondly, we propose an exponen-
tial pivot function (EXP) in conjunction with the new stagnation phase definition.
Thirdly, we propose an appropriate population variation formula for EXP. Finally,
we introduce a scheme using an instruction matrix for producing new individuals to
maintain diversity of the population. The efficacy of these innovations in our DPV
is examined using four typical benchmark problems. Comparisons among the dif-
ferent characteristic measures have been conducted for regression problems and the
proposed measure performed best in all characteristic measures. It is demonstrated
that the proposed population variation scheme is superior to fixed and proportion-
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ate population variation schemes for sequence induction. It is proved that the new
DPV has the capacity to provide solutions at a lower computational effort com-
pared with previously proposed population variation methods and standard genetic
programming in most problems.

Keywords: Evolutionary algorithm, exponential pivot function, dynamic popula-
tion variation, instruction matrix, computational effort
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1 INTRODUCTION

Genetic programming (GP), based on the theory of biological evolution, extends
the representation of a genetic algorithm (GA) with a lisp-tree structure. Koza [1]
put forward both the original form of genetic programming, in which the genotype
and the phenotype are both parser trees, and automatically defined function-GP
(ADF-GP) for more complex system modeling. In the latter [2], a sub-program or
sub-module evolves during the operation run of a GP to implement a sub function.
It was proved by many researchers to be a feasible tool for solving problems in many
fields such as complex system modeling [3, 4], automatic design and optimization of
combinatorial circuits [5, 6, 7, 8], pattern recognition [9] and robotics research [10,
11]. One of the main drawbacks of standard type GP is that a large amount of
computational effort is often required to address complex modeling problems. Com-
putational effort is calculated as the number of fitness evaluations needed to find
a solution of a problem with 99 % probability as presented by Koza. Koza’s concept
of computational effort I(M, i, z) and three methods for producing a confidence in-
terval for the computational effort are studied in [12]. Other research focuses on the
conjunction of computational effort and steady-state algorithms instead of standard
GP. It is believed that it is possible to reduce the difference between a theoretical
effort value and the measured one with this approach [13].

Various researchers have investigated the effects of population size on the GP
algorithm and have reported the relationship between population size and com-
putational effort. A variable population-size genetic algorithm (VPGA) technique
which introduces a “dying probability” for the individuals was proposed [14] and it
is similar to the plague operator introduced in [15]. Population variation methods
(PV) have been proposed for reducing computational effort [16, 17, 18]. They can
be classified in two categories. One is static population variation (SPV), such as
PV-R, PV-I and PV-RAN, in which the size of the population is varied according to
various schemes and the population increment or decrement is constant during the
run of the GP system. The disadvantage of SPV is that the constant size variation
prevents the system from achieving fast convergence to a solution. The other class
is dynamic population variation (DPV), such as DIV, SUB and GRAD, in which
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the population is varied dynamically according to the stagnation phase definition
for GP and the pivot function. It is reported that these approaches can perform
satisfactorily in system modeling in terms of computational effort and they outper-
formed SPVs in most cases. DIV and SUB measured the stagnation phase by the
best performing individual and GRAD by the mean of high-performing individu-
als. However, neither measure fully reflects the actual situation during the run of
a GP system; the measurements are not exact. Therefore, how to exactly define the
stagnation phase in a GP system and its characteristic measure is a critical issue
in DPV. Population size variation is controlled by the pivot function, which is at
the core of the DPV technique. DIV, SUB and GRAD define their pivot functions
using division, subtraction and gradient. DIV and SUB perform poorly when us-
ing high-performing individuals as the measure of stagnation and GRAD when best
performing individual is used. Hence, finding an appropriate pivot function that
can exactly judge whether the GP system is in the stagnation phase is a signifi-
cant task for DPV. In addition, population variation and the increment/decrement
scheme also have great influence on performance of a DPV. We believe that by some
innovation for dynamic population variation, the computational effort for system
modeling problems can be further reduced and at the same time a system model
with high accuracy can be achieved.

Our aim is to present a novel dynamic population variation method in ge-
netic programming for computational effort reduction; this method can also pro-
vide a similar accuracy with other PV methods. The definition of computational
effort and previously proposed population variation genetic programming are briefly
introduced in Section 2. Section 3 describes our four innovations in dynamic popu-
lation variation. In Sections 4 and 5 the method is applied to six system mod-
eling problems including a regression problem, sequence induction, digital circuit
design and an artificial ant problem. The computational effort and average number
of evaluations for system modeling are compared with other methods and stan-
dard genetic programming. Implications of the current work are discussed in Sec-
tion 6.

2 POPULATION VARIATION

2.1 Computational Effort

The main aim of population variation methods in genetic programming is to reduce
the computational effort and possibly accelerate convergence towards a solution.
A method should perform at least as well as SGP for an unsuccessful run and better
for a successful run.

Computational effort (CE ) and average number of evaluation (AES ) are two
main measures for the efficiency of genetic programming. A lower computational
effort and a smaller AES are considered to be a favorable result. The computational
effort as defined in this paper can be expressed (1) as follows:
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Eg =
G∑

g=0

S(g) ·N (1)

where S(g) is the total number of individuals (the population size) at any genera-
tion g, N represents the number of sample points in an interval, and G represents
the convergence generations for a normal run.

AES to a solution is another efficient assessment for performance of GP as well
as CE, which is defined in [16]. In our study, ε is defined as AES before a successful
termination. The value to the run that cannot converge is not included in AES.
AES can be computed by Equation (2) as follows:

εg =
1

R
·

R∑
i=0

M∑
g=0

S(g) ·N,M < Gmax (2)

where R is the number of successful runs of GP, Gmax denotes the maximum number
of generations, and M is the generations for convergence in a successful run.

Success rate (SR) is another important assessment for performance of a GP
system. SR is defined as the rate of the number of the successful runs with the
number of all the normal runs shown as Equation (3):

SR =
ξ
′

ξ
(3)

where ξ
′

indicates the number of the successful runs and ξ represents the total
number of all the normal runs. It is believed that higher SR represents better
performance of PV methods.

2.2 Previous Approaches

First, we introduce three previously proposed SPVs [16]. They are population vari-
ation reduction (PV-R), population variation increment (PV-I) and random popu-
lation variation (PV-RAN).

In the PV-R scheme [16], the initial population size SPV(0) is larger than SGP
and the population S(g) in generation g is reduced during the run of GP linearly.
The computational effort at the end of the run is equal to that of SGP. The PV-I
scheme [16] starts off with an initial population size which is smaller than SGP and
the population is increased as the generations progress. In the PV-RAN scheme
[16], the population is randomly altered around a mean value around the initial size
SSGP(0) of SGP within a minimum and maximum range (Smin < S(g) < Smax).

In the PV-R, PV-I and PV-RAN schemes, SPV changes its population size at
a constant rate regardless of fitness variation. We believe constant variation is a se-
rious drawback of SPV because adding individuals will require computational effort
when the GP system has continuous improvements and removing individuals will
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make it harder for the GP system to converge to a solution when the improvements
are reduced.

DPV can counter the drawback of constant variation by dynamically control-
ling the size of the population for computational effort reduction [17]. The DPV
technique consists of five components. They are a stagnation phase which is a pe-
riod during which the improvement of the fitness is largely reduced in GP system,
a characteristic measure that is a measurement of the stagnation phase, a pivot
function which decides whether the new individuals need to be added, a population
variation scheme which controls the number of individuals added or removed and
a population increment/decrement scheme which is used to generate new individuals
and remove bad individuals [18].

Here, we will introduce three previously proposed DPVs [17, 18]. Let ∆ be
the general delta function between the characteristic measure φ of generation g and
generation g − 1. ∆ is defined as an assessment on the stagnation phase in GP
system, which can be expressed as ∆g = φg − φg−1.

The first DPV is referred to as DIV (division pivot function) [17] and the pivot
function is defined by Equation (4):

Pivot
<∆g−1,∆g>
DIV =

{
∆g−1

∆g
, if ∆g 6= 0

1, otherwise.
(4)

The second one is SUB (subtraction pivot function) [17] and is defined by Equa-
tion (5):

Pivot
<∆g−1,∆g>
SUB = ∆g−1 −∆g (5)

Let ∆S(g) be the population variation of DPV calculated by population vari-
ation scheme in generation g. If ∆g ≥ pivot; then ∆S(g) < 0 and the |∆S(g)|
bad performing individuals are eliminated. If ∆g < pivot; then ∆S(g) > 0 and the
∆S(g) new individuals generated by population increment/decrement scheme are
inserted into population.

It is noted that there exists an error in the DIV pivot function. For example, the
case ∆g = −0.2 and ∆g−1 = 3 implies the fitness improvement has reduced rapidly
in the problem and new individuals should be added to the population to counter
the reduction of improvement. However, according to the DIV pivot function: ∆g =

−0.2 > 3
−0.2

= ∆g−1

∆g
the GP system will be considered to be progressing in this

case and will continue removing individuals. For the SUB pivot function, a rapidly
improving fitness ∆g ≥ ∆g−1 · ·· ≥ ∆1 will lead to a large negative pivot value of
SUB. For example, with ∆g = 100 and ∆g−1 = 4, the pivot value is −96.

The third DPV technique GRAD “gradient pivot function” [18] is defined as
follows:

Pivot
〈∆g−1,∆g〉
GRAD = ∆g−1,

d∆g

dg
≥ d∆g−1

dg
. (6)
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The DIV, SUB and GRAD can use the best performing individual (BP), the
mean of high-performing individuals (HP mean) or the fitness upper quartile (UPQ)
as their characteristic measures of stagnation in a GP system. It was illustrated that
GRAD pivot function had better performance than DIV and SUB pivot functions
in a 4-bit even parity generator and a Boolean 6-symmetry problem using high-
performing individuals as characteristic measure.

3 EXP POPULATION VARIATION

Methods Type Characteristic
measure

Generic
population

Pivot
function

Variation
scheme

PV-R Static – Constant – Standard
PV-I Static – Constant – Standard
PV-RAN Static – Constant – Standard
DIV Dynamic BP, HP mean,

UPQ
Fixed Division Standard

SUB Dynamic BP, HP mean,
UPQ

Fixed Subtraction Standard

GRAD Dynamic BP, HP mean,
UPQ

Dynamic Gradient Standard

EXP Dynamic HP
mean & BP

Proportionate Exponent IM scheme

Table 1. Summary of various population variation methods

In this section, we investigate four innovations to the DPV technique, namely a new
definition of the stagnation phase along with the characteristic measure that relies
on a weighted sum of the BP and HP mean measures, an exponential pivot function
(EXP), an appropriate formula for the population variation and an instruction ma-
trix (IM ) scheme based on an estimation-distribution model [21, 22]. We conduct
a study on the effects of population variation using the new technique and discuss
and compare the performance of the new approach with other methods, both static
and dynamic. The details of the new approach and the comparison with other PV
methods are given in Table 1.

3.1 Stagnation Phase and Characteristic Measure

The stagnation phase of a GP system denotes a period during which the improve-
ment of the fitness is greatly reduced. When a GP system is considered to be in the
stagnation phase, it needs to add new individuals to the population to counter this
reduction.

DIV and SUB measured the stagnation phase by BP and GRAD by HP mean;
but neither BP nor HP mean can reflect the actual stagnation in the GP. When
BP has no improvements across several generations which may be considered as
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stagnation, the fitness of whole population may still make large progress. When
the HP mean has no improvements, the best performing individual may still make
significant progress to promote the evolution. Therefore, DPV methods cannot
perform well using only BP or HP mean as characteristic measure. We believe the
stagnation phase in a GP system should depend on the combination of BP and HP
mean. Our stagnation phase definition is that only when the combination of the
mean of BP and HP mean during the run is not making progress, the GP system
can be considered to be in the stagnation phase.

For example, let f best
i be fitness of BP and fi be fitness of HP mean in gene-

ration i. if f best
i > f best

j and fi < fj (i > j), then DIV and SUB will consider the
GP system to be progressing, while GRAD will consider the GP system to be in
the stagnation phase. According to our definition, if fi + f best

i > fj + f best
j , then

the system is making progress, else the system is in the stagnation phase. Figure 1
shows an example of our definition.
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Fig. 1. Average fitness of high performing individuals and best fitness versus generation-
maximum problem

To recognize the stagnation phase in GP, a characteristic measure is defined.
Three types of characteristic measures were proposed in [18]. They were based on
BP, HP mean and UPQ, which are defined by Equations (7), (8) and (9)

φg = f best
g (7)

φg =

∑
HP fg

SHP(g)
(8)

φg = upqg (9)

where fg indicates the fitness of an individual in the population at generation g and∑
HP fg is the sum of the fitnesses of high-performing individuals. SHP(g) represents

the number of individuals with performance in the top 50 %. According to our
stagnation phase definition, we propose a new characteristic measure, which can be



70 Y. Tao, M. Li, J. Cao

defined as (10):

φg = α ·
∑

HP fg
SHP(g)

+ β · f best
g (10)

where α and β represent the weights for the average fitness of HP and BP individu-
als, respectively. f best

g represents the fitness of the best individual in generation g.∑
HP fg denotes the top 50 % high-performing individuals sorted by fitness descend-

ing in generation g. SHP(g) indicates the number of
∑

HP fg.

3.2 EXP Pivot Function

The pivot function decides whether new individuals should be inserted into the
population or some poor individuals in population must be removed. Here, we
present an exponential pivot function (EXP) which is defined as follows:

Pivot
〈g,g+T−1〉
EXP = ∆g−1 · exp−|∆g | . (11)

The relationship expressed by Equation (12) is presented for EXP pivot function
as follows:

EXP : ∆g ≥ ∆g−1 · exp−|∆g | ⇒ ∆g · exp−|∆g | ≥ ∆g−1. (12)

It is noted that ∆g > 0 > ∆g−1 implies the population has ideal fitness improve-
ments and thus ∆g > pivotEXP always holds. The GP system will remove a small
number of individuals to reduce computational effort. ∆g < 0 < ∆g−1 implies the
population is in the stagnation phase and thus ∆g < pivotEXP holds. The GP sys-
tem will add new individuals to promote performance and accelerate convergence.
This illustrates that the EXP pivot function can add new individuals or remove bad
individuals correctly according to the actual situation of evolution.

It is expected that the DIV can perform better than EXP, SUB and GRAD for
the best performing individuals in terms of AES, because when the fitness improve-
ments for the best performing individuals normally diminish greatly ∆g � ∆g−1 �
· · · � ∆1, the pivot of DIV is most probably larger than other pivot functions, so
it adds new individuals to promote the fitness of the population and counter the
stagnation of evolution while the SUB, GRAD and EXP may still consider the GP
system to be progressing and continuously remove individuals. We are interested in
whether the EXP can outperform other DPVs using our stagnation definition and
characteristic measure.

3.3 Population Variation Scheme

An appropriate population variation scheme can be a benefit for the evolution by
low computational effort. A population variation scheme with constant parameters
was defined by (13) [17]:

∆S(g) =

{
0.2 % · S(g) ·∆g, ∆g < Pivot

−1 % · S(g) ·∆g, ∆g ≥ Pivot.
(13)
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It is noted that (13) is not correct because ∆g > 0 does not always hold. For
example, if ∆g = −2 and Pivot = 1, then ∆g < pivot and the evolution system should
increase individuals to deal with this case; but ∆g is a negative value calculated by
Equation (13) and in this case the system will remove individuals incorrectly.

Another dynamic population variation scheme without any empiric constant was
defined by (14) [18]:

∆S(g) = (−1)n · S(g) · |∆g −∆g−1|
foptimal

(14)

where n = 1, if ∆g ≥ Pivot; n = 2, if ∆g < Pivot. foptimal denotes the fitness of the
global solution of the problem. According to (14), if ∆g ' ∆g−1 > 0, ∆S(g) ' 0.
The population size change is so small that the effect of computation effort reduction
is not ideal.

We propose a novel proportionate population variation scheme for EXP defined
as follows:

∆S(g) = (−1)n · S(g) · 2|∆g|
f best
g + f best

g−1

, S(g) > Z (15)

where n = 1, if ∆g > Pivot; n = 2, if ∆g ≤ Pivot. Z is an empiric constant. If
∆S(g) ≤ Z, ∆S(g) is set to zero. This constraint is used to avoid the population
becoming too small. According to (15), size variation is smooth and size undergoes
a large change only when both f best

g and f best
g−1 have large variation.

3.4 IM Population Increment/Reduction Scheme

A standard scheme deployed for the population increment/reduction is described
as follows [18]: Given the set of N individuals T = {T1, T2, · · ·TN}. If the fitness
improvements are small, the m(m < N) best individuals are selected and mutated in
the next generation. If the performance of GP is progressing, the k worst individuals
will be washed out. This scheme destroys the diversity of the population since it
only keeps individuals which perform well. Maintaining or increasing diversity is
generally and conventionally considered as beneficial in GP [19, 20]. Therefore, we
investigate a new scheme, the Instruction Matrix or IM, to replace the standard
scheme.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + × × ÷ − ÷ + d f a e f b c d
2 − × × × b d d a e b f f c c d
3 × ÷ − + × ÷ c b e a d e b a e
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··

20 ÷ × × − + e f b a b c d e f d

Table 2. An instance of instruction matrix (IM)
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IM structure: The ith row of IM represents the ith (i ≤ m) individual in the set
T and the jth column of IM represents the jth node in the individual. m denotes the
number of the high performing individuals selected. Let W and H be the width and
height of IM and h be the depth of complete binary tree of W nodes, i.e. W = 2h−1,
H = m. An example is given in Table 2. There are 20 individuals are selected and
a complete tree contains 15 nodes. W = 15, H = m = 20. The bold symbols in IM
are the actual leaves of the tree. The non-bold symbols behind bold symbols are
randomly produced to fill the blanks in IM.

Create IM :

a) Select m(m < S(g)) high-performing individuals (HP) at generation g.

b) Select individual i in HP and fill its symbols into the ith row of IM.

c) If all individuals in HP have been selected, then it’s the end; else go to b).

Extract an individual from IM :

a) Create a new individual.

b) Select a symbol from the ith column of IM using roulette wheel selection and
set it to the ith node.

c) If all the nodes of individuals have been created, then it’s the end; else go to b).

If ∆S(g) > 0, ∆S(g) new individuals generated from IM will be added to
population. If ∆S(g) < 0, |∆S(g)|, bad individuals will be removed from population.

4 APPLICATIONS

We chose four representative problem types for the experimental investigations,
namely a symbolic regression problem, digital logic problem, sequence induction
and an artificial ant problem. There are two instances used in digital logic problem,
the 4-bit odd parity checker problem and the 6-multiplexer problem. Santa Fe
landscape is used in the artificial ant problem. All these problems are benchmarks
in GP research [23, 24, 25, 26]. The genetic programming paradigm was implemented
as a Lisp-tree GP using the VC++ programming environment; the experiments were
executed on PC with an Intel dual-core processor (only one is used). The crossover
probability Pc is set to 0.8 and mutation probability Pm is set to 0.15. Let Gmax be
the maximum generation and S(0) be the initial size of population. Z = 0.25 ·S(0),
α = 0.4 and β = 0.6. The experiments’ parameters are described in Table 3. All
the problem tests use 20 independent runs except the artificial ant problem; we only
ran it 10 times because it takes more than three hours for an independent run.

4.1 Symbolic Regression Problem

For the symbolic regression problem type a polynomial equation of degree-4 is de-
fined by f1(x) = 1.5x4 + 1.5x3 + x, x ∈ [0, 2] and a polynomial equation of degree-3
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Symbolic
regression

Sequence
induction

Digital logic
circuits

Artificial
ant problem

Gmax 400 200 600 600
S(0) 200 (SGP, DPV),

100 (PV-I),
700 (PV-R),
400 (PV-RAN)

200 (SGP, DPV),
100 (PV-I),
500 (PV-R),
300 (PV-RAN)

200 (SGP, DPV),
100 (PV-I),
900 (PV-R),
500 (PV-RAN)

200 (SGP, DPV),
100 (PV-I),
900 (PV-R),
500 (PV-RAN)

The ter-
mination
criteria
of a GP
run

fbestg − foptimal <
0.05
or g > Gmax

|fbestg −
foptimal| < 0.8
or g > Gmax

fbestg = 16 (odd
parity checker),
fbestg = 64
(6-multiplexer)
or g > Gmax

fbestg = 89
or g > Gmax

Table 3. Experiments parameters

is defined by f2(x) = −x3 + x2 + x, x ∈ [−2, 3]. The terminal set is defined as
T = {1, 2, 3, R, x} and the function set is given by F = {+,×,−}, where R is
a random float constant in the interval [−5, 5].

4.2 Digital Logic Problem

The first digital logic problem is the Odd Parity 4-Checker problem with k = 4
Boolean arguments and 24 = 16 fitness cases described by the function F (a, b, c, d),
which returns true ‘1’ if an odd number of its Boolean arguments is evaluated
as true, otherwise it returns false ‘0’. Terminal Set T = {a, b, c, d}, function set
F = {NAND,NOR,OR,AND,NOT}. The second digital logic problem applied
is the 6-multiplexer problem with k = 6 Boolean arguments and 26 = 64 fitness
cases described by the function F (a, b, c, d, e, f), Terminal Set T = {a, b, c, d, e, f},
function set F = {NAND,NOR,OR,AND,NOT}.

4.3 Sequence Induction Problem

A sequence defined as S = {6, 11, 18, 27, 38, 51, 76, 93, 112, 133 · ··} is used for this
problem in [15]. The terminal set is defined as T = {1, 2, 3, x} and the function set
is given by F = {+,−,×}.

4.4 Artificial Ant Problem

The Santa Fe trail is often used for the artificial ant problem. The Santa Fe trail
consists of 89 food elements on a two dimensional, 3 232 toroidal grid. The ant is
limited to 600 time steps in this landscape. The terminal set is defined as T =
{Move,Left,Right} and the function set is given by F = {IF-FoodAhead,Prog2,
Prog3}.
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5 RESULTS AND DISCUSSION

5.1 Comparison Among Different Measures
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Fig. 2. DPV-BP, HP mean, UPQ, and HP mean & BP as characteristic measure with pro-
portionate and standard scheme (regression problem)
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Figure 2 shows the comparative CE and AES of degree-4 and degree-3 regression
problems. The pivot functions DIV, SUB, GRAD and EXP use different measures
(BP, HP mean, UPQ and hybrid of HP mean and BP) along with proposed incre-
ment/reduce scheme and the standard population variation schemes are compared
with SGP algorithm.

It is noted that computational effort and AES did not always follow the similar
trend in some instances. The reason is that a rapid convergence (small generations)
yields a small AES but the small success rate of runs can lead to the high compu-
tational effort. A low computational effort must depend on a high success rate and
rapid convergence to solutions according to (1). Similar results were obtained for
four pivot functions in degree-3 and degree-4 regression problems for using BP as
characteristic measure. DIV inserted new high fitness individuals to boost the per-
formance of GP and attempted to accelerate the convergence, especially when the
improvement of current generation is very small, whereas the EXP, GRAD and SUB
may continually have removed individuals in these instances and therefore made it
harder for the GP system to converge towards the solution. Therefore, it can be
seen in Figure 2 the DIV outperformed other pivot functions in terms of AES for
the BP measure in two regression problems.

In general, GRAD performed worst among all the pivot functions when the
measure was UPQ or HP mean. DIV presented the worst performance when the
measure was a hybrid of HP mean and BP. EXP was superior to the other three pivot
functions in terms of CE when the measure was UPQ, HP mean, or our measure.
For the high-performing individuals, although there are large improvements during
the initial stage of the run, eventually changes become smooth and small towards
the end of a generation. For the proposed measure φ, the average fitness of high-
performing individuals shows more or less improvement during the run of GP and
the best individual can be reserved for several generations if an elite strategy is
applied, thus there were continuous improvement in φ, for ∆g < ∆g−1 and ∆g < 1,
EXP tended to remove a small number of individuals as a result. However, DIV
and GRAD considered the GP system to be stagnated according to their pivots
and increased the population size to promote the mean fitness of the population.
These new individuals created became an extra computational burden and led to
poor results. This is the main reason for the poor performance of DIV and GRAD
in these instances.

5.2 Comparison Among Different Weights in Measure

The main feature of the proposed measure φ distinguished from HP mean and UPQ
is that the fitness improvements for this measure are as smooth as those for HP mean
but BP is included so it can also exert influence on determining the stagnation. The
parameter settings (α = 0.4, β = 0.6) in the proposed measure were used in previous
experiments. However, this setting cannot guarantee the best performance in these
instances. DPV using other measure (α, β) settings were observed for odder even
4-checker problem in Figure 3. In general, the α = 0.75, β = 0.25 performed best
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Fig. 3. DPV-HP mean & BP as characteristic measure using different setting (α, β) (odd
parity 4-checker problem)
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among all the settings, the CE and AES results approximated those using HP mean
because the proposed measure φ is closer to the HP mean. When α = 0.4, β = 0.6
and α = 0.25, β = 0.75, the performance reduction in terms of CE was observed and
in these two cases the measure φ performed worse than HP mean. In this problem
the fitness for measure φ was not so steep as HP mean but very smooth and the
improvements for measure φ were reduced so much that DPV methods incorrectly
forced the system to insert extra individuals when the weight of HP mean was too
small in measure φ. Although (α = 0.4, β = 0.6) is not the best setting for our
measure φ, it is used for other tests because it can give the full play of the role of
the BP in our measure φ.

5.3 Comparison Among Different Schemes

The CE and AES results of DPV methods using a fixed increment/decrement
scheme (Equation (13)), dynamic increment/decrement scheme (Equation (14)) and
our proportionate increment/decrement scheme (Equation (15)) for sequence induc-
tion problem along with proposed measure φ are given in Figure 4. The perfor-
mance of dynamic variation scheme observed was superior to that of the fixed po-
pulation variation scheme, but our proportionate scheme was superior to the other
two population variation schemes. When the GP system had low improvement
∆g > ∆g−1 > ∆g−2, DPV methods modified the size of the population according
to a dynamic variation scheme (Equation (14)) by a very small amount. In this
case new individuals injected were too few to promote the performance of GP and
the poor individuals left over in population impeded the system from achieving con-
vergence to a solution; but for our proportionate variation scheme, DPV changed
the population size according to ∆g. New individuals were inserted to accelerate
the convergence whereas poor performing individuals were eliminated to enhance
average fitness. This is the main reason for the superiority of our proportionate
scheme.

As shown in Figure 5, the IM population variation scheme proposed performed
very similarly to the standard scheme in terms of CE used by the EXP and GRAD.
The computational effort and AES of DIV and SUB were obviously lowered by using
IM scheme. This is due to the fact that when some poor individuals are eliminated
to reduce the computational effort, the diversity of the population may be destroyed
at the same time so that the convergence time (generations) of GP may increase
and thus counteract the reduction of computational effort. The IM scheme collects
excellent building blocks of high fitness individuals to produce new individuals to
maintain diversity of the population in the next generation and promote the con-
vergence of the GP system. Therefore, the AES results of DIV, SUB and EXP that
represent the fast convergence were significantly improved when IM was used as the
population variation scheme.
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Fig. 4. DPV- HP mean & BP as characteristic measure with different population variation
schemes (sequence induction)
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Fig. 5. DPV-HP mean & BP as characteristic measure with IM and standard schemes
(6-multiplexer problem)

5.4 Comparison Among All PV Methods

Figure 6 shows performance comparison among all PV methods for degree-4 re-
gression, sequence induction, 6-multiplexer and artificial ant problem. It is seen
that for degree-4 regression and sequence induction problem, EXP performed better
than other methods and GRAD showed the worst capability among DPV methods.
For the 6-multiplexer problem, DIV and SUB performed a little better than other
DPV methods and the performance of the EXP approximately equalled to GRAD
in terms of CE. For the artificial ant problem, EXP was the best pivot function.
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EXP reduced computational efforts by continuously removing individuals when GP
system had a large progress at the beginning of run and created new individuals with
excellent block to boost up the diversity for faster convergence to solution when the
improvements of fitness dropped greatly. Therefore, we can see that for all these
cases EXP gave a more excellent behavior in terms of AES. For all the test problems,
the static PV methods had poorer performance than DPV methods. The redundant
individuals for the static PV methods became the extra computational burden on
GP, whereas the DPV methods eliminated redundancy individuals during the initial
stage of evolution when improvements were large.

The performance of PV-R was superior to other two static PV methods. Be-
cause of its large initial population size, these individuals enhanced the diversity of
population and lead to a high success rate. The best CE result was a bonus for this
high success rate (this was proved in Section 5.5). PV-I performed worse than other
static PV methods in terms of CE in these instances, because the size of the pop-
ulation increased for PV-I step by step with a constant value. The size increment
was reverse to the fitness improvements during the run and the computational ef-
forts increased as the individuals grew; but PV-I had a capacity for achieving a fast
convergence to solution with this feature and this case was demonstrated by AES
in Figure 6. For PV-RAN, the population size changed randomly, that had no re-
lationship with the improvements of individuals’ fitness and hence the performance
of the PV-RAN may be better or poorer than with other PV methods.

5.5 Success Rate for the PV Methods

In terms of success rate, since increasing the running time (generations) of a GP
system can increase its success rate, besides the Gmax used in Table 3, we will try
a large value of Gmax for a fair comparison with the initial size of population as
given in Table 4. In these tests, DPV methods use the proposed measure along with
the proposed proportionate variation and IM scheme. The details of SR for PV
methods in six problems using Gmax in Table 3 are given in Table 5. Table 6 shows
the details of SR for various PV methods in six problems using Gmax in Table 4.

Symbolic
regression

Sequence
induction

Digital logic
circuits

Artificial
ant problem

Gmax 600 400 800 800
S(0) 200 (SGP, DPV),

100 (PV-I),
700 (PV-R),
400 (PV-RAN)

200 (SGP, DPV),
100 (PV-I),
500 (PV-R),
300 (PV-RAN)

200 (SGP, DPV),
100 (PV-I),
900 (PV-R),
500 (PV-RAN)

200 (SGP, DPV),
100 (PV-I),
900 (PV-R),
500 (PV-RAN)

Table 4. Experiments parameters for a large Gmax

It was noted that SR of all the PV methods outperformed SGP in most cases
except odd parity 4-checker. The reason was that PV methods could keep diversity
and achieved high average fitness by removing poor individuals and inserting new
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better individuals into the population. In static PV methods, PV-I had the worst
success rate in all these problems. This is due to the fact that the initial size was
so small that the diversity could not be maintained to promote the performance
of GP. The success rates of PV methods for odd parity 4-checker were all much
lower than for 6-multiplexer problem. The main reason was that the fitness value
for odd parity 4-checker is much smaller than 6-multiplexer. In odd parity 4-checker
problem, the subtraction (∆g−∆g−1) of improvement between generation g−1 and
g was very small and new individuals would not be created and inserted to promote
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Fig. 6. Performance comparison among all PV methods and SGP (degree-4 regression,
sequence induction, 6-multiplexer and artificial ant problem)

the progress. Hence it was harder for GP system to achieve the convergence in this
case.

On the whole, EXP had a high success rate in these instances. This received
benefit from its special measure of stagnation. It is believed that the success rate
of the GP algorithm will increase as the generations grow. This is demonstrated
by Table 6. When Gmax was set to a larger value, the success rate correspondingly
became higher in most cases; but it is noted that the SR of EXP has a drop in the
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SGP DIV SUB GRAD EXP PV-R PV-I PV-RAN

Degree-4
regression

25 % 30 % 25 % 40 % 40 % 30 % 15 % 25 %

Degree-3
regression

25 % 40 % 30 % 45 % 45 % 35 % 20 % 30 %

Odd parity
4-checker

40 % 20 % 25 % 15 % 25 % 10 % 30 % 40 %

6-multiplexer 80 % 90 % 90 % 95 % 95 % 95 % 60 % 75 %
Sequence
induction

20 % 20 % 35 % 50 % 30 % 65 % 30 % 70 %

Artificial ant 10 % 70 % 90 % 40 % 70 % 50 % 50 % 10 %

Table 5. SR of various PV methods and SGP for six problems using Gmax in Table 3

SGP DIV SUB GRAD EXP PV-R PV-I PV-RAN

Degree-4
regression

30 % 50 % 35 % 35 % 40 % 45 % 50 % 55 %

Degree-3
regression

25 % 50 % 45 % 70 % 50 % 70 % 20 % 45 %

Odd parity
4-checker

45 % 30 % 30 % 35 % 30 % 35 % 25 % 60 %

6-multiplexer 95 % 85 % 80 % 95 % 75 % 90 % 80 % 85 %
Sequence
induction

75 % 70 % 55 % 60 % 65 % 60 % 60 % 55 %

Artificial ant 80 % 80 % 60 % 20 % 50 % 50 % 50 % 10 %

Table 6. SR of various PV methods and SGP for six problems using Gmax in Table 4

6-multiplexer and artificial ant problems while the SR of SGP has improvements in
each problem using a long evolution time. When the GP system is making progress,
EXP will remove some individuals to ease computational effort and a long evolu-
tion time may result in losing diversity as the number of individuals continuous to
decrease, which is bad for accelerating convergence; but for SGP, better performing
individuals may be obtained as the evolution time grows.

6 CONCLUSIONS

The aim of population variation is to save computational effort by increasing or
decreasing the population size during a run of GP. A new DPV using a feedback
mechanism in genetic programming called EXP is proposed in this paper to improve
the DPV. A new stagnation phase definition based on best and high-performing
individuals, a population variation scheme, the IM scheme and exponential pivot
function are suggested to improve the performance of DPV. The performances of
various population variation (PV) approaches have been analyzed and discussed
in our study. We have experimented with various PV methods on different types
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of problems. Comparison among the different characteristic measures has been
conducted for regression problems and the proposed measure performed best. It
has been demonstrated the new proposed population variation scheme is superior
to fixed and proportionate population variation schemes for sequence induction.
Experimental evidence shows that the individuals’ increment scheme using an IM
proposed can be a benefit for diversity of the population. It has been proved the
proposed EXP approach can achieve better results than other PV methods and
can outperform the standard genetic programming (SGP) in most problems. It
is also found that the PV methods have a larger success rate than SGP in most
problems. Furthermore, applying the proposed algorithm to solve other modeling
and optimization problems is also possible in further research.
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