Computing and Informatics, Vol. 32, 2013, 295-311

KERNEL CODE INTEGRITY PROTECTION BASED
ON A VIRTUALIZED MEMORY ARCHITECTURE

Jianhua SUN, Hao CHEN, Cheng CHANG, Xingbang L1

School of Information Science and Engineering
Hunan University
410082 Changsha, China

e-mail: {jhsun, haochen, chengchang, xblee}@aimlab.org

Communicated by Jacek Kitowski

Abstract. Kernel rootkits pose significant challenges on defensive techniques as
they run at the highest privilege level along with the protection systems. Modern
architectural approaches such as the NX protection have been used in mitigating
attacks, however determined attackers can still bypass these defenses with speci-
fically crafted payloads. In this paper, we propose a virtualized Harvard memory
architecture to address the kernel code integrity problem, which virtually separates
the code fetch and data access on the kernel code to prevent kernel from code modi-
fications. We have implemented the proposed mechanism in commodity operating
system, and the experimental results show that our approach is effective and incurs
very low overhead.

Keywords: Kernel rootkit, security, integrity protection, virtualization, Harvard
architecture

1 INTRODUCTION

Operating system plays a critical role in modern computing systems. To support
ever-growing range of hardware and provide more functionalities, operating system
is becoming more and more complex steadily, which inevitably leads to increased
security vulnerabilities.

We classify research related to mitigate the threat of kernel rootkits into two
categories. The first are the mechanisms [10] that take advantage of hardware
features (such as the privilege bits of segment table and page table, the NX-bit of

296 J. Sun, H. Chen, Ch. Chang, X. Li

x86 architecture) to protect some important areas in kernel address space. Although
these methods effectively protect the kernel to a certain degree, they have some
obvious limitations when facing the threat of kernel rootkits. For example, in order
to use NX bit in 32-bit x86 machines, one must set the PAE that is not supported on
some legacy platforms. Sophisticated techniques [4, 16] used by determined attackers
can still bypass these protection mechanisms.

In the second category, kernel code integrity checking [12, 13] is used to monitor
and report violations of the kernel’s control flow integrity by leveraging the kernel’s
CFG (control flow graph). These systems were designed to detect modifications to
the kernel code. Thus they inherently are not capable of preventing the damages
caused by kernel code execution.

In this paper, we propose a lightweight approach to protecting the kernel code of
operating system. It implements the Harvard memory architecture, which separates
the code from data in physical memory. After the operating system launches, all
the illegal operations on the kernel code are redirected to somewhere in the physical
memory that we call shadow memory so as not to cause any harmful impacts on
the kernel code. This approach is implemented at the OS level and guarantees that
all the malicious modifications to the kernel code do neither work nor hinder the
OS from working normally and safely. As can be seen in the paper, our approach
can protect the kernel code even the attacker gains the highest privilege, and at the
same time, record the illegal attempts of modifying the kernel code, which is very
useful for postmortem intrusion analysis. Our system makes use of some existing
hardware features of x86 platform and only imposes very little overhead on system
performance.

The rest of the paper is organized as follows. Section 2 states the threat model
of this paper. Section 3 describes the details of system’s design and implementation
details. Evaluation results are presented in Section 4. Section 5 compares the
system in this paper with SecVisor. Section 6 discusses the limitation and future
work. Finally, Section 7 gives a brief description to related work and we conclude
this paper in Section 8.

2 THREAT MODEL

The main characteristic of rootkits is stealthy. Rootkits often try to hide themselves
on the compromised machine. Rootkit techniques have been developed along with
the development of IDS and other defensive techniques. At the beginning, rootkits
just replace or modify system files on the victim’s hard disk. When researchers
devised defensive methods such as file system integrity checkers [17], the rootkit
makers then resort to new methods such as modifying static OS components or
structures loaded in memory. The latest rootkits have begun to modify dynamically
allocated OS objects.

As the size of OS kernel code steadily increases, more and more security vul-
nerabilities are introduced and the damage caused by these vulnerabilities is fatal.

Kernel Code Integrity Protection Based on a V.M.A. 297

The NIST National Vulnerability Database shows that in 2006, 81 and 31 security
vulnerabilities were found in Linux and Windows XP, respectively.

Because the main purpose of most rootkits is not to crash a running system,
generally they do not modify the kernel code directly. Instead, they usually inject
malicious code into the kernel data area, and try to execute it as normal code.
Rootkits have the capability to tamper with the kernel code due to the high privilege
level they own. The Linux kernel do_brk vulnerability [11] enables attackers to
change any page’s privilege bits in the system, and to gain unrestricted access to
almost any OS kernel code or data structures. Some attacker can even modify
the physical address corresponding to a certain virtual address by manipulating the
address translating mechanism [16]. If these vulnerabilities are exploited by rootkits
to tamper with the kernel code, eventually they would lead to severe consequences
to the operating system.

With the development of many defensive techniques, fewer attackers adopt the
traditional way of code injection. Instead, more and more attackers inject malicious
code into the code area or use the non-control-data attack technologies [6]. In this
paper, we make the following assumption about the adversary model. First, the
kernel rootkit has the highest privilege level in the victim machine. Second, in order
to maintain stealthiness, the kernel rootkit needs to execute its malicious code in
the kernel space.

3 DESIGN
3.1 Harvard and von Neumann Memory Architectures

Harvard memory architecture [1, 2] originates from the Harvard Mark I computer.
The Harvard architecture has several intrinsic features that are different from von
Neumann architecture [18]. First, instruction and data each have its own physical
address space. In each address space, the co-existence of instruction and data is
definitely not permitted. Second, instruction and data memory have separate hard-
ware paths to the central processing unit (CPU). Since they are stored at separate
physical memories, this feature allows instructions to be fetched and data to be
accessed at the same time by using different system buses.

As we can see, the features that Harvard memory architecture provides enable
a computer system to access the instruction and data in one clock cycle, which ob-
viously improves the overall system performance. Harvard architecture is frequently
used in DSPs; AVRs and ARMs, and can also be found in some operating systems
like Vxworks [19].

Most modern computers implement a von Neumann memory architecture in
which code and data share the same flat address space. The co-existence of code
and data in one address space is the root cause of the code injection problem [15].
It seems that the attackers can always figure out a way to bypass the defending
system to inject malicious code or modify the kernel code, despite of many advances
in defensive techniques. The splitting memory model of Harvard architecture is

298 J. Sun, H. Chen, Ch. Chang, X. Li

Data Instruction
Memory Memory Memory

Data Instruction Data Instruction

Access Access Access

(a) von Neumann Architecture (b) Harvard architecture

Access

Fig. 1. Harvard architecture using separate memory and system bus to access data and
instruction

a desirable feature to prevent kernel from code injection attacks at its root, because
the data and instruction are stored in separate physical memories and accesses to
these two memory regions are under hardware mediation. Thus instructions and
data cannot be addressed to each other, which means that the code injection is
impossible under Harvard memory architecture because code cannot be read /written
like data and data cannot be executed like code, even at the highest privilege level.

3.2 Implementing Harvard Memory Architecture on x86 Platform

Harvard memory architecture can mitigate kernel code injection effectively, but mo-
dern commodity hardware such as x86 is not capable of providing this functionality
due to its unified memory architecture. Although it is possible to make modifications
to the existing architecture to support a splitting memory architecture, this would
not be beneficial to legacy systems. Furthermore, modifying a widely deployed
processor is not always practical.

Although most of the general purpose CPUs are designed based on von Neumann
architecture, and use a single address space to store both data and instructions,
another option for building the Harvard memory architecture is to take advantage
of existing architectural features in commodity hardware. Leveraging the PageTable
and TLBs on x86 systems, we can create a virtualized Harvard memory architecture
in modern operating systems with only minor modifications to kernel source code.
Without relying on a hardware implementation, the proposed system can run on
conventional x86 hardware, and offer protection to legacy systems as well as newly
developed systems.

4 IMPLEMENTATION

Our goal is to ensure the integrity of kernel code at a minimal cost (slight overhead
on performance and minor modifications to kernel source code).

Kernel Code Integrity Protection Based on a V.M.A. 299

On x86 CPU, given a linear address va, the MMU (Memory Management Unit)
translates it to a physical address, denoted as Mapping_d(va) = pa.

This mapping of addresses is the same to instruction fetch and data access,
because the translation process uses the same page table provided by the OS. The
linear address va is always mapped to the physical address pa.

However, in our system, for Yva € V (V is the linear address space of kernel
code), we have:

For instruction fetch at address va : Mapping_i(va) = paexec (1)

For data access at address va : Mapping d(va) = pagat, (2)

Plezec € Pry pagara € Pp and Py Pp = ®. Py is the instruction physical address
space, Pp is the data physical address space which we call shadow memory. All the
suspicious operations performed on kernel code are redirected to this area.

Once this protection mechanism is established, it ensures the integrity of the
kernel code as long as the operating system is running. The architecture of our
system is represented in Figure 2.

APP APP APP

Access
kernel code

Access type?

Virtualized Harvard
memory architecture

Instruction
fetch

Data
access

Kernel code Shadow memory

»
1A =

Fig. 2. System architecture

Based on Linux/x86, our system makes a few modifications to address transla-
tion component in Linux kernel and takes advantage of the separated instruction and
data TLBs. Before giving detailed descriptions of our system, we first present a brief
overview about the address translation mechanism in Linux and the separated TLB
management in x86 systems.

Translation of virtual address to physical address in Linux/x86 CPU is accom-
plished by a multi-level translation scheme which uses several types of page tables.
Here we only describe the last level translation (the translation from linear address
to physical address) due to its direct relevance to our purpose.

Every time when CPU generates a linear address, MMU looks up the page table
to perform the translation. Each entry in the page table is called a PTE (Page Table
Entry). The page table resides in main memory, if the corresponding PTE is not

300 J. Sun, H. Chen, Ch. Chang, X. Li

found, an additional memory access is required to translate the linear address at the
cost of tens of hundreds of cycles. To eliminate this cost, translation lookaside buffers
(TLB) are adopted to cache PTEs to speed up the address translation process. The
steps to perform translation of linear address involving TLBs are as follows.

1) The CPU generates a virtual address.

2, 3) The MMU fetches the appropriate PTE from the TLB.

4) The MMU translate the linear address to the physical address and then send it
to cache/main memory.

5) The cache/main memory sends the requested data back to the CPU.

If in step 2 there is a TLB miss, the MMU will look up the page table in main
memory to find the corresponding physical address and then move to step 4 and
cache the corresponding PTE in TLB by replacing an existing entry. As noted
above, visiting the TLB is an indispensable step to translate a virtual address and
cannot be bypassed.

TLB

TLB miss

le—
@ ven e 3
CPU Translate Cache or main
A @ VA @ PA memory
@ Data

Fig. 3. Address translation with TLB

In Section 3.1 we mentioned that many general purpose CPUs have features
such as separated instruction and data caches and TLBs, which can be leveraged to
emulate the Harvard memory architecture at the software level.

Although modern CPUs are getting more and more complex, generally there are
5 pipeline stages needed to execute an instruction: fetch, decode, execute, memory
and write back. For the purpose of high concurrency, the five stages should be
interleaved with each other. Thus the separated caches (I-Cache and D-Cache) and
TLBs (I-TLB and D-TLB) have been introduced to ensure the two stages of fetch
and memory would not interfere with each other. While CPU accesses memory in
the fetch stage, it looks for corresponding physical address of the instruction page
in I-TLB. Similarly, while CPU accesses memory in the memory stage, it looks for
corresponding physical address of the data page at D-TLB, as shown in Figure 4.

Although theoretically the two corresponding PTEs (in I-TLB and D-TLB) of
a specific linear address should be the same, there is actually no hardware mecha-
nism to ensure this, which enables us to implement a virtualized Harvard memory

Kernel Code Integrity Protection Based on a V.M.A. 301

Physical Memory

i Instructionand Data are

Address |- Cache cached D- Cache

Physical PTE cached inTLB Physical

address address
PageTable
-TLB
PTE
PTE
Virtwal [} [e Virtual
address address

| fetch | decode | execute | memory | write back |

Tt

-TLB

1 i

Fig. 4. Address translation at different pipeline stage

architecture. We can enhance the operating system to provide two different page
tables for the fetch stage and memory stage respectively, but actually we do not
have to maintain two page tables by means of keeping different PTEs in different
TLBs. By doing so, we can guarantee that any modifications to the kernel do not
influence the normal execution of kernel code. In the following, we elaborate on our
implementations.

1. During system initialization, we allocate a continuous memory region whose size
is the same as that of the kernel code. This region is called shadow memory,
and is pointed to by a pointer variable kernel _text_mirror(unsigned long *const
kernel_text_mirror). We store a copy of the kernel code in this area.

There is a one-to-one mapping between the frames of shadow memory and the
frames of kernel code. The first frame number of the kernel code is text_start and
the first frame number of the shadow memory is mirror_start. Then a kernel code
frame ppn’s corresponding frame number in shadow memory is shadow(ppn)
which can be calculated by the following formula:

shadow(ppn) = ppn + (mirror_start — text_start) (3)

2. Change the ppn bits of all the kernel code page’s PTEs to shadow(ppn) tem-
porarily, then load them to D-TLB (reading one byte of a particular page can
cause the system to load the corresponding PTE to D-TLB).

3. Recover all the PTE’s ppn bits that have been changed, and set the R/W bit
to 0.

4. Modify the page fault handler: if the page fault is caused by trying to tamper
with the kernel code, change the corresponding PTE’s R/W bit to 1, then go to
step 2 and 3.

302 J. Sun, H. Chen, Ch. Chang, X. Li

With our modification the address translation of kernel code pages is as shown
in Figure 5.

Access a virtual
page Look up TLBs Added offset
get frame number get physical
address
Virtual address space I-TLB
ppn + offset
>
fetch | i
2d 22l Kernel code
>{ Kernel code

\‘
memory shadow(ppn) A
—>|

shadow (ppn)
+ offset

Shadow memory

D-TLB

Fig. 5. Address translation of kernel code pages after our modification

After system initialization, this double-mapping address translation of kernel
code pages is established. Generally speaking, the PTEs of kernel code pages are
resident in TLB, because their Global bits are set. Even if they are flushed out
accidentally, since the kernel code pages are set as Read-Only, page fault will be
generated while these pages are accessed and the double-mapping address translation
mechanism will be established again at step 4 in the page fault handler.

4.1 Effectiveness and Impact on Operating System

When the protection mechanism is established, querying the TLB is the first step in
address translation, so all the write operations are directed to the shadow memory
region. Even if the PTEs corresponding to kernel code pages are flushed out off TLB,
in the page fault handler invoked by writing to kernel code page, the appropriate
PTE modified will be loaded into D-TLB again and the defense system will be re-
established. Therefore, the protection mechanism is always on in the system, and
any malicious operations attempting to make damages to the kernel code can not
manage to bypass it. In addition, all the malicious operations return without any
explicit response indicating any failures in attack operations, making the attacker
unaware of the unsuccessful attack attempts.

All the data accesses have been redirected to another region in memory. Al-
though all the write operations on kernel code should be regarded as malicious
behavior, the read operations on kernel code are considered as legal. However, if the
access to kernel code is in the memory stage instead of the fetch stage, this access
should be regarded as suspicious because its intension is not to execute the kernel
code but to read the kernel code for certain other reasons. This perspective is sound
because reading kernel code is definitely not an essential operation for the normal

Kernel Code Integrity Protection Based on a V.M.A. 303
execution of operating system. In our current implementation, we do not consider
security tools performing code intergrity checks, which may need to read kernel
code pages. Thus any data accesses to kernel code in the memory stage rather than
the fetch stage is considered suspicious. As the legal operation (execution) on kernel
code is achieved through I-TLB and D-TLB, manipulating the content of D-TLB for
our purpose will not cause any unacceptable consequences on the operating system’s
normal functionalities.

Our system makes full use of the TLB, all the modified PTEs are loaded to the
TLB and are seldom flushed. If it is the case, the re-loading procedure will finish
in the page fault handler. For these reasons, the defense system will not make any
substantial overhead on performance.

When the kernel code page’s PTEs are loaded into D-TLB and kept there, the
capacity of D-TLB is actually reduced, which would lead to negative impact on
system performance.

In addition, our approach makes minor changes to the source code of page table
initialization and page fault handler. All the code added is not more than 200 lines
and have been debugged and analyzed carefully (all the global variables such as
kernel_text_mirror, text_start and mirror_start are set as Read-Only) in order not to
introduce new vulnerabilities into the kernel.

5 EXPERIMENTS
5.1 Performance Evaluation

Our experimental platform was a PC with one Pentium 4 3.0 G processer and 512 MB
meomory. In our first experiment the operating system was Fedora Core 4 with
a Vanilla Linux 2.6.11 kernel (presented as Linux in the figures), the second experi-
ment was conducted on Fedora Core 4 with a modified kernel (presented as Linux_M
in the figures).

Benchmark Original (us) | Modified (us) | Overhead
Arithmetic Test 206.6 203.8 1.36 %
Dhrystone 2 346.5 332.7 3.98%
File Copy 1024 bufsize 2000 maxblocks 833.7 827.6 0.73%
File Copy 256 bufsize 500 maxblocks 593.1 586.3 1.15%
File Copy 4096 bufsize 8 000 maxblocks 1187.5 1164.5 1.94%
Pipe Throughput 411.0 419.8 —2.14%
Process Creation 998.5 963.1 3.55%
Shell Scripts 852.8 836.7 1.89 %
System Call Overhead 263.1 261.9 0.46 %

Table 1. Unixbench results

We used the lmbench benchmark to measure the overhead of different kernel

operations. The experimental results are shown in Figures 6, 7 and 8. In order to

304

J. Sun, H. Chen, Ch. Chang, X. Li

140 -
233 M Linux
® Linux_M
120
0.68 0.79 2.78 3.65 119 416 1376
“E’ 0.68 0.79 2.71 3.66 1.86 114 402 1341
=100 +— — — — — — — —
=
c
S
S
.a2> 80 +— — — — — — — — —
=
<
S 60 +— |- |- |- |- |- |- |- |
—
S}
(=]
D\ 40 o - { S { S— — — — — — —
20 +— — — — — — — — —
0 A
Null Call Null'l/O Stat Open SigHndl Fork Proc Exec Proc Sh Proc
close

Fig. 6. Execution times of Imbench process and memory microbenchmarks. All times are

in us.

show the performance overhead when the protection mechanism is enabled, The Y

axis shows the normalized execution time to

native Linux (lower is better). The

figures above the histogram represent real test results. In addition, we used the
micro-benchmark suite UnixBench. The experimental results are shown in Table 1,

where larger value means better performance.

160 -
® Linux
140 0.62 W Linux_M
8.24
§120 143 50.7 19.5 2313 1.59 4.70
= 13.1 7.19 52.3 19.9 2218 0.46 1.52 4.73
€100
S
S
28
©
< 60
.
S}
X 40
20
0
0k file 0Ok file 10k file 10k file Mmap Prot Fault Page Fault 100fd
Create Delete Create Delete latency selct

Fig. 7. Execution times of lmbench file and VM latencies microbenchmarks. All times are

in us.

Kernel Code Integrity Protection Based on a V.M.A. 305

® Linux
® Linux_M

2.19 2.39 2.69 : 206 2.86 5.27
2.26 2.38 274 2.67 394306 375 4.85
100 (- L

120

80

60

40

20

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Fig. 8. Execution times of Imbench context switch microbenchmarks. All times are in ps.

It can be observed from the experimental results of Imbench that there is no
significant slowdow in runtime when the protection mechanism is enabled. The
maximum overhead is 34 % in the case of Prot Fault in Figure 7, which measures
the time taken by the kernel to handle a write access violation. The overheads in
other cases are all less than 10%. From Table 1, we can see that the overheads are
all less than 3.98 %.

In addition, the effect of putting kernel code PTEs in D-TLB is minimal. The
number of entries of TLB on our testing machine is 128, the kernel code page’s PTEs
only occupied a small fraction of the D-TLB cache and thus it did not incur any
visible performance overhead.

5.2 Validation Test

The threat model of this paper is the kernel rootkit trying to tamper with kernel
code. We implemented a new rootkit by modifying an existing one to evaluate the
effectiveness of our system.

The adore-ng 0.56 is a kernel rootkit on Linux 2.6. It is a Linux loadable kernel
module. By modifying the entry address it hijacks some system calls of Linux
kernel. The modified adore-ng 0.56 runs on Linux 2.6.11. It directly tampers with
the code of system call functions in kernel code and changes the content of the
functions’ page to ‘0’. Obviously, this will cause the entire system to break down
immediately. In our experiment, we installed the modified adore-ng 0.56 on the
Fedora Core 4 with Vanilla Linux 2.6.11. Without our protection mechanism, the
system crashed right after the installation of the rootkit, indicating that the kernel

306 J. Sun, H. Chen, Ch. Chang, X. Li

code had been modified so that it can not run normally. On the same machine
with our system switched on, the rootkit’s installation still succeeded, however the
system worked as usual. We obtained the address of the variable kernel_text_mirror
from the file “System.map”, which is the starting address of shadow memory, and
then printed out the content of shadow memory through /dev/mm. The content
of the shadow memory was all ‘0’s, which indicates that the malicious attempt
to tamper with kernel code has been directed to the region of shadow memory
successfully.

We also extended some other rookits with the ability to tamper with kernel
code in the same way as described above. When evaluating the effectiveness of our
system, it is important to note that the evaluation criteria is whether it can prevent
these rookits from modifying the kernel code, but not prevent them from installing.
Table 2 lists the experimental results. In fact, all these rootkits can be installed
normally, but they can not achieve the intended malicious goals.

Rootkit Attacks Whether it can prevent modifying the kernel code
Adore-ng 0.56 LKM yes
eNyeLMV1.2 LKM yes
override LKM yes
Phalanx b6 /dev/mem yes

Table 2. Validation test

6 COMPARING WITH SECVISOR
6.1 Performance Comparison

Although the test environment of SecVisor is different from the one used in this
paper, we present the comparison of these two systems by examining the relative
performance loss.

From Tables 2 and 3, we can see that SecVisor causes significant overheads in all
testing scenarios compared with the native Linux. The Null Call shows the overhead
of a round trip between user and kernel. In this case, SecVisor slows down the system
call by 256x. In other cases, we still see 15-110x slowdowns. The slowdown caused
by SecVisor can be attributed to two main reasons: (1) SecVisor needs to maintain
data structures such as shadow page table and so on due to the introduction of the
VMM layer. (2) The time spent on address translation, page faults handling and
context switching increases substantially.

Benchmark | Null Call (us) | Fork (us) | Exec (us) | Prot Fault (us) | PF (us)
Linux 0.10 139 410 0.248 1.71
SecVisor 25.6 2274 6203 27.3 35.1

Table 3. Execution times of Imbench file and VM latencies Microbenchmarks in SecVisor

Kernel Code Integrity Protection Based on a V.M.A. 307
Benchmark | 2p/0k (us) | 2p/16k (us) | 2p/64k (us) | 8p/16k (us) | 8p/64k (us)
Linux 0.56 0.64 3.19 1.48 12.9
SecVisor 54.3 52.7 53.6 63.3 75.8

Table 4. Execution times of Imbench context switch microbenchmarks in SecVisor

6.2 Functionality Comparison

Table 5 lists the comparison of functionality between SecVisor and our system. It is
obvious that SecVisor provides more protection than our system, such as preventing
DMA attacks and kernel data attacks; but our system is more simple and easier
to deploy as shown in the last row of Table 5, and is applicable to legacy systems
without hardware virutalization that is required by SecVisor. Futhermore, our sys-
tem also has the ability of recording malicious behaviors, which is not available to

SecVisor.

Functionality, Usability and Strategy Our system SecVisor
Protect the kernel code page Yes Yes
Protect the mixed data code page Yes No
Prevent attacking the kernel code Yes Yes
by using LKM
Prevent attacking the kernel code Yes Yes
by using /dev/mem
Prevent attacking the kernel code No Yes
by using DMA
Prevent the kernel data No Yes
injection attacks
Record the attacker behaviors Yes No
Strategies to combat attacking Relocating Defense
Diverting Preventing
Installing system | Modifying Linux kernel
patches
Depend on hardware features Applicable to Needs the support of
legacy systems hardware virtualization
The methods of installation Recompiling the | Recompiling the kernel
kernel Installing the kernel
Starting up from module
the new kernel Adjusting the system
boot sequence

Table 5. Comparison of the function of SecVisor with the system in this paper

308 J. Sun, H. Chen, Ch. Chang, X. Li

7 LIMITATION AND FUTURE WORK
7.1 Security of the Whole Kernel Space

Our system is designed to deal with the challenges in kernel code modifications rather
than to solve the problem of existing threats which inject code into the kernel data
space. In fact, our approach can be applied to these existing threats by extending the
virtualized Harvard memory architecture to the entire kernel space. A virtualized
Harvard memory architecture in which code and data are totally separated can
significantly enhance the kernel security.

7.2 Further Usage of the Shadow Memory

Although the suspicious operations are directed to a safe memory region, we do
not make a full use of the information recorded in this region. The information
recorded by our protection mechanism is very useful for postmortem intrusion ana-
lysis. There are many security tools trying to record all the operations of the OS
over a period of time so that the intrusion analysis and intrusion recovery are able to
work. BackTracer [5] and Taser [8] log all the information needed using system call
interposition. Later, when the system is found intruded, the information logged in
a safe place is used to replay the system’s execution from a certain point. By doing
this, analysts can observe how the intrusion is conducted, and which components
are tainted by this intrusion, and then recover the entire system to a safe state.
ReVirt [7] is a logging and recovery system based on VMM. Logging the operations
of OS at instruction-level, combined with the advantage of strong isolation provided
by VMM, ReVirt has much better reliability than many OS-level loggers. One
disadvantage of these system loggers is that they simply log and replay all the
operations executed without judging whether the operations are illegal or interfering
with their execution. If the approach in this paper is to be used in the logging
system, all the suspicious operations are recorded without any harmful impact on
the system. The logs recorded are very useful for analyzing the behavior of malicious
programs.

8 RELATED WORK

Ryan Riley [15] proposed a method virtually splitting memory to prevent code in-
jection attack at user-level. The approach is similar to ours; but to manipulate
the content in TLBs, the single step execution mode was frequently used, which
would significantly affect the speed of instruction execution. The intensive context
switches of user processes also cause large overhead. These weaknesses make Ryan
Riley’s approach unpractical in performance-critical systems.

Focusing on the different characteristics of the two kinds of memory access,
Wurster et al. [20] implemented two address translation mechanisms to bypass self

Kernel Code Integrity Protection Based on a V.M.A. 309

check-summing. For the same purpose, Nathan E. Rosenblum [14] developed an ex-
tension to the Xen hypervisor to implement context sensitive paging mapping. The
methods they used are similar: after modifying the target program, they turn on the
mechanism of context sensitive mapping so that when the self check-summing code
is checking the integrity of specified program, what it reads is actually other physi-
cal pages holding the target program’s unchanged code. But the code the program
executes will be the modified version. In this way, the self check-summing process
is successfully bypassed.

Sparks and Butler [16] proposed a new rootkit: Shadow Walker. It adopts
a method similar to our approach. By modifying Windows XP’s page fault handler,
it presents a fake memory space to hide its malicious code in order to circumvent
memory scanners.

9 CONCLUSION

In this paper, a virtualized Harvard memory architecture was proposed and a proof-
of-concept prototype was implemented in Linux operating system, which separates
the code fetch and data operation on the kernel code. The effectiveness of our
system to resist kernel level attacks was evaluated and the impact on operating
system performance was also analyzed in detail. The experiment results show that
our approach is effective and practical.

Acknowledgments

The authors are grateful to the anonymous reviewers for their helpful feedback.
This research was supported in part by the National Natural Science Foundation
of China under grants 61272190, 61173166 and 60803130, the Program for New
Century Excellent Talents in University, and the Fundamental Research Funds for
the Central Universities of China.

REFERENCES

[1] AIKEN, H.H.: Proposed Automatic Calculating Machine. 1937, reprinted in The
Origins of Digital Computers Selected Papers, Second Edition, 1975, pp. 191-198.

[2] AIKEN, H. H—HoOPPER, G.M.: The Automatic Sequence Controlled Calculator.
1946, reprinted in The Origins of Digital Computers Selected Papers, Second Edition,
1975, pp. 199-218.

[3] BARHAM, P.—DRrAcOVIC, B.—FRASER, K.—HAND, S.—HARRIS, T.—Ho0, A.—
NEUGEBAUER, R.—PRATT, I.—WARFIELD, A.: Xen and the Art of Virtualization.
In Proceedings of the 19®" ACM Symposium on Operating Systems Principles (SOSpP
2003), ACM Press, pp. 164-177.

[4] BUFFER OVERFLOW ATTACKS BYPASSING DEP (NX/XD BITS) — PART 2:
Code Injection. Available on: http://www.mastropaolo.com/2005/06/

310

[5]

[6]

[7]

8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]

J. Sun, H. Chen, Ch. Chang, X. Li

05/buffer-overflow-attacks-bypassing-dep-nxxd-bits-part-2-code-
injection/.

CHEN, P.M.—KING, S.T.: Backtracking Intrusions. In Proceedings of the 19"
ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton Landing,
NY USA, pp. 223-236.

CHEN, S.—XuU, J.—SEZER, E.—GAURIAR, P.—IYER, R.: Non-Control-Data At-
tacks are Realistic Threats. In Proceedings of the Usenix Security Symposium 2005,
pp. 177-192.

Dunvapr, G. W.—King, S. T.—CINAR, S.—BAsrA1, M.—CHEN, P. M.: ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Logging and Replay. In Pro-
ceedings of the 2002 Symposium on Operating Systems Design and Implementation
(OSDI) 2002, pp. 211-224.

GOEL, A.—Po, K.—FARrRHADI, K.—LI1, Z.—DE LARA, E.: The Taser Intrusion
Recovery System. In Proceedings of the 20" ACM Symposium on Operating Systems
Principles (SOSP 2005), pp. 163-176.

Kivity, A.—KaAMAY, Y.—LAOR, D.: KVM: The Linux Virtual Machine Monitor.
Linux Symposium 2007.

Securing Memory. Available on: http://www.kernelthread.com/publications/
security/smemory.html.

Linux Kernel do brk() Vulnerability. Available on: http://www.isec.pl/papers/
linux_kernel_do_brk.pdf.

Loscocco, P. A.—WiLsoN, P. W.—PENDERGRASS, J. A.—McDoNNELL, C.D.:
Linux Kernel Integrity Measurement Using Contextual Inspection. In Proceedings of
the 2007 ACM Workshop on Scalable Trusted Computing, pp. 21-29.

PaTinL, S.—KASHYAP, A.—SIVATHANU, G.—ZADOK, E.: 3FS: An In-Kernel In-
tegrity Checker and Intrusion Detection File System. In Proceedings of LISA ’04:
Fighteenth Systems Administration Conference, pp. 67-78.

RosSENBLUM, N.E.—Co0OKSEY, G.—MILLER, B.P.: Virtual Machine-Provided
Context Sensitive Page Mappings. In Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE '08), pp. 81-90.

RiLEY, R.—JiANG, X.—XU, D.: An Architectural Approach to Preventing Code
Injection Attacks. In Proceedings of the 37" Annual IEEE/IFTP International Con-
ference on Dependable Systems and Networks (DSN 2007), pp. 30-40.

SPARKS, S.—BUTLER, J.: ShadowWalker: Raising the Bar for Windows Rootkit
Detection. In Black Hat Japan, Tokyo, Japan 2005.

TRIPWIRE INC. AVAILABLE ON: http://www.tripwire.com/.

VON NEUMANN, J.: First Draft of a Report on the Edvac. 1945, Reprinted in the
Origins of Digital Computers Selected Papers, Second Edition, 1975, pp. 355-364.
Wind river Vxworks. Available on: http://www.windriver.com/vxworks/.
WURSTER, G.—VAN QOORSCHOT, P.—Somavaji, A.: A Generic Attack on
Checksumming-Based Software Tamper Resistance. In Proceeding of 2005 IEEE
Symp. Security and Privacy, 2005, pp. 127-138.

Kernel Code Integrity Protection Based on a V.M.A. 311

Jianhua SuN is an Associate Professor at the School of Infor-
mation Science and Engineering, Hunan University, China. She
received the Ph.D. degree in computer science from Huazhong
University of Science and Technology, China in 2005. Her re-
search interests include security and operating systems.

Hao CHEN received the B.Sc. degree in chemical engineering
from Sichuan University, China, in 1998, and the Ph.D. degree
in computer science from Huazhong University of Science and
Technology, China in 2005. He is now an Associate Professor at
the School of Information Science and Engineering, Hunan Uni-
versity, China. His current research interests include parallel and
distributed computing, operating systems, cloud computing and
systems security. He published more than 40 papers in top jour-
nals such as the IEEE Transactions on Parallel and Distributed
Systems (TPDS) and IEEE Transactions on Computers (TC),
and in renowned conferences like IPDPS, IWQoS, HiPC, and CCGrid. He is a member of
the IEEE and the ACM.

Cheng CHANG is a Ph. D. student at the School of Information
Science and Engineering, Hunan University, China. His research
interests include cloud computing, parallel and distributed com-
puting and security.

Xingbang LI was a former graduate student at the School of
Information Science and Engineering, Hunan University, Chian.
His research interests include operating systems and security.

