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Abstract. There is non-linear relationship between software metrics and defects,
which results to a complex mapping. Therefore, to focus on the defect density area,
it is a critical business requirement of effective and practical approach, which can
help find the defect density in software releases. Soft computing provides a better
platform to solve the non-linear and complex mapping problem. The aim of this
paper is to formulate, build, evaluate, validate and compare two main sections of
soft computing, fuzzy logic and artificial neural network approaches in prediction of
defect density of subsequent software product releases. In this research, these two
approaches are formulated and applied to predict the existence of a defect in file of
software release. Both approaches have also been validated against various releases
of two commercial software product release data sets. The validation criteria include
mean absolute error, root mean square error and graphical analysis. The analysis
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of the study shows that artificial neural network provides better results compared
to Fuzzy Inference System; but applicability of best approach depends on the data
availability and the quantum of data.

Keywords: Software metrics, defect, defect density, release, prediction, fuzzy in-
ference system, artificial neural network
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1 INTRODUCTION

A software system must be changed or enhanced as per business requirement and
need of subsequent releases. If we are able to predict the defect prone area of the
system/subsystem module, it can impact the schedules, cost and customer satis-
faction. There are various investigations in literature to show relationship between
the direct measures and defects. Prediction of entities is crucial in software metrics
analysis and design. Defect Density (DD) is a software quality attribute, which gives
the reliability measure of the software product. DD can be defined as the number of
defects per defined area, as a file, KLOC or module. DD can be measured as a sum
of defects or faults in a file or module. This helps us find the high-risk prone modules
out of the complete system and as per the Pareto principle that greater defects lie
in the 20 % of the modules and hence work on them. Research literature concludes
that in a large software base, 20 % of files have 80 % of the defects, which indicates
there should be more focus on the infected 20 % area and more efficient resources
should be put to work on it rather than the equal focus and resource distribution
on the entire software base.

The prediction of DD during the subsequent releases of the software system
is crucial to produce the system with more reliability and quality. In last three
decades, soft computing (SC) has been vastly used in basic sciences and engineering
disciplines. Artificial Neural Networks (ANNs), Fuzzy Inference Systems (FIS) and
Adaptive Neuro Fuzzy Systems (ANFIS) can be used for universal approximations.
In software development process, there are various attributes, which need to be
calculated during the Software Development Life Cycle (SDLC). Apart from normal
calculation, it is a good practice to find the possibility of occurrence whether it
is a good or bad event to take the preventive measure beforehand. After applying
the SC approaches in other engineering disciplines, now researchers are trying to use
these techniques in software engineering disciplines as well. In literature, it is proven
that there are many software attributes, which can be predicted in advance using
the SC techniques. The main attributes include DD, effort estimation, software
quality, software reusability, software maintainability, etc. The prediction can be
done using empirical methods or SC methods viz., Fuzzy Logic (FL), ANN, Neuro-
Fuzzy (NF), Genetic Algorithm (GA) and others. The researchers have shown that
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they are capable of approximating general non-linear relationships to high degree
of accuracy [1, 2, 3]. The combination of ANNs and FIS leads to best results as
they complement each other [4]. Khoshgotaar et al. [5, 6] used ANNs and fuzzy
systems to estimate the quality of a complex telecommunication system as well
as for cost estimation which makes ANN and fuzzy to be a good tool in empirical
studies in software engineering. If we have the probability of incident, it can be used
as a precaution measure for another similar domain project or subsequent releases
within a software project or across the other project releases. There are various
project metrics entities, which can be predicted using FL and ANN techniques.

The rest of the paper is organized as follows: Section 2 describes the related work
in prediction of DD. Section 3 contains the concept and data variables used in two
approaches. Section 4 discusses the proposed FIS and ANN based method to predict
the defect density. Section 5 describes the comparative results and applications of
proposed FIS and ANN approaches. Section 6 provides the insight of the conclusion
and future prospects.

2 RELATED WORK

SC techniques are different from conventional computing paradigms; unlike hard
computing, it is tolerant of imprecision, approximation, uncertainty and partial
truth. That is why SC inherits some of the important properties of human mind.
The main principle of SC is to achieve tractability, robustness and low solution cost.
Recently the authors have shown a great amount of interest towards the use of
SC approaches to solve the uncertain problems in software engineering. To classify
modules as fault prone, Khoshgoftaar et al. [5] used ANN with back propagation
training algorithm. To measure software maintainability, Aggarwal et al. [7] have
used a fuzzy model. In open source study, Gyimothy et al. [8] empirically vali-
dated important metrics for fault prediction on open source. Graves [9] has proved
that software change history can also be used to predict the DD in modules and
the systems. Khatatneh et al. [10] developed a new fuzzy expert system to pre-
dict the software failures. Kehan Gao et al. [11] focused to select the attributes
for software quality estimation. Comparative study also presented to evaluate the
proposed approach for attribute selection. Fenton et al. [12] discussed four general
approaches to predicting the number of defects in a system. The author presented
the approach of finding the correlation between DD and code metrics. Khoshgoftaar
et al. [13] used factor analytic variables to fit regression model to a number of defect
data sets. Principal Component Analysis is used in studies to reduce the dimen-
sionality of many related metrics to a small type of set. Ohlsson and Alberg, [14]
presented a study at Ericsson where metrics derived from design documents were
used to predict fault-prone modules prior to testing. Gyimothy et al. [8] empirically
evaluated and validated fault prediction of Chidamber and Kamerer [15] metrics on
open source software. They used linear, logistic regression and neural network for
machine learning methods for model prediction.
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Statistical models have been explored vastly in prediction of software attributes.
SC techniques, especially FIS and ANN have changed the focus over the years. FIS
and ANN are being successfully applied across various domains like finance, medicine
and other engineering areas. Khoshgoftaar et al. [5] worked on a case study of avion-
ics software to predict the testability of each module using static source code metrics
and ANN. They were able to predict testability because they are able to model lin-
ear relationship using ANN. Aggarwal et al. [16] predicted the maintainability using
object oriented metrics and applying ANN. They examined the application of ANN
for software quality prediction and taking the input variables as object oriented
metrics. In their study, maintenance effort was the dependent variable. Principal
components of eight OO metrics were used as independent variables. The results
showed a good accuracy with ANN model. Yuan et al. [17] used Fuzzy Subtractive
Clustering to predict the number of faults. Aggarwal et al. [18] have developed
a fuzzy model for measuring software maintainability. The inputs to the model are
comment ratio, average live variable, average life span and average cyclomatic com-
plexity. The output of the model is average corrective maintenance time. They have
used Mamdani style inference. Kumar et al. [19] presented the applicability, usabil-
ity, and extendibility to rank the usage of the existing approaches for component
based systems in software industries. The author concluded that SC approaches
could work better for component bases systems (CBS) as well.

3 CONCEPT AND VARIABLE SELECTION

3.1 Empirical Data

We considered two projects of different software industry domains. We gathered
a large set of data of two projects for three attributes. Using the Rational Rose bug
history tool, we captured the data set of 4 000 files. The same process is repeated
for two real projects, which fall into the following category

• An optical telecom project, which has component and embedded project (A ty-
pe).

• A component based application project (B type).

The A project is an optical telecom project, which is used as an optical communi-
cation platform across cities. It has some object oriented based system design as well
as structural design. It has been developed in 4 years timeframe. The B type was
a component based application project. It was developed as an IDE tool, which is
used as debugging and development environment tool for the software development
project. It contains Java components and files. Therefore, we had a good mix of
various domain projects. This results in a good scope of approach validation across
various domain projects. The data for two projects consist of many attributes. We
extracted three attributes, namely complexity, total lines of code and pre release
defects. There are numerical values for each of the attribute in A and B projects.
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The attribute values were captured at file, module and package level. In addition to
three attributes we gathered the total defects in a particular file of a release of the
two selected projects.

The following section gives the details of the attributes and each case contains
the following information:

Name: The name of the file module or package, to which this case corresponds. It
can be used to identify the source code in the release and may be needed for
additional data collection.

Pre release defects: The number of non-trivial defects in a file that were reported
in the last six months before release.

Post release defects: The number of non-trivial defects in a file that were re-
ported in the first six months after release.

Total defects: It is the aggregation of the Pre and post release defects in a file for
a particular project release.

Complexity metrics: For each case, we computed a file complexity metrics. Met-
rics that are computed for functions/classes or methods are aggregated by using
the average.

Total lines of code: The number of lines of code in a file, module or package.

Number of function calls: The number of function calls in file, module or pack-
age.

3.2 Input and Output Variables

The data gathered during the development and testing of the project is used to
develop FIS and ANN model, which in turn may be useful in future projects and
planning. To find the data relevance we observed that most of the files (approx-
imately 50 %) had no defects. The remaining half has defects ranging from one
to 100. Principal component analysis method is used to quantify the data set. The
defect distribution among the files and modules leads to interesting research points:

• To identify the files which have the defects? This falls into classification problem.

• To estimate the intensity of the defects, i.e. the number of defects in a file or
module.

• To predict the DD for efficient planning of the resources during the subsequent
releases or the future projects.

Based on the discussion with software architects, we have identified the set of
software metrics which plays an important role and is responsible for estimating
the fault in software system. After subsequent discussions, we narrowed down to
the three metrics, which was possible member for building a new metrics, which
can be used easily in the software industries. PCA technique is used to pick the
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uncorrelated metrics. The research team considered the following fact while deciding
on the attributes:

• Simplified and generally available metrics.

• The attributes, which could be easily collected during the software development
process.

• The metrics, which has high impact, either positive or negative, on the number
of defects in the system.

• Although there was a large set of software attributes available, we have narrowed
down to few for having a simple and the best formulation of the metrics.

Based on the practical experience we finalized the three software metrics for
input and DD as the output. The following factors have been identified, which will
influence defect density:

PREDD – Pre-RElease Defects in a file and aggregated for module.

TLOC – Total Lines Of Code in a file and aggregated for module.

VG – McCabe cyclamate complexity of a file and aggregated for module.

3.3 Principal Component Analysis

Principal Components Analysis (PCA) is a technique of identifying patterns in data,
and quantifying the data to highlight their similarities and differences, since it is
difficult to find the pattern out of high dimension, which cannot be found using
graphical representation. Recently PCA has been used widely as a powerful tool
for analyzing data in image processing field. PCA is used to maximize the sum of
squared entry of each factor extracted in turn [20]. In addition to its accuracy, PCA
gives the liberty to find the pattern in data without much loss of information. We
used the power of PCA to quantify the data set used in ANN training and validation.
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PCA is used to transform raw metrics values of prerelease defects, complexity
and lines count to a set of unrelated variables. PCA is also used to maximize the
sum of squared loadings of each factor extracted in turn. The PCA aims to drive
a new variable (pn), called Principal Component out of a given set of variables xm’s
(m = 1, 2, . . . , k) [19].

p1 = b11x1 + b12x2 + . . .+ b1kxk
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p2 = b21x1 + b22x2 + . . .+ b2kxk
...

pk = bk1x1 + bk2x2 + . . .+ bkkxk

bnm is calculated in such a way that derived PCA fulfills the following conditions:

• Principal components are uncorrelated, i.e. orthogonal.

• The p1 has the highest variance and similarly for further components.

3.4 Validation Criteria

Accuracy is percentage of the predicted values that match with the expected values
of the number of faults in the file or module. For the present study, we used Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). MAE is the average of
the difference between predicted and actual value in all test cases; it is the average
prediction error [21]. The formula for calculating MAE is given in the following
equation:

MAE = (|A1 − P1|+ |A2 − P2|+ . . . |An − Pn|)/n (1)

Assuming that the actual output is A, the expected output is P . RMSE is
a frequently used measure of differences between values predicted by a model or
estimator and the values actually observed from the thing being modeled or esti-
mated [21]. It is just the square root of the mean square error, as shown in the
following equation:

RMSE =

√
(A1 − P1)

2 + (A2 − P2)
2 + . . .+ (An − Pn)2

n
(2)

The best system is that having the highest accuracy and least values of MAE
and RMSE.

4 PROPOSED FIS, ANN APPROACHES AND EXPERIMENTAL
DESIGN FOR DEFECT DENSITY PREDICTION

SC is equipped with two main techniques, namely FL and ANN. In the present
study we applied these two sections of SC for DD prediction in subsequent software
product releases.

4.1 Fuzzy Inference System

Zadeh [22] derived the concept of FL to implement vagueness in linguistic variables.
The concept of FL implements and simulated the human knowledge as nature im-
plements it in daily life. FL theory is based on fuzzy sets. A fuzzy set is a set
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without a crisp, clearly defined boundary, which can contain a part of membership
of an element. A membership function, which is called MF, can be any curve that
defines how every point of input space is related or mapped to a degree of member-
ship value in-between 0 and 1. Sometimes the input space is referred to as universe
of discourse. Although there are various MFs but riangular and trapezoidal ones
are most used, as well as simple MFs which are formed with straight lines. FL
reasoning is a superset of Boolean logic theory. To interpret the if-then rule involves
fuzzification of the input and applying the suitable fuzzy operators [23].

Let X be a set of objects and x belong to X. A classical set S, S ⊆ X, can be
defined as a set of elements or objects x ∈ X, in such a way that x can be either
contained in set S or not.

A fuzzy set S in X can be defined as a set of ordered pairs

A = {(x, µS(x))|x ∈ X} (3)

where µS(x) is called MF for the fuzzy set S. A MF maps all elements of X to
a membership value in between universe of discourse 0 and 1. Hence, Equation (3)
is an obvious extension of classical definition in which the defined function is allowed
to have a value between 01 and 1. Figure 2 illustrates the fuzzification process.
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4.2 Proposed FIS based approach

It is often impossible to estimate some attributes directly. DD is one of them, which
can predict using the other available attributes. For example, attributes (say, DD)
are affected by many different factors and there is no straightforward method to
measure or predict them. To predict the DD, one needs to establish a relationship
of direct measures (which affects the DD attribute) with each other and drive the
indirect measure as DD. We proposed a FL based approach for predicting DD of
different releases of software system based on the earlier release. The proposed
method has been validated as an approach for software system across few domains.
It has been validated of two domains of complex type projects. We emphasize to
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predict DD by taking the direct measures as dependent attributes to predict the
system reliability and quality. In the proposed approach, we have given the fuzzy
based algorithm to predict the DD in a file or module. To calculate the DD in
module or software system, we can take a sum of defects in all files or a module
or system. Mathematically the relation between the dependent attributes and the
defect of a file can be given as follows:

Let xn, yn, zn be the values of the complexity, lines of code and pre release
defects, respectively; then

Df = Fm[xn, yn, zn] (4)

where Fm is the function of the xn, yn, zn as a value of the dependent attribute
in a file. Df is the defect count in the file f . In the experimental design Fm is
considered as fuzzified and fuzzy rule function.

The defect density of a module can be derived as

DDm =
m∑

f=1

[Df ] (5)

where DDm is the module DD. Using the above formulation of the problem we can
find out the defect count in a file based on the three attributes values of a file.
Taking the sum of all defects in each file of a module, the DD can be derived for
a particular module. The function Fm is implemented using rules in FIS as described
in the factors with defects to achieve the desired goal. DD is an indicator, which
depends on several other measures in the software system. We propose that DD
of a software system can be a measure of three most influenced factors mentioned
above. These combined factors can be used to predict the DD, as it cannot be
measured directly. The formulation given in Equations (4) and (5) is implemented
using the fuzzy toolbox in MATLAB 7.1. For complexity let X be the universe of
discourse and xn be the value in the fuzzy boundaries [0, 1]. Then Equations (4)
and (5) are implemented by applying fuzzy inference rules for the function Fm. The
MF is used to map the actual attributes values into the fuzzy range. Similarly, for
line count and pre release defects, the triangular MF is used for fuzzification of the
crisp values.

The proposed FL based model considers all three factors as inputs and provides
a crisp value of DD using the rule base. All inputs can be classified into fuzzy
sets, namely low, medium and high. The output DD is classified as High, Medium,
and Low. All possible combinations (i.e. 27) of inputs are considered to design the
rule base. Each rule corresponds to one of the three outputs based on the expert
opinions. These rules are defined to implement the FM given in Equation (4) above.
Some of the proposed rules are shown as follows:

If complexity of a file is high, Lines of Code (LOC) is low and number of function
calls is low then the DD will be medium.

If complexity of a file is high, LOC is low and the number of pre-release defects
is medium then the DD will be medium.
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If complexity of a file is high, LOC is low and the number of pre-release defect
is high then the DD will be high.

All 27 rules are inserted into the proposed model and a rule base is created.
Depending on a particular set of inputs, a rule is fired. Using the rule viewer, the
output (i.e. DD) is observed for a particular set of inputs using the MATLAB Fuzzy
toolbox. Table 1 shows the values of various parameters set for inputs, outputs for
fuzzification process.

System Name = ‘DD’
Type = ‘mamdani’
Version = 2.0
NumInputs = 3
NumOutputs = 1
NumRules = 27
AndMethod = ‘min’
OrMethod = ‘max’
ImpMethod = ‘min’
AggMethod = ‘max’
DefuzzMethod = ‘centroid’

Output Name = ‘output’
Range = [0 1]
NumMFs = 3
MF1 = ‘L-DD’ : ‘trimf’, [0 0.2 0.4]
MF2 = ‘M-DD’ : ‘trimf’, [0.35 0.5 0.65]
MF3 = ‘H-DD’ : ‘trimf’, [0.6 0.8 1]

Table 1. Parameter values for system and output

Fuzzication of inputs into output, MF for complexity, surface view for complex-
ity, LOC and DD and rules for defuzzication process are shown in Figures 3, 4, 5
and 6, respectively. In Figure 3, Complexity, TLOC and PDEF are given as input
to mamdani type FIS and the out is produced as DD. The value of DD can be
estimated by taking all three values for input factors. Figure 4 describes the MF
used in the process of fuzzi cation and de-fuzzi cation. Figure 5 shows the surface
view of the decision based on the FIS rules. Figure 6 is a snapshot of the rules from
MATLAB FIS toolbox rules viewer system.

4.3 Validation and Results of FIS Approach

The proposed approach works to find the DD at file and module level. As discussed
above we had to project data for approximately 4 000 files. The metrics values are
captured during the development and maintenance phase using the IBM Rational
Rose tool. Therefore, we have data of three metrics values of 4 000 files for every
project. After applying PCA technique, the data set is compressed to 2 847 data
set entries. The proposed methodology is validated by using statistical evaluation
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Fig 4: MF for Complexity attribute used in FIS 

  
Fig. 4. MF for complexity attribute used in FIS
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Fig 5: Surface View for Complexity and DD  
  Fig. 5. Surface view for complexity on X-axis, LOC on Y -Axis and DD on Z-Axis by using

MATLAB toolbox
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Fig 6: Snapshot of Rule Viewer 

	   	  
Fig. 6. Snapshot of rule viewer showing some of the rules
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of the predicted values vs. actual data values. The proposed FL based approach is
applied to predict the DD for subsequent releases of a single project and across the
project.

The metrics for all the three factors of DD were measured for both projects.
These metric values were then given as input to the proposed approach. The values
of DD obtained from the proposed approaches are validated using the statistical
methods.

From Table 2, it is clear that values obtained from FL based approach for DD
prediction are maximum 77 % and minimum 73 % match to the actual DD of the
files. We captured the output of the fuzzy approach and found out the root mean
square error with the actual error with actual defects in the file. Comparisons of
predicted defect density are made on the basis on accuracy, mean absolute error and
root mean-square error.

Validation of the proposed formulation and experiment is done by taking the
real project data as described in Section 4.3. Proposed fuzzy based prediction model
has been applied on the dataset and the accuracy, MAE as per Equation (1) and
RMSE as per Equation (2) are calculated. Accuracy, MAE and RMSE values are
shown as follows.

Project Accuracy MAE RMSE

P1 73.40 0.266 0.515

P2 77.55 0.225 0.473

Table 2. FIS validation results

From the above Table, it is clear that values obtained from FL based approach
for DD prediction are 77 % match to the actual DD of the files. We captured the
output of the fuzzy approach and found out the root mean square error with the
actual error with actual defects in the file.

Figure 7 gives graphical representation and variance of actual defects and pre-
dicted DD using proposed FIS. The graph is prepared from the data of the actual
defects from each file of the selected two projects. On the X-axis the low highlighted
columns and the dark columns show the actual and predicted DD, respectively when
the FIS approach is applied on the data. On the Y -axis, the particular file instance
in the selected software system is shown for which there is data for 3 input variables
and the DD is derived with FIS. Although the approach is validated on large number
of files, this graph depicts the graphical view of actual versus predicted DD for a set
of 55 files. This approach is able to predict the DD up to 77 % accuracy and 0.4738
as RMSE.

4.4 Artificial Neural Network

ANNs have been developed as generalizations of mathematical models of biological
nervous systems of human brain. A first interest in neural networks emerged after
simplified design of neurons by McCulloch and Pitts.
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Fig. 7. Predicted vs. actual DD using FIS for validated data set

In feed-forward network, which is being used in our research, the signal travels in
feed-forward direction from input to output units. In this type of neural network, no
feedback connections are present but the data processing can spread over multiple
layers of units [24]. Other recurrent network can contain feedback connections.
Sometimes the activation values of the units have to go through a relaxation process
so that network can evolve to a stable state. After the relaxation process, these
activations do not change further any more.

The architecture of a particular artificial neuron is shown in Figure 8.
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Fig. 8. Artificial Neuron 
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Fig. 8. Artificial neuron

The signal flow from input x1, x2, . . . , xn is considered to be unidirectional
which corresponds to consolidated neuron output signal (O).

The neuron output signal O is given by the following relation:

O = f(net) = f

(
n∑

i=1

wixi

)
(6)



216 V. Kumar, A. Sharma, R. Kumar

where wi is the weight vector, and the function f(net) is referred to as an activation
(transfer) function.

The variable net is defined as a scalar product of the weight and input vectors

net = W Tx = w1x1 + w2x2 + . . .+ wnxn (7)

where T is the transpose of a matrix, and, in the simplest case, the output value O
is computed as

O = f(net) =
{

1, if W Tx ≥ θ
0, otherwise

(8)

where θ is called the threshold level; and this type of node is called a linear threshold
unit.

4.5 Proposed Artificial Neural Network Approach

ANN has been developed as generalizations of mathematical models of biological
nervous systems. In a simplified mathematical model of the neuron, the effects
of the synapses are represented by connection weights that modulate the effect of
the associated input signals, and the nonlinear characteristic exhibited by neurons
is represented by a transfer function. Artificial neural network is applied on the
similar data set as we investigated using FL in the above section.

The input values are normalized using Min-max normalization. It performs
a liner transformation of original data [25]. If MinA and MaxA minimum and max-
imum values of an attribute in data set taken for the study. The formula 9 is used
to map X value of A to X ′ as decimal value within the range of 0 to 1. So after
normalization each value X ′ will be such that X ′ belongs to [0, 1]. Output values
are again mapped to the actual number of defects.

The normalization concept can be formulized as follows:

X ′ =
X −MinA

MaxA −MinA

(9)

where X ′ will be any value between 0 and 1 corresponding to a value X of an at-
tribute.

Multilayer feed forward network model is used for modeling. Every node of the
hidden layer is connected to input nodes. Input nodes are not directly connected to
output nodes. In turn, it proves that ANN does not have any shortcut connection.
ANN adjusts the weights to adapt the actual outputs and differences between the
desired output and actual output are minimized.

The metrics values have been captured during the development and maintenance
phase using the IBM Rational Rose tool. Therefore, we have data of three metrics
values of 4 000 files for every two sated project. After applying PCA technique,
the data set was compressed to 2 847 data set entries. The data set is divided into
two parts with 3:1 ratio. 2 135 records from data set were used for training and
712 records are used for validation of the ANN approach. Then ANN model is
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developed using training data set. MATLAB is used for simulation of the training.
Then validation data set is applied on the trained ANN model to validate and check
the accuracy of the developed model.

Network Type Feed Forward Back Propagation

Training Function TRAINLM

Adaption Learning Function LEARGDM

Number of Layers 2

Transfer Function PURELIN

Performance Root Mean Square Error (RMSE)

Layers 3

Input units 3

Output units 1

Hidden units 9

Table 3. Attributes for ANN architecture

The network architecture which was empirically determined and ANN archi-
tecture attributes are as follows: The neural network with above architecture is
trained using the data set and validated for feed forward back propagation algorithm
TRAINLM and simulated using MATLAB neural network toolbox. TRAINLM is
network training function that updates weight and bias values according to Leven-
berg-Marquardt optimization. TRAINLM is highly recommended as a first-choice
supervised algorithm, although it does require more memory than other algorithms.
The input metrics to the ANN are pre release defects, complexity and lines count,
and the output is defect density of a file.
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Fig. 9. Architecture of proposed approach 
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Fig. 9. Architecture of proposed approach

4.6 Validation and Results of ANN Approach

Validation of the proposed formulation and experiment is done by taking the real
project data as described in Section 4.3. Proposed ANN based prediction model has
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been applied on the dataset and acuracy, MAE as per Equation (1) and RMSE as
per Equation (2) are calculated. 712 data records are used for validation of ANN
approach. It has shown accuracy, MAE and RMSE values as follows.

Project Accuracy MAE RMSE

P1 80 0.25 0.50

P2 85 0.15 0.3872

Table 4. ANN validation results

Figure 10 gives the graphical representation and the variance of the actual defects
and predicted DD using proposed ANN. This approach is able to predict the DD
upto 85 % accuracy and 0.3872 as RMSE.

From the above table, it is clear that values obtained from proposed ANN based
approach for DD prediction are 85 % match to the actual DD of the files. We
captured the output of the ANN approach and found out the root mean square
error with the actual error with actual defects in the file.

The graph in Figure 10 is prepared from the data of the actual defects from
each file of the selected two projects. On the X-axis, the low highlighted columns
and the dark columns are shown as actual defects and as predicted DD when the
ANN approach was applied with mamdani model on the data gathered during the
SDLC process. The attributes and architecture are used as shown in Table 3. On
the Y -Axis the particular file instance in the selected software system is shown for
which there is data for 3 input variables and the DD is derived with ANN. Although
the approach is validated on large number of files, this graph depicts the graphical
view of actual versus predicted DD for a set of 55 files. The calculated RMSE is
0.3162 which shows a strong implication that ANN provides better prediction than
the FIS.

5 COMPARATIVE RESULTS AND APPLICATIONS
OF THE PROPOSED APPROACHES

Software defects are the main indicator of software quality. To build and formulate
the defect metrics, software defect is considered as dependent variable of three soft-
ware metrics; these are easily available during SDLC, which increases practicality
and applicability of the proposed approaches. The FIS engines are built to decide
DD of a file, which can be aggregated, for DD at subsystem level of a product and
hence DD as well as quality of a software release. The outcome of the proposed
research on metrics design shows that software industries can use FIS and ANN
approaches to predict the defect of software release files based of the data avail-
ability, which can help maintain the better software product quality and resource
management across releases.

This paper presents the investigation using FIS and ANN as well as comparative
study of the two approaches. Although ANN shows good results and stands out in
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Fig. 10. Predicted vs. actual defect density using ANN for validated data set

case of DD prediction, FIS can also be useful in case on partial data of no data.
Therefore if the data set is available and metrics values have been captured during
the development process, ANN can be used for better results and in case of less data
availability FL is also a useful tool for prediction of DD.

In Figure 11, the state diagram shows the proposed FIS and ANN approach
application usage across multiple releases of a project. If we start the process of
DD prediction from release R1 of project P1, the DD prediction can be calculated
in each release and use that is next release of software product. After predicting the
DD in a particular release by using the proposed FIS or ANN approach, an efficient
resource distribution and effort planning can help maintain the product quality and
reliability.

The proposed approach has the following applications:

• As a human nature, we generally used to have the low/high/medium type of
values for any attribute. One major advantage is that the proposed FIS approach
may also work without the data, although we empirically evaluated the proposed
model on real project data.

• Using the power of adaptation and learning, ANN can be used, which is simple;
but it is expensive to collect the data set during the tight schedule of develop-
ment.

• After first release or from a similar type of project data set, we will have the
three attributes values ready for the system so it will be the best DD predictor
tool for the next release; generally we used to have 50 to 100 releases in large
and long term software projects.
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Fig. 11. Application of proposed approach across releases of Project P1

• As it has been proved as a good estimator for different domain project, if the
system needs to enhance or add a new feature, during the planning of software
project the proposed approach will be able to predict the DD for the modules
and files.

• The proposed approach has a good granularity as it can predict the DD at file
level as well as at module or subsystem level which not only reduces the project
planning errors and risk but also provides additional information for resource
distribution across the project schedules.

• Even for a new project initiation the proposed approach can be used as a DD
predictor for various modules. In fact, we generally used to have some rough fi-
gures for the three values for a new project by taking the reference from a similar
type of previous projects.

• It can be a good evaluator for component on the shelf (COTS) product. For
a COTS product, we will have the values of three input variables in advance;
hence, the DD can be estimated using the proposed approach, which helps us



Applying Soft Computing Approaches to Predict Defect Density 221

evaluate the COTS product quality. It is obvious that if we have the possibility of
more defects then the system developed using the COTS product will also need
more DD. We should have the attributes values for any ready COTS product.
By that, we can predict the DD and hence use it as effort and schedule estimator
as well as a quality indicator.

• As shown in Figure 11, the proposed approach can be used to predict the DD
for the next release of the software product. Hence, it can optimize the resource
loading, efforts and schedules for the release. It can be a part of regular prac-
tice during the software development and maintenance as release management
process of software quality assurance.

• ANN approach is adaptive in nature; hence, the method can be trained for
different environment based on the data nature and variables

6 CONCLUSION

There has been considerable research investigation to predict DD using various sta-
tistical methods and approaches. Either SC has not been completely explored for
this area or there is lack of validation and comparative analysis. Therefore, our
investigation and metrics design show that SC provides a good indicator in software
quality and management. The best technique is concluded based on comparison of
the validation results. Here the results of the practice shows that ANN stands better
than FIS approach to predict the defected bundle of files. MAE and RMSE calcula-
tions indicate that ANN is best in case of accuracy. However, it is worth mentioning
here that FIS is also a good method if there is no project data or partial data. It is
not always possible to have a data collection to train the neural network. Hence, in
practicality, there are pros and cons of both the approaches. Therefore, software in-
dustries can use any or combination of FIS and ANN approaches based on their data
collection and strategies. The study indicates that now industries should accept and
include the power of soft computing in general practice during the development and
maintenance process. The combination of FIS and ANN, called neuro-fuzzy, can
yield better results, so in future there is a need to explore neuro-fuzzy, fuzzy-genetic
and other evolutionary approaches for prediction of defect density and other quality
attributes.
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