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Abstract. In previous work of multiple sensing agent systems (MSASs), they
mainly adjust the sensing ranges of agents by centralized heuristics; and the whole
adjustment process is controlled in centralized manner. However, such method may
not fit for the characteristics of MSASs where the agents are distributed and de-
cide their activities autonomously. To solve such problem, this paper introduces
the social force model for adjusting the sensing ranges of multiple sensing agents,
which can make the agents adjust their sensing ranges autonomously according to
their social forces to other agents and the sensing objects. Based on the social force
model, the coverage and optimization models are presented for both point-type
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and area-type objects. The presented model can produce appropriate social forces
among the sensing agents and objects in MSASs; thereby the system observability
and lifetime can be improved.

Keywords: Multiple sensing agent systems (MSASs), coverage, lifetime, commu-
nication ranges, social force model

1 INTRODUCTION

Sensing agents are the ones that have sensing abilities, which are often spatially dis-
tributed in an uncertain surveillance environment to sense surrounding information
in order to achieve a global goal [1]. One of the typical examples are the sensor
network which may be naturally modeled as a multiagent system (MAS) by regard-
ing each sensor as an agent [2]; another typical example is the mobile multi-robot
systems, where each robot can sense its surrounding environment [3]. Obviously,
the concept of sensing agent is more general than sensor or sensing robot, which can
also be used to model any other distributed sensing systems [4].

In the collective multiple agent systems, the formation control has received a lot
of attention in many areas [5, 6, 7, 8]. Formation of multiple agents includes many
aspects, such as positions of agents [5], path of mobile agents [9], orientation of
agents [3], etc. In this paper, we think that the formation of sensing agents within
two-dimensional zone mainly includes the sensing ranges of agents. Such formation
is very typical in some multiple sensing agent systems; for example, in the wireless
sensor networks, the appropriate sensing ranges of sensors can ensure the coverage
and life time of networks [10, 11].

Coverage is a very important issue in multiple sensing agent systems (MSASs),
which determines how well an interested object is monitored by agents [11]; lifetime is
another important issue in MSASs which defines how long a MSAS has an effective
operating time [10, 11]. Due to the constraint of associated capacities of agents,
the coverage and lifetime of a MSAS may be contrary. In MSASs, the agent may
be capacity controlled such that different capacity levels could be used to achieve
different sensing ranges [11]. To improve the coverage of MSAS, we may increase the
sensing ranges of agents, which, however, may consume more capacities of agents;
thus the lifetime of MSAS may be reduced. Therefore, we should find the balance
between coverage and lifetime of a MSAS.

To make coordination between the two issues of coverage and lifetime, there are
many related works on adjusting the sensing ranges of agents. As to coverage of
MSASs, there are broadly three types of related works classified based on what is
to be covered, namely discrete points coverage, area coverage and barrier coverage
[11, 12]. To optimize the lifetime of MSASs, the related work is implemented by
the adjustment of the sensing ranges [13]. In summary, the related work mainly
adjusts the sensing ranges of agents by centralized heuristics, and the whole adjusting
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process is controlled in centralized manner. Obviously, such method may not fit for
the distributed characteristics of MSASs. In the MSASs, the agents are distributed
in an unknown environment and autonomously decide their activities, thus we should
let the agents determine their sensing ranges autonomously.

To solve the above problem, this paper introduces the social force model for
determining the sensing ranges of agents, which can make the agents adjust their
sensing ranges autonomously according to their social forces with the sensing objects
and other agents. The main contribution of this paper is that we can exert the
advantage of autonomy of agents by using social force model, thereby our model
can fit for the distribution characteristics of MSASs.

The rest of this paper is organized as follows. In Section 2, we introduce the
related work; in Section 3, we model the sensing multiagents and sensing environ-
ments; in Section 4, we present the model for social forces among sensing agents;
in Section 5, we present the model for adjusting the sensing ranges of agents; in
Section 6, we provide the experimental simulation results to validate our proposed
model; finally, we discuss and conclude our paper in Section 7.

2 RELATED WORK

Our research is related to the formation control of MASs and MSASs, and the
coverage and lifetime optimization of MSASs.

The formation control of multiagent systems (MASs) attracts much attention
in the multi-robot area. The formation includes many aspects, such as the coalition
formation [14], the shape and orientation of the robot formation [9], the positions
and orientations of agents in a group [3]. Egerstedt and Hu propose a model inde-
pendent coordination strategy for multiagent formation control, which is platform-
independent and general enough to support a number of different actual control-
lers [9]. Aveek K. Das et al. describe a framework for cooperative control of a group
of nonholonomic mobile robots, which can enable both decentralized and centralized
cooperative control [3]. Tabuada, Pappas, and Lima develop a systematic framework
for studying formation motion feasibility of multi-agent systems [15]. Zhang and Hu
present a framework for studying the centralized optimal multi-agent coordination
problem under tree formation constraints [16]. In summary, most research works
investigating the formation control of MASs can be categorized into centralized or
decentralized manners [5]. In the centralized manner, there is a single controller that
controls the formation of agents, which requires high computational power and is not
robust to the dynamic environments; in the distributed manner, the agents can con-
trol their formation based on local adjustments, which requires less computational
efforts and is more robust to the dynamic environments.

MSAS is a special form of MAS, where the sensing capabilities of agents are
required to observe the surrounding environments [4]. In the formation of MSAS,
the sensing ranges are very important which can define the sensing abilities of agents;
the sensing ranges of agents can be set from near places to the whole area [17, 18, 19].
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The main aim of sensing range control of MSAS is to optimize the coverage and
lifetime of MSAS; thus now we introduce the related work on the coverage and
lifetime optimization of MSASs. The coverage and lifetime optimization of MSASs
is always seen in the wireless sensor networks due to constraint of associated battery
power [10]. The coverage is to ensure that the whole area (or all targets) can be well
monitored by the sensors [20]; the lifetime is denoted by how long the system can
monitor the targets effectively [10]. The critical factor that determines the quality
of coverage is the deployment of sensing agents, i.e., the formation of localities and
sensing ranges of agents. The lifetime can be increased by adjusting the sensing
ranges of agents only which are necessary to meet the requirements of coverage.

About the coverage of MSASs, there are broadly three types of related works
classified based on what is to be covered, namely discrete points coverage, area cove-
rage and barrier coverage [11, 12]. For example, Zhao and Gurusamy investigate
the discrete points coverage and present a method for lifetime maximization for
connected point target coverage [11]; Ma et al. present a model for managing the
mobility of a mobile sensor network using network dynamics, which can get a better
coverage [21]; Carle and Simplot address the energy-efficient area monitoring for
MSASs, and present that optimizing energy consumption in area coverage can sig-
nificantly extend network life [22]. Chen et al. present the concept of local barrier
coverage which can develop localized algorithms and is more useful in practice [23].

To optimize the lifetime of MSASs, the related works are mainly classified into
three types: adjustment of the sensing ranges, scheduling the activities of sens-
ing agents, and deployment structure optimization of sensing agents. Cardei et al.
present the method for maximizing the network lifetime by adjusting sensing ranges
in MSASs [13]. Li et al. provide efficient distributed algorithms to optimally solve the
best-coverage problem with the least energy consumption so as to improve the life-
time of MSASs [20]. Moreover, the lifetime of MSASs can be increased by scheduling
only a subset of sensors necessary to be active for meeting the application require-
ments [11]. One general approach for the deployment structure optimization is de-
ploying more sensors close to the base station so as to combat against excessive load
near the base station [10]; another approach is implementing clustered MSASs [24].

In summary, the related works mainly adjust the sensing ranges of agents by
centralized heuristics. Obviously, such method may not fit for the distributed and
dynamic environments of MSASs. Therefore, being inspired from the distributed
manner of MASs, this paper investigates the autonomous adjustment method for
the sensing ranges of agents in MSASs, which is based on social force model.

3 MODELING THE MSASS

3.1 Modeling the Sensing Multiagents

Sensing agents have sensing abilities to sense surrounding information in order to
achieve a global goal [1]. To maintain certain sensing abilities, the agents should
have certain capacities. In this paper, we associate the capacity to each agent, which
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is similar to the power of sensors and can be waned by consumption. The higher the
sensing range of an agent is, the more capacities will be consumed by such agent.

Definition 1 (Capacity of agent). The capacity of agent ai is a nonnegative real
number: ci −→ R. The higher ci is, the more probably ai can sense the surrounding
environment effectively.

Definition 2 (Sensing range of agent). The sensing range of an agent is related to
certain capacity consumption, i.e, a higher sensing range will consume more capacity.
Let the sensing range of agent ai be si and the consumed quantity for the capacity of
agent ai be cui; the sensing range is in direct proportion to the consumed quantity,
i.e., si = g(cui), where g is a monotonically increasing function.

Example 1. Let the initial capacity of agent ai be 100; the agent will consume cui
capacities for maintaining the sensing range 2cui for 1 minute. Now we can demon-
strate the relations among the sensing ranges, consumed capacities, and maximum
lifetime, shown as Figure 1.

Fig.1. Illustrating the relations among sensing ranges, 
capacities and lifetime of agents 
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Fig. 1. Illustrating the relations among sensing ranges, capacities and lifetime of agents

By referring to the model of situated MAS in [25], now we present the model of
a MSAS.

Definition 3. From the example shown in Figure 2, a multiple sensing agent system
is a tuple MSAS =< Z,A,D,C, S,O >, where:

1. Z denotes a two-dimensional geographical zone where the multiple sensing agents
are situated. Z = {(x, y)|δ1 ≤ x ≤ δ2, γ1 ≤ y ≤ γ2}, where δ1, δ2, γ1, γ2 prescribe
the scopes of agent locations.

2. A = {a1, a2, . . . an} denotes the set of sensing agents, where n is the number of
agents.

3. D : Z × A → {true, false} is a mapping from the geographical localities to the
sensing agents, which denotes the geographical distribution of sensing agents,
e.g., if the mapping value from (xi, yi) to ai is true, then it shows that there is
an agent ai which locates at the place of (xi, yi).
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4. A → R is the set of agent capacities, C = c1, c2, . . . , cn, where ci denotes the
capacity of agent ai in the field.

5. S : A×Z → {si|si = g(cui)} is the agent sensing range function, which denotes
the sensing range of each agent at different places of the field, si, whose radius
is denoted as ri. The sensing area of agent ai is πri

2.

6. O = {o1, o2, . . . , om} denotes the set of sensing objects, where m is the number
of objects.

Fig.2. An example of MSAS 
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Fig. 2. An example of MSAS

3.2 Modeling the Sensing Environments

As to the sensing objects of MSASs, discrete points-type sensing objects and area-
type sensing objects are typical. Thus, now we model the sensing environments by
mainly considering such two sensing objects.

3.2.1 Discrete Points-Type Sensing Objects

Let the location of sensing agent ai be (xai , yai), and the location of point pj be
denoted as (xpj , ypj). As to the discrete points-type sensing objects, we should try
to find weak points in the sensing field and suggest future adjustment of sensing
ranges of agents [26].

Definition 4. A point pj(xpj , ypj) can be sensed by a MSAS if the following situ-
ation can be satisfied: (∃ai ∈ A) ⇒ (d(ai, pj) ≤ ri), where ri denotes the radius of
sensing range of ai, A denotes the set of all sensing agents in the MSAS, d(ai, pj)
denotes the distance between ai and pj in the two-dimensional zone, d(ai, pj) =√

(xai − xpj)
2 + (yai − ypj)

2.

Definition 5. The sensing degree of point pj(xpj , ypj) is k, where k = |{ai|∀ai ∈
A ∧ d(ai, pj) ≤ ri}|. Obviously, it denotes that there are k sensing agents that can
sense point pj.
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Fig.3. K!sensing point objects in MSAS
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Fig. 3. K-sensing point objects in MSAS

For example, in Figure 3, the sensing degree of p1 is 1, the sensing degree of p2
is 2, and the sensing degree of p3 is 3.

In the MSASs, each agent has certain capacities and will utilize them to sense the
surrounding environments. The agents should consume some capacities to maintain
a sensing range until the capacities are used up. Given an agent ai, it will cost
δst = g(s) capacities to maintain the sensing range s for duration time of t. Now,
we have the following lemma.

Lemma 1. Given an agent ai whose locality is (xai , yai) and initial capacity is ci;
now there is a point-type object pj whose locality is (xpj , ypj). Then, the maximum

lifetime of ai to sense pj is (ci/g(
√

(xai − xpi)
2 + (yai − ypi)

2))× t.

Definition 6. Let the sensing degree of point pi be ki, and the set of agents that
can sense pi be Ai; then we can say that the lifetime of Ai to sense pi is:

TAi
= min

TAi

((cj/g(

√
(xj − xi)2 + (yj − yi)2))× t). (1)

Example 2. Now we take the MSAS in Figure 4 as an example to compute the
lifetime. Let the capacity consumption function be g(x) = x2, and given a point-
type sensing object p whose locality is (4,2); there are three sensing agents that
can sense p, a1, a2 and a3, whose localities are a1(1, 1), a2(2, 3), a3(6, 2); the initial
capacities of the three agents are c1 = 100, c2 = 150, and c3 = 200. Now we can
compute the sensing distance from the three agents to p, which are s1 = 3.162,
s2 = 2.236, and s3 = 2. Then, we can compute the maximum lifetimes of those
three agents to sense p, which are l1 = 10t, l2 = 30t, l3 = 50t. Therefore, according
to Equation (1), the lifetime of such MSAS is 10t.

3.2.2 Area-Type Sensing Objects

Area-type sensing object is another typical object. The main objective of the MSAS
is to cover (monitor) an area (also sometimes referred to as region). Now we have
the definition of area-sensed.
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. An example to compute the lifetime of MSAS
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Fig. 4. An example to compute the lifetime of MSAS with point-type object

Definition 7. Given an area, Z, which is sensed by a MSAS, if: Z ⊆ ∪isi, where
si is the sensing range of ai in the MSAS.

Factually, an area consists many points which have different distances to the agents.

Definition 8. Now given an area, Z, and a sensing agent, ai. The far pole of Z
regarding ai is:

fp(Z → ai) = arg max
∀pj∈Z

(d(ai, pj)). (2)

The near pole of Z regarding ai is:

np(Z → ai) = arg min
∀pj∈Z

(d(ai, pj)). (3)

Therefore, we can say that Z is completely sensed by ai if fp(Z → ai) can be
sensed by ai, i.e., ri ≥ d(ai, fp(Z → ai)); we can say that Z is only just encountered
by ai if only np(Z → ai) in Z can be sensed by ai, i.e., ri = d(ai, np(Z → ai));
we can say that Z is not sensed by ai if np(Z → ai) can not be sensed by ai, i.e.,
ri < (ai, np(Z → ai)).

Example 3. Figure 5 is an example to denote the far and near poles.

 

Fig.5. An area-type object and the poles 

a 

np fp 

Fig. 5. An area-type object and the poles

Let there be an agent ai; it will cost δst = g(s) capacities to maintain the sensing
range s for duration time of t. Then, we have the following lemma.
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Lemma 2. Given an agent ai whose locality is (xai, yai) and initial capacity is ci;
now there is an area-type object Z whose far pole regarding ai is fp(Z → ai),
and near pole regarding ai is np(Z → ai). Then, the maximum lifetime of ai to

completely sense Z is

(
ci/g

(√
(xai − xfpi)2 + (yai − yfpi)2

))
× t, the maximum

lifetime of ai to encounter Z is

(
ci/g

(√
(xai − xnpi)2 + (yai − ynpi)2

))
× t.

Therefore, we can say that the maximum lifetime of ai during which ai can take
any sensing effects on A is:(
ci/g

(√
(xai − xnpi)2 + (yai − ynpi)2

)
− ci/g

(√
(xai − xfpi)2 + (yai − yfpi)2

))
×t.

(4)

Example 4. Now we take the MSAS in Figure 6 as an example to compute the
lifetime. Let the capacity consumption function of sensing agent be g(x) = x2, and
the locality of agent be (1,1); there is an area-type object, whose far pole regarding
the agent is fp(8, 3), and the near pole regarding the agent is np(2, 2); the initial
capacity of the agent is c1 = 100. Now we can compute the sensing distance from the
agent to fp and np, which is d(a1, np(Z → a1)) = 1.414, d(a1, fp(Z → a1)) = 7.071.
Then, the maximum lifetime of a1 to completely sense Z is 1.89t, the maximum
lifetime of a1 to encounter Z is 50t; thus the maximum lifetime of a1 during which
a1 can take any sensing effects on Z is 48.11t.

s

!
Fig.6. An example to compute the lifetime of MSASs
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Fig. 6. An example to compute the lifetime of MSASs with area-type object

4 SOCIAL FORCES IN MSASS

The collective motion of multiagents can be described as if they were subject to
social forces [27, 28]. Social force is a measure for the internal motivations of agents
to perform certain actions, which are always related to the comparison between
agents. Therefore, in this paper we introduce the social forces into the collective
adjustment of sensing ranges of agents.
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The prominence of an agent is always defined by its comparison with other
agents [25, 29]. In this paper, the comparisons between any two agents are mainly
on their capacity and sensing range comparisons.

Definition 9. Given two sensing agents, ai and aj, whose capacities are ci and
cj respectively, the capacity prominence of ai by comparing to aj is λ(i → j) =
(ci − cj)/ci, the capacity prominence of aj by comparing to λ(j → i) = (cf − ci)/cj.

Definition 10. Given two sensing agents, ai and aj, their localities are (xai , yai)
and (xaj , yaj) respectively, their radiuses of sensing ranges are ri and rj. Then, the
sensing overlapping degree between ai and aj is:

ωij =
dij − (ri + rj)

dij
. (5)

If ωij > 0, it denotes that the sensing ranges of ai and aj do not intersect; if ωij ≤ 0,
it denotes that the sensing ranges of ai and aj intersect. For example, in Figure 7,
ω12 < 0, ω13 > 0, ω23 < 0; it denotes that the sensing ranges of a1 and a2 intersect,
the sensing ranges of a1 and a3 do not intersect, and the sensing ranges of a2 and
a3 intersect.

the sensing ranges of a2 and a3 intersect. 

 
Fig.7. The comparison among sensing ranges of

a1 

a2 

a3 

Fig. 7. Comparison among sensing ranges of three agents

4.1 Attractive and Repulsive Forces between Sensing Agents

Two agents should adjust their sensing ranges by regarding the situation of the other
side; therefore, their adjustment of sensing ranges can be implemented according to
their social force. The social force between two sensing agents is attractive if their
sensing ranges do not intersect with each other, and is repulsive if their sensing
ranges intersect with each other. Therefore, we have the following definition about
social forces between agents.

Definition 11 (Social forces between agents.). Let there be two agents, ai and aj;
now we have:
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• If ωij > 0, the force that ai attracts aj is Af(ai → aj) = (cj/ci)ωij, the force
that aj attracts ai is Af(aj → ai) = (ci/cj)ωij.

• If ω23 < 0, the force that ai repulses aj is Rf(ai → aj) = (cj/ci)ωij, the force
that aj repulses ai is Rf(aj → ai) = (ci/cj)ωij.

ci is the current capacity of agent ai.

For example, in Figure 7, the social force between a1 and a2 is repulsive, thus
they should shrink their sensing ranges to save capacity; the social force between
a1 and a3 is attractive, thus they should extend their sensing ranges to cover the
object between them; the social force between a2 and a3 is repulsive, thus they
should shrink their sensing ranges to save capacity.

4.2 Attractive Forces from Objects to Sensing Agents

In the MSAS, the agents will try their best to sense the objects. Thus, we can
describe them as the attractive forces from objects to sensing agents.

Definition 12 (Social forces from objects to sensing agents). Now we can define
the social forces from objects to agents in two situations.

1. Given a sensing agent, ai, and a point-type object, pj. The attractive force from
pj to ai is Af(pj → ai) = ci/d(ai, pj).

2. Given a sensing agent, ai, and an area-type object, Z. The far and near poles of
Z regarding ai are fp(Z → ai) and np(Z → ai). If the agent wants to completely
sense Z, then the minimum attractive force from Z to ai is Min−Af(Z → ai) =
ci/d(ai, fp(Z → ai)); if the agent wants to only encounter Z, then the maximum
attractive force from Z to ai is Max− Af(Z → ai) = ci/d(ai, np(Z → ai)).

For example, in Figure 4, the attractive force from object p to agent a1 is Af(p →
a1) = 100/3.162 = 31.6. In Figure 6, the maximum attractive force from Z to agent
a1 is Max − Af(Z → a1) = 100/1.414 ≈ 70.7, the minimum attractive force from
Z to agent a1 is Min− Af(Z → a1) = 100/7.071 ≈ 14.1.

5 ADJUSTMENT FOR SENSING RANGES OF AGENTS

5.1 Performance Metrics of Sensing

The aim of sensing agents is to sense and monitor the surrounding environments.
Therefore, we present the definition of observability of MSAS, which can measure
how effectively the agents sense the surrounding environments.

Definition 13. The observability of MSAS. Let the set of points be P , and ri be
the radius of sensing range of agent ai; then the observability denotes the percentage
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of points that can be sensed by any agents, which is denoted as:

Ω1(P ) =
|{pj|(pj ∈ P ) ∧ ((∃ai ∈ A)⇒ (d(ai, pj) ≤ ri))}|

|P |
. (6)

If the system wants to achieve the sensing degree k, then the observability with
sensing degree k is:

Ωk(P ) =
|{pj|(pj ∈ P ) ∧ (|{ai|(∀ai ∈ A) ∧ (d(ai, pj) ≤ ri)| ≥ k)}|

|P |
. (7)

Let the set of area-type objects be Z = {Zi}, and each area-type object can only
be sensed by one agent; the observability that the area-point objects are completely
sensed is:

Ω1(Z) =
|{Zj|(Zj ∈ Z) ∧ ((∃ai ∈ A)⇒ (d(ai, fp(Zj → ai)) ≤ ri))}|

|P |
. (8)

Lifetime is another important issue in MSASs which defines how long a MSAS
has an effective operating time. Therefore, now we give the definition of lifetime of
MSAS, shown as follows.

Definition 14. The lifetime of MSAS. Let there be some sensing objects in the
MSAS, which include point-type and area-type objects, P = pi, Z = zi. Now the
lifetime of MSAS can be defined as the time when:

(∃pi ∈ P ⇒ ¬(∃ai ∈ A⇒ d(ai, pi) < ri))
∨ (∃zi ∈ Z ⇒ ¬(∃ai ∈ A⇒ d(ai, np(zi → ai)) < ri)) .

(9)

Therefore, if any points or areas cannot be sensed, we can say that the MSAS is
invalid. Now we express the relation between lifetime and sensing ranges of agents,
shown as follows.

From Lemma 1 and 2, we can see that the lifetime of MSAS varies inversely as
the real sensing ranges of agents and varies directly as the capacities of agents. Since
the sensing range of an agent varies directly as the amount of consumed capacity
of such agent, the lifetime of an agent can be improved by reducing such agent’s
real sensing range. From Definition 14, the lifetime of MSAS is determined by the
minimum lifetime of agents when all objects can be sensed; therefore, to achieve
longer lifetime, agents should try their best to minimize real sensing ranges in the
condition that all objects can be sensed.

5.2 Adjustment Model

There are two situations where agents will adjust their sensing ranges; one is for
point-type objects, and the other is for area-type objects. For each type of objects,
the adjustment model includes two aspects; one is coverage model which tries to
sense the unsensed objects, and the other is optimization model which tries to
reduce the redundant sensing coverage of agents.
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5.2.1 Point-Type Objects

For a point, agents will negotiate with each other to vote some ones to cover such
point if the point is not covered by any agents, which is called coverage model. How-
ever, if a point is covered by more redundant agents, some agents will reduce their
sensing ranges to save capacities so that the lifetime of systems can be improved,
which is called optimization model.

1) Coverage model

For any point pj, at first the agents will negotiate with each other to vote the one
with the maximum attraction force from pj, then such voted agent will adjust its
sensing range to cover pj. Then the final set of agents that sense pj is Aj = {a∗}.

a∗ = arg min
∀ai∈A

(Af(pj → ai)) (10)

If the system wants to implement k-sensing degree, then the agents will nego-
tiate with each other to vote k agents that have the maximum attracting forces
from pj.

Algorithm 1. K-sensing agents voting.

1) Agents autonomously collect the location and capacity information of
other agents by broadcasting/listening mechanism;

2) Agents autonomously sense their communication distances to the objects;
3) Agents autonomously compute their social forces between other agents

and objects;
4) Aj

k = {};
5) For(n = 1;n <= k;n+ +):

5.1) Agents negotiate with each and vote the agent with the maximum
attracting force from object pj:
a∗ = arg min∀ai∈A (Af(pj → ai));

5.2) a∗tags itself as the sensing agent for object pj:
Ajk = Ajk ∪ {a∗};

5.3) A = A− {a∗};
/* the tagged agent will be excluded in the next negotiation round */

6) Return (Aj
k);

7) End.

Example 5. Figure 8 is an example to demonstrate the coverage model for
point-type object. The initial capacities of a1, a2 and a3 are c1 = 100, c2 = 120,
c3 = 110. Then, the three agents will compute the attracting forces from p to
them: Af(p1 → a1) = 100/1.414 ≈ 70.72, Af(p1 → a2) = 120/1.414 ≈ 84.87,
Af(p1 → a3) = 110/2 = 55. Therefore, according to Algorithm 1, we have:
A1

1 = {a2}, A1
2 = {a1, a2}, A1

3 = {a1, a2, a3}.
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Fig. 8. An example of the coverage model for point-type objects

2) Optimization model

After Algorithm 1 is implemented, now agents will autonomously optimize their
sensing ranges to save capacities, shown as Algorithm 2.

Algorithm 2. Optimization algorithm for point-type objects.

1) For ∀ai ∈ A:

1.1) ai initially sets a temporary value: ri(temp) = 0;
1.2) For ∀pj ∈ P :

1.2.1) If ai tagged itself as the sensing agent of object pj in Algorithm 1,
i.e., ai ∈ Aj

k, then:
1.2.1.1) ai broadcasts query information to other agents whether

they have already covered pj;
1.2.1.2) If ai finds that pj has not been covered by k agents,

then:
1.2.1.2.1) ai senses its distance to pj, d(ai, pj);
1.2.1.2.2) If ai finds d(ai, pj) > ri(temp), then: ai sets a tem-

porary value: ri(temp) = d(ai, pj).

1.3) ai adjusts its sensing range as: ri = ri(temp);
/* ri is the radius of final sensing range of ai */

2) End.

From Algorithm 2, each agent can autonomously minimize their capacity con-
sumptions to satisfy the sensing requirements for point-type objects. Therefore, the
lifetime of system can be improved according to the relation between lifetime and
sensing ranges of agents described in Section 5.1. For example, in Figure 8, if the
system wants to implement k-sensing of p, then the final sensing ranges of the three
agents are s1 = 1.414, s2 = 1.414, s3 = 2.

5.2.2 Area-Type Objects

For an area, first the agents will negotiate with each other to vote some ones to
adjust their sensing ranges to cover such area if the area is not fully covered by
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any agents, which is called coverage model. However, if an area is covered by more
redundant agents, some agents will reduce their sensing ranges to save capacities so
that the lifetime of systems can be improved, which is called optimization model.

1) Coverage model

In this paper, the system tries to sense an area by making the agents number
be as small as possible. Thus, first agents will negotiate and vote the one with
the maximum attractive force from the area, and then such voted agent will try
its best to sense the area. If such agent cannot fully cover the area, the agents
will negotiate and vote the one with the second highest attractive force to sense.
Such process will repeat until the area is completely sensed.

Algorithm 3. Completely sensing area Z.

1) Agents autonomously collect the location and capacity information of
other agents by broadcasting/listening mechanism;

2) Agents autonomously sense their communication distances to the objects;
3) Agents autonomously compute their social forces between other agents

and objects;
4) Agents memorize the initial covered parts of the area Z : Z ′ = {};
5) While Z ′ 6= Z:

5.1) Agents negotiate with each and vote the one with the maximum at-
tracting force from object: a∗ = arg min∀ai∈A (Af(Z→ ai));

5.2) a∗ will try its best to sense the area, now the already-sensed part of
Z is Z ′;

5.3) A = A− {a∗}.
/* the voted agent will be excluded in the next negotiation round */

6) Return (Ak);
7) End.

Example 6. Figure 9 is a MSAS to demonstrate the coverage of an area-type
object, where there are three agents – a1, a2 and a3. The radiuses of maximum
sensing ranges of those three agents are: r1max = 3, r2max = 4, r3max = 2.5. The
capacities of agents are c1 = 100, c2 = 130, c3 = 70. According to Algorithm 3,
a1 will be voted to sense the area since a1 has the maximum attracting force
from the area. Now a1 cannot fully cover the area, so a3 will be voted to sense
the area since a3 has the maximum attracting force from the area except for a1.
Finally, a1 and a3 can fully cover the area. However, there exists redundancy
between the sensing ranges of the two agents, thus the optimization should be
implemented by the agents autonomously, shown as the next section.

2) Optimization model

Now agents will optimize their sensing ranges to save capacities. Given an area Z,
the set of agents that can sense Z is Az. For every two agents in Az, if their
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Fig.9. An example of the coverage model for area-type 
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Fig. 9. An example of the coverage model for area-type object

sensing ranges intersect, they will reduce their sensing ranges in the condition
that Z can be fully sensed. Therefore, the lifetime of system can be improved
according to the relation between lifetime and sensing ranges of agents described
in Section 5.1.

Algorithm 4. Optimization algorithm for area-type objects.

1) For ∀ai ∈ AZ :
For ∀aj ∈ AZ :

1.1) ai (and aj) collects the locality information of ai(and aj) and object
through broadcasting/listening mechanism;

1.2) ai and aj compute ωij;
1.3) If ωij<0:

Repeat:
ai and aj negotiate to reduce their sensing ranges according to their
capacity comparison and ωij,
Until the reduction of ai and aj influence the coverage for Z.

2) End.

6 COMPUTER SIMULATIONS AND ANALYSES

To validate our presented model, we made a series of simulation experiments. In
the experiments, we use a grid to simulate the sensed zone where some agents with
different capacities and initial sensing ranges are distributed. In the simulated zone,
we put some point-type and area-type objects with different shapes. To demonstrate
the effects of our model in different environments, now we set some parameters for
several simulation cases:

1. Density of agents, which denotes the proportion of the number of agents to the
whole sensing zone.

2. Density of objects, which denotes the proportion of the number of objects to
the whole sensing zone.

Then, we can simulate varying simulation cases by changing the above parame-
ters.
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In the simulation experiments, we mainly compare the social force model with
some typical heuristics methods: 1) the closest agent first, i.e., each object is sensed
by the closest agent; 2) the agent with the largest sensing range first, i.e., the agent
with the largest sensing range will exert its maximum sensing range to cover objects,
and the remaining uncovered objects will be sensed by selecting the agent with the
second largest sensing range; such process will repeat until all objects are covered.
Moreover, we also compare our model with the random method where some agents
are selected randomly for each object.

In this paper, the observability is defined as percentage of objects that can be
sensed by any agents, but the lifetime is defined as the time when all objects can be
sensed by any agents. Therefore, the lifetime is the duration when the observability
is 100 %, i.e., the experiment of lifetime is only for a special case where observability
is 100 %. Thus, we made two series of simulation experiments, one is to test what
observability that our model can achieve, shown as Section 6.1; the other is to test
how long our model can maintain the observability of 100 % (i.e., lifetime), shown
as Section 6.2.

Moreover, to test the effects of social forces to observability and lifetime, we
make another series of simulation experiments, shown as Section 6.3.

6.1 Effects of Social Force Model on System Observability

Now we test the effects of the social force model on system observability by compar-
ing such model with other adjustment methods. The experimental results are seen
in Figures 10 and 11, where the x-axis denotes the cases with varying agents den-
sities and objects densities, and the y-axis denotes the system observability. From
the experiments, we can see:

1. the “largest sensing range agent first” method can always perform well in varying
cases, the potential reason is that the sensing capacities of agents can be fully
utilized well with such method;

2. the social force model performs close to the “largest sensing range agent first”
method, which denotes that the social force model can also utilize the sensing
capacities of agents well;

3. the “closest agent first” method and random method perform worse than the
other two methods for observability of objects, which denotes that they cannot
utilize the sensing capacities of agents well. Therefore, the simulation results
can prove that the social force model is effective for improving the observability
of system.

6.2 Effects of Social Force Model on System Lifetime

Now we test the effects of the social force model on system lifetime by comparing
such model with other adjustment methods. The experimental results are seen in
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Fig.10. Effects of varying methods on system observabil-
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Fig. 10. Effects of varying methods on system observability (for point-type objects)
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Fig. 11. Effects of varying methods on system observability (for area-type objects)

Figures 12 and 13, where the x-axis denotes the cases with varying agents densi-
ties and objects densities, and the y-axis denotes the system lifetime. From the
experiments, we can see:

1. for both point-type objects and area-type objects, the social force model can
achieve the best lifetime performance, the reason is that the optimization me-
chanism in Algorithm 2 and 4 can minimize the sensing ranges in the condition
that all objects can be sensed so that the sensing capacities of agents can be
saved;

2. the “largest sensing range agent first” method results in bad performance on
lifetime, the potential reason is that the agents with largest sensing ranges may
sense too many objects so that those agents’ capacities will be used up soon;



A Social Force Model for Adjusting Sensing Ranges in Multiagent Systems 107

3. the “closest agent first” method and random method can take medium per-
formances on lifetime, which denotes that those two methods cannot optimize
sensing ranges as the social force model but do not assign many objects to few
agents as the “largest sensing range agent first” method.
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Fig.12. Effects of varying methods on system lifetime (for 
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Fig. 12. Effects of varying methods on system lifetime (for point-type objects)
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Fig. 13. Effects of varying methods on system lifetime (for area-type objects)

6.3 Relations Between Social Forces and System Performances

Now we will make simulation experiments to test the relations between social forces
and system performances.
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6.3.1 Relation Between Social Forces and System Observability

Now we change the comparison between attracting forces and repulsive forces, and
observe the changes of system observability. The experimental results are seen in
Figure 14, where x-axis denotes the ratio of attractive forces to repulsive forces in
increase step by step, y-axis denotes the systems observability. From the experimen-
tal results, we can see that the system observability will descend as the attractive
forces increase (repulsive forces decrease); the reason is that the sensing ranges of
agents become smaller as the attractive forces increase so that more and more objects
cannot be sensed.
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Fig.14. Relation between social forces and systems ob-
Fig. 14. Relation between social forces and systems observability

6.3.2 Relation Between Social Forces and System Lifetime

Now we change the comparison between attracting forces and repulsive forces, and
observe the changes of system lifetime. The experimental results are seen in Fi-
gure 15, where x-axis denotes the ratio of attractive forces to repulsive forces in
increase step by step, y-axis denotes the systems lifetime. From the experimental
results, we can see that the system lifetime will ascend as the attractive forces
increase (repulsive forces decrease), the reason is that now the sensing ranges of
agents can be optimized as the attractive forces decrease, so that the capacities can
be saved.
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Fig. 15. Relation between social forces and systems lifetime

7 CONCLUSION AND FUTURE WORK

In the related works, the sensing ranges of agents are adjusted mainly by centralized
heuristics, and the whole adjustment process is controlled in a centralized manner.
Obviously, such method may not fit for the characteristics of MSASs where the
agents are dynamically distributed in an environment and decide their activities
autonomously.

To solve the above problem, we introduce the social force model for adjusting
the sensing ranges of multiple sensing agents, which can make the agents adjust
their sensing ranges autonomously. The main contribution of this paper is that the
advantage of autonomy of agents can be exerted; thereby our model can fit for the
distribution characteristics of MSASs. Based on the social force model, we present
the coverage and optimization models both for point-type and area-type objects.
With the presented model, the system observability and lifetime can be improved by
comparing with other typical heuristics methods and random adjustment methods.
Therefore, it shows that our autonomous adjustment model based on social force
can exert positive effects for the MSASs.

Regarding the future work, we are currently working on the development and
application of the model in real large scale multiple sensing agent systems, and we
will try to address the concurrent diffusion mechanism produced by the simultaneous
sensing range adjustment processes.

Moreover, in this paper the adjustment algorithms start with an arbitrary point/
area but not the critical point/area which is with the smallest number of agents that
can sense them completely or partially. The reason is that this paper mainly aims
to provide a social force model which can be implemented by agents autonomously;
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therefore, for simplification, it assumes that each agent’s maximum sensing range
can cover all objects, i.e., each object has the same number of agents that can
sense it. In the future, we will consider the situation where objects have different
numbers of agents that can sense them; in such case, the critical object with the
smallest number of agents that can sense them should be considered first.
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