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the existing ones. We point out some applications of bipartite chain graphs in
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1 INTRODUCTION

A graph G = (V,E) is called bipartite chain [31] if it is bipartite and for each color
class the neighbourhoods of the nodes in that color class can be ordered linearly
with respect to inclusion.
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The class of bipartite chain graphs is also known as 2K2-free bipartite graphs,
difference graphs [12] or bisplit graphs [10].

An undirected graph G = (V,E) is a bisplit graph if its vertex set can be parti-
tioned into a stable set and a complete bipartite graph.

A graph G = (V,E) is said to be a difference graph if there exist the real numbers
a1, a2, . . . , an associated with the vertices of G and a positive real number d such
that

1. |ai| < d for i = 1, 2, . . . , n;

2. distinct vertices i and j are adjacent if and only if |ai − aj| ≥ d.

A graph is a difference graph if and only if it is {2K2, C3, C5}-free [4].

In [3] an O(nm) algorithm for bisplit graphs is given.

In [32] recognition algorithms for the bipartite chain graphs in polynomial time
are given, using characterizations of these graphs with forbidden subgraphs; also,
linear algorithms are given for independent set [13] and for domination [21].

Bisplit graphs are decomposed in 3 stable sets such that we have total adjacency
between two of these stable sets [3].

In different problems from the theory of graphs, particularly in the building of
some recognition algorithms, a type of partition of the set of vertices in three classes
A, B, C appears frequently such that A induces a connected subgraph, and C is
totally adjacent to B and totally nonadjacent to A. This happens, for example, when
building cographs, starting from a K1,2 and substituting the vertices with cographs.
The introduction of the notion “weakly decomposition” [5, 27] and the study of its
properties allows us to obtain other results of this type, such as the characterization
of cographs with cotrees (result obtained by Lerchs [18], also see [15, 19], but for
which we obtain an easier proof). Also, we characterize the K1,3-free graphs and
give a recognition algorithm for these graphs. Other properties are obtained for
triangulated graphs.

2 PRELIMINARIES

Throughout this paper, G = (V,E) is a connected, finite and undirected graph [1],
without loops and multiple edges, having V = V (G) as the vertex set and E = E(G)
as the set of edges, (n = |V |, m = |E|). G is the complement of G. If U ⊆ V , by
G(U) or [U ]G we denote the subgraph of G induced by U . By G−X we mean the
subgraph G(V −X), whenever X ⊆ V , but we simply write G− v, when X = {v}.
If e = xy is an edge of a graph G, then x and y are adjacent, while x and e are
incident, as are y and e. If xy ∈ E, we also use x ∼ y, and x 6∼ y whenever x, y are
not adjacent in G. If A,B ⊂ V are disjoint and ab ∈ E for every a ∈ A and b ∈ B,
we say that A,B are totally adjacent and we denote by A ∼ B, while by A 6∼ B we
mean that no edge of G joins some vertex of A to a vertex from B and, in this case,
we say A and B are non-adjacent.
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The neighborhood of the vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈ E},
while NG[v] = NG(v)∪{v}; we denote N(v) and N [v], when G appears clearly from
the context. The degree of v in G is dG(v) = |NG(v)|. The neighborhood of the
vertex v in the complement of G will be denoted by N(v).

The neighborhood of S ⊂ V is the set N(S) = ∪v∈SN(v) − S and N [S] =
S ∪N(S). A graph is complete if every pair of distinct vertices is adjacent. A clique
is a subset Q of V with the property that G(Q) is complete. The clique number of
G, denoted by ω(G), is the size of the maximum clique.

A stable set is a subset X of vertices where every two vertices are not adjacent.
α(G) is the number of vertices of a stable set of maximum cardinality; it is called
the stability number of G. χ(G) = ω(G) is called chromatic number.

If N [v] = V , then v is called a dominating vertex in G.
A dominating set for a graphG = (V,E) is a subsetD ⊆ V such that ∀v ∈ V−D,

∃d ∈ D such that vd ∈ E. The domination number ν(G) is the number of vertices
in a smallest dominating set for G.

Let G = (V,E) be a connected graph. A subset A ⊂ V is called cutset if G−A
is not connected.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a chordless cycle on
n ≥ 3 vertices, and a complete graph on n ≥ 1 vertices, respectively.

A graph G is called F -free if none of its subgraphs is in F . The Zykov sum of
the graphs G1, G2 is the graph G = G1 +G2 having:

V (G) = V (G1) ∪ V (G2),

E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets
A and B such that every edge connects a vertex in A to one in B. That is, A and B
are stable sets.

A gem graph is a graph formed by making an universal vertex adjacent to each
of the four vertices of the induced path P4 as an induced subgraph.

We call adjacent graph (X-adjacent) of a family of graphs (Gx)x∈V (X), indexed

by the set of vertices X, the graph denoted ∪Xx∈XGx (see [11], also [8, 23]), where:

V (∪Xx∈XGx) = ∪x∈XV (X)× {x};
E(∪Xx∈XGx) = ∪x∈XE(Gx) ∪ {[ax, bx′]|x 6= x′, xx′ ∈ E(X), a ∈ V (Gx), b ∈ V (Gx′)}.

For a graph G = (V,E):

• the distance d(u, v) between two vertices u and v is defined as the length of the
shortest path from u to v;

• the eccentricity of a vertex u ∈ V is eG(u) = max{d(u, v) : v ∈ V };
• the radius is r(G) = min{eG(u) : u ∈ V };
• the center C(G) of a graph G is C(G) = {u ∈ V : r(G) = eG(u)}.
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When searching for recognition algorithms, a type of partition appears frequently
for the set of vertices in three classes A,B,C, which we call a weakly decomposition,
such that: A induces a connected subgraph, C is totally adjacent to B, while C and
A are totally nonadjacent.

The structure of the paper is as follows. In Section 3 we recall a characteriza-
tion of the weakly component and the existence of the weakly decomposition, and
give an algorithm to find one. In Section 4 we present a new characterization of
the bipartite chain graphs and give a recognition algorithm. In Section 5 we give
combinatorial optimization algorithms for bipartite chain graphs. In Section 6 we
point out some applications of bipartite chain graphs in chemistry and approach the
Minimum Chain Completion problem.

3 THE WEAKLY DECOMPOSITION

At first, we recall the notions of weakly component and weakly decomposition.

Definition 1 ([27, 28]). A set A ⊂ V (G) is called a weakly set of the graph G if
NG(A) 6= V (G) − A and G(A) is connected. If A is a weakly set, maximal with
respect to set inclusion, then G(A) is called a weakly component. For simplicity,
the weakly component G(A) will be denoted with A.

Definition 2 ([27, 28]). Let G = (V,E) be a connected and non-complete graph.
If A is a weakly set, then the partition {A,N(A), V −A∪N(A)} is called a weakly
decomposition of G with respect to A.

The name of “weakly component” is justified by the following result.
In order for the paper to be self-explained, we give below the proofs for Theorem

1 and Theorem 2, as well as the algorithm to obtain a weakly decomposition.

Theorem 1 ([27, 28]). Every connected and non-complete graph G = (V,E) ad-
mits a weakly component A such that G(V − A) = G(N(A)) +G(N(A)).

Proof. Because graph G is non-complete, α(G) ≥ 2, there exist the vertices x and
y, x 6= y, nonadjacent. Let A0 = {x}, B0 = N(x), C0 = N(x). We have y ∈ C0.
If N(x) ∼ N(x); then A = A0. Otherwise, let x1 ∈ N(x), y1 ∈ N(x) such that
x1 6∼ y1. For A1 = A0 ∪ {x1}, G(A1) is connected, as G(A0) is connected and
x1 ∈ N(x). N(A1) = (N(A0)−{x1})∪ (N(x1)∩C0). We have y1 ∈ N(A1), because
x1 6∼ y1, y1 ∈ N(x) and y1 6∼ A0. It follows that N(A1) 6= ∅. If N(A1) ∼ N(A1)
then G(V − A1) = G(N(A1)) + G(N(A1)). Let us suppose that Ai, Bi = N(Ai),
Ci = N(Ai) have been built. If Bi ∼ Ci then A = Ai. If not, let xi+1 ∈ Bi and
yi+1 ∈ Ci, with xi+1 6∼ yi+1. We denote Ai+1 = Ai ∪ {xi+1}, Bi+1 = N(Ai+1),
Ci+1 = N(Ai+1). G(Ai+1) is connected, because G(Ai) is connected and xi+1 ∈
N(Ai). Also, yi+1 ∈ N(Ai+1), because xi+1 6∼ yi+1, yi+1 ∈ N(Ai) and yi+1 6∼ Ai.
It follows that N(Ai+1) 6= ∅. If Bi+1 ∼ Ci+1 then A = Ai+1 and G(V − Ai+1) =
G(N(Ai+1)) + G(NAi+1). Because A0 ⊂ A1 ⊂ . . . ⊂ Ai ⊂ . . . ⊂ V and |V | < ∞
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it follows that ∃p ∈ N such that N(Ap) ∼ N(Ap) and, consequently, A = Ap is
a weakly component with the property specified in Theorem 1. 2

Theorem 2 ([27, 28]). Let G = (V,E) be a connected and non-complete graph and
A ⊂ V . Then A is a weakly component of G if and only if G(A) is connected and
N(A) ∼ N(A).

Proof. Let us suppose that there exists n ∈ N(A) and n ∈ N(A) such that nn 6∈ E.
Let A′ = A ∪ {n} and N ′ = (N(A) − {n}) ∪ (N(n) ∩ N(A)). G(A′) is connected,
N(A′) = N ′ and V (G) − (A′ ∪ N(A′)) ⊇ {n}. It follows that N(A′) 6= V (G) − A′,
contradicting the maximality of A. Conversely, let G(A) be connected and N(A) ∼
N(A). We show that G(A) is the weakly component. Let A′ ⊃ A, the weakly
component. We have ∅ 6= A′ − A ⊆ N(A), because A 6∼ N(A) and G(A′) is
connected. Let n ∈ A′ − A; then N(A) ⊆ N(n). It follows that N(A′) = ∅,
contradicting the definition of the weakly component. 2

The next result, that follows from Theorem 1, ensures the existence of a weakly
decomposition in a connected and non-complete graph.

Corollary 1. If G = (V,E) is a connected and non-complete graph, then V admits
a weakly decomposition (A,B,C), such that G(A) is a weakly component and G(V −
A) = G(B) +G(C).

Theorem 2 provides an O(n+m) algorithm for building a weakly decomposition
for a non-complete and connected graph.

Algorithm 1 for the weakly decomposition of a graph [27]
Input: A connected graph with at least two nonadjacent vertices, G = (V,E).
Output: A partition V = (A,N,R) such that G(A) is connected, N = N(A),
A 6∼ R = N(A).
begin

A := any set of vertices such that A ∪N(A) 6= V
N := N(A)
R := V − A ∪N(A)
while (∃n ∈ N , ∃r ∈ R such that nr 6∈ E ) do

begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩R)
R := R− (N(n) ∩R)

end
end
EndWeaklyDecompositionGraph

Remark 1. Let G = (V,E) be a connected, non-complete graph. If A a weakly set
then A 6= V .
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Proof. If A is a weakly set and G is connected it follows that A 6= V else NG(A) = ∅,
V − A = ∅, that is NG(A) = V − A. 2

Let G be a connected graph and WG = {A| A is a weakly set of G}.

Remark 2. Let G = (V,E) be a connected graph. WG has at least an element if
and only if G is not complete.

Proof. If G is not complete then there exists v ∈ V such that NG(v) 6= V − {v}.
So {v} is a weakly set: {v} ∈ WG. Conversely, let us suppose that there exists A,
weakly set of G. Then NG(A) 6= V − A, so N(A) 6= ∅. It follows that ∃a ∈ A,
∃b ∈ N(A) such that ab 6∈ E. So G is not complete. 2

Let W0
G = {A| A ∈WG, A is maximal with respect to inclusion}.

Remark 3. Let G = (V,E) be a connected, non-complete graph. If A ∈ W0
G then

A is cutset in G.

Proof. In G−A, the sets R = N(A) and N are nonempty sets of totally nonadjacent
vertices. 2

Remark 4. Let G = (V,E) be a connected, non-complete graph. If A ∈ W0
G then

NG(A) is cutset in G.

Proof. In G−A, the sets R = N(A) and A are nonempty sets of totally nonadjacent
vertices. 2

4 RECOGNITION ALGORITHMS FOR BIPARTITE CHAIN
GRAPHS

In this section we characterize the bipartite chain graphs using weakly decomposition
and we give a recognition algorithm based on this characterization.

Definition 3. A graph G = (V,E) is called bipartite chain if it is bipartite and for
each color class the neighbourhoods of the nodes in that color class can be ordered
linearly with respect to inclusion.

We give, through Theorem 3, a characterization of the bipartite chain graphs.
So, the decomposition of bipartite chain graphs is in 4 stable sets. But also, ω(G) =
2, and α(G) and ν(G) are obtained with algorithms in O(n+m) because the weakly
decomposition of a graph is provided with an O(n+m) algorithm.

Theorem 3. Let G = (V,E) be a connected, non-complete graph, and (A,N,R)
a weakly decomposition with G(A) the weakly component. G is a bipartite chain
graph if and only if

1. N and R are stable sets
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2. There exists B ⊆ A such that B, A−B are stable sets, B ∼ N and (A−B) 6∼ N ,
A−B = NG(B)−N and B = NG(A−B)

3. G(A) is a bipartite chain graph.

Proof. Let G be a bipartite chain graph and (A,N,R) a weakly decomposition with
G(A) the weakly component; then N ∼ R. G(A) is a bipartite chain graph. If N
were not stable then n1, n2 ∈ N would exist such that n1n2 ∈ E; thenG({n1, n2, r} '
C3, ∀r ∈ R. If R were not stable then r1, r2 ∈ R would exist such that r1r2 ∈ E;
then G({r1, r2, n} ' C3, ∀n ∈ N . 2

No distinct vertices would exist in N with distinct neighbors in A. If n, n′ ∈ N
would exist such that nb 6= n′b, where nb, n

′
b ∈ A and nnb, n

′n′b ∈ E then if nbn
′
b ∈ E

then G({nb, n, r, n
′, n′b}) ' C5, ∀r ∈ R else G({nb, n, n

′
b, n
′}) ' 2 ·K2.

So, ∀n1, n2 ∈ N we have either:

a) N(n1) ∩ A ⊃ N(n2) ∩ A or

b) N(n1) ∩ A = N(n2) ∩ A.

We suppose that a) holds. Let x from A be adjacent only to n1 and y from A be
adjacent both to n1 and n2. Because G(A) is connected it follows that there is Pxy.
If xy ∈ E then G({x, y, n1}) ' C3. If xy 6∈ E then either x and y have a common
neighbor b in A and then G({b, x, n2, r}) ' 2 ·K2 or x and y have different neighbors
in A (let them be b1x ∈ E and b2y ∈ E) and then G({b1, x, n2, r}) ' 2 ·K2, ∀r ∈ R.
So a) does not hold. Therefore, N(n1) ∩ A = N(n2) ∩ A, ∀n1, n2 ∈ N . Then
∃B ⊂ A so that B = N(n)∩A, ∀n ∈ N , which means B = NG(N)∩A and B ∼ N ,
A−B 6∼ N .

Because G is connected and N = NG(A) it follows that B 6= ∅.
If B = N(n) ∩ A were not stable then b1, b2 ∈ N(n) ∩ A would exist such that

b1b2 ∈ E; then G({b1, b2, n}) ' C3. Because G(A) is connected and B is stable set,
it follows that A−B 6= ∅.

Because A−B ⊂ A 6∼ R, it follows that A−B 6∼ R.
If A − B were not stable then a1, a2 ∈ A − B would exist such that a1a2 ∈ E.

Then, because A−B 6∼ R∪N , it follows that G({a1, a2, n, r}) ' 2K2, ∀n ∈ N,∀r ∈
R. Because A − B is stable set, G(A) is connected; it follows that ∀a ∈ A − B,
∃b ∈ B such that ab ∈ E, so A−B = NG(B)−N . Because G(A) is connected and
B is stable set, it follows that B = NG(A−B).

We suppose that i), ii) and iii) hold. Immediately follows that G does not contain
either 2 ·K2, or C3, or C5, which means that G is bipartite chain graph.

Theorem 3 provides the following recognition algorithm for bipartite chain
graphs.

Recognition algorithm for bipartite chain graphs
Input: A connected, non-complete graph G = (V,E).
Output: An answer to the question: “Is G bipartite chain”?
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begin
L := {G}
while(L 6= ∅) do
Let H be in L

1. Determine the degree of each vertex
2. Determine a weakly decomposition (A,N,R) with N ∼ R for H
3. Determine B = NH(N)−R and C = A−B
4. Let: r = |R|; nr = |N |; b = |B|;
5. If (∃v ∈ R such that dG(v) 6= nr) then G is not bipartite chain

else
if (∃v ∈ N such that dG(v) 6= b+ r) then
G is not bipartite chain

else
Put [A]H in L

6. G is bipartite chain
end.
EndRecognitionAlgorithmForBipartiteChainGraphs

So the entire execution is in O(n(n+m)) time.

5 COMBINATORIAL OPTIMIZATION ALGORITHMS
FOR BIPARTITE CHAIN GRAPHS

In this section we calculate the density, giveO(n+m) algorithms to compute stability
number, domination number, and calculate the center and the radius of these graphs.

In [4], the authors study the Dominating Set problem with measure functions,
which is extended from the general Dominating Set problem.

In [16], the authors present results which allow us to compute the independence
numbers of special graphs.

In [22], the authors study independence and domination in path graph of trees.
A path graph is defined as follows. Let G be a graph, k ≥ 1 and Pk be the set

of all paths of length k in G. The vertex set of path graph Pk(G) is the set Pk. Two
vertices of Pk(G) are joined by an edge if and only if their intersection is a path of
length k − 1, and their union forms either a cycle oa a path of length k + 1.

Using Theorem 3 we obtain the following consequence.

Consequence 1. Let G = (V,E) be a connected, non-complete graph, and (A,N,
R) a weakly decomposition with G(A) as the weakly component. If G is a bipartite
chain graph then

1. ω(G) = 2

2. α(G) = max{|A| − |B|+ |N |, |A| − |B|+ |R|, |B|+ |R|}

Proof. We have: α(G(A)) = max{|A| − |B|, |B|}; α(G(R)) = |R|; α(G(A ∪N)) =
max{α(G((A − B) ∪ B)), α(G(A − B)) + α(G(N))} = max{|A| − |B|, |B|, |A| −
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|B|+ |N |}. So, α(G) = max{α(G(A∪N)), α(G(A)) +α(G(R))} = max{max{|A| −
|B|, |B|, |A| − |B|+ |N |},max{|A| − |B|, |B|}+ |R|}} = max{|A| − |B|+ |N |, |A| −
|B|+ |R|, |B|+ |R|}. 2

Facility location analysis deals with the problem of finding optimal locations for
one or more facilities in a given environment [17]. Location problems are classical
optimization problems with many applications in industry and economy. Spatial
location of the facilities often takes place in the context of a given transportation,
communication, or transmission system.

The aim of this problem could be to determine a location that minimizes the
maximum distance to any other location in the network. Another type of location
problems optimizes a “minimum of a sum” criterion, which is used in determining
the location for a service facility like a shopping mall, for which we try to minimize
the total travel time.

Consequence 2. Let G = (V,E) be a connected graph, non-complete and (A,N,
R) a weakly decomposition with G(A) as the weakly component. If G is a bipartite
chain graph then N ∪B is a dominating set and ν(G) = |N |+ |B|. Also, the radius
is 2 and the center is N ∪B.

Proof. Because the distance between any vertex in R and any vertex in A−B is 3
and the distance between any other two vertices is at the most 2 it follows that:

eG(u) = 3, ∀u ∈ R ∪ (A−B);

eG(u) = 2, ∀u ∈ N ∪B;

r(G) = 2;

C(G) = N ∪B.

2

6 SOME APPLICATIONS OF BIPARTITE CHAIN GRAPHS
IN CHEMISTRY

In this section we point out some applications of bipartite chain graphs in chemistry
and approach the Minimum Chain Completion problem.

In [20], the authors discussed the challenges specific to the development of com-
putational chemistry software.

The Wiener index was introduced in 1947 by Horold Wiener [29] and is defined
as the sum of distance between all pairs of vertices in G:

W (G) =
∑

u,v∈V
dG(u, v).

The theoretical framework is especially well elaborated for the Wiener index of
trees [7].
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The Wiener index is a graphical invariant that has found extensive application
in chemistry [25].

The distance-counting polynomial was introduced [14] as:

H(G, x) =
∑
k

d(G, k)xk,

with d(G, 0) = |V (G)| and d(G, 1) = |E(G)|, where d(G, k) is the number of pair
vertices lying at distance k to each other. This polynomial was called Wiener, by
its author Hosoya, in the more recent literature [11, 26].

Theorem 4. Let G = (V,E) be a connected, non-complete graph, and (A,N,R)
a weakly decomposition with G(A) the weakly component. If G is bipartite chain
graph, d is the number of common neighbours in B for all pairs of vertices in A−B
and ad (nad) is the number of vertices x in A−B, y in B, adjacent (non-adjacent),
then

1. the Wiener polynomial is

H(G, x) = [2(|A| − |B|)(|A| − |B| − 1)− 4d]x4 + [3(|A| − |B|)|R|+ nad]x3

+ [|R|(|R| − 1) + 2|B||R|+ |N |(|N | − 1) + 2(|A| − |B|)|N |
+ |B|(|B| − 1) + 2d]x2 + (|N ||R|+ |N ||B|+ ad)x+ |V |

2. the Wiener index is

W (G) = |R|(|R| − 1) + |N ||R|+ 2|B||R|+ 3(|A| − |B|)|R|+ |N |(|N | − 1)

+ |N ||B|+ 2(|A| − |B|)|N |+ |B|(|B| − 1) + ad + 3nad

+ 2((|A| − |B|)(|A| − |B| − 1)− d).

Proof. Let G = (V,E) be a connected, non-complete graph, and (A,N,R) a weakly
decomposition with G(A) the weakly component. Because G is a bipartite chain, it
follows that:

• N and R are stable sets

• there exists B ⊆ A such that B, A−B are stable sets, B ∼ N and (A−B) 6∼ N ,
A−B = NG(B)−N and B = NG(A−B)

• G(A) is a bipartite chain graph.

Let d be the number of common neighbours in B for all pairs of vertices in A−B.
Considering the distances between all pairs of vertices we have:∑

u∈R,v∈R
d(u, v) = 2(|R| − 1)|R|/2

∑
u∈R,v∈N

d(u, v) = |N ||R|
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u∈R,v∈B

d(u, v) = 2|B||R|
∑

u∈R,v∈A−B
d(u, v) = 3(|A| − |B|)|R|

∑
u∈N,v∈N

d(u, v) = 2(|N | − 1)|N |/2
∑

u∈N,v∈B
d(u, v) = |N ||B|

∑
u∈N,v∈A−B

d(u, v) = 2(|A| − |B|)|N |
∑

u∈B,v∈B
d(u, v) = 2(|B| − 1)|B|/2

∑
u∈B,v∈A−B

d(u, v) = ad + 3nad

∑
u∈A−B,v∈A−B

d(u, v) = 2d+ 4((|A| − |B|)(|A| − |B| − 1)/2− d).

So, the Wiener polynomial is

H(G, x) = [2(|A| − |B|)(|A| − |B| − 1)− 4d]x4 + [3(|A| − |B|)|R|
+ 3nad]x3 + [|R|(|R| − 1) + 2|B||R|+ |N |(|N | − 1) + 2(|A| − |B|)|N |
+ |B|(|B| − 1) + 2d]x2 + (|N ||R|+ |N ||B|+ ad)x+ |V |

and the Wiener index is

W (G) = |R|(|R| − 1) + |N ||R|+ 2|B||R|+ 3(|A| − |B|)|R|
+ |N |(|N | − 1) + |N ||B|+ 2(|A| − |B|)|N |+ |B|(|B| − 1)

+ ad + 3nad + 2((|A| − |B|)(|A| − |B| − 1)− d).

2

In what follows, we approach the Minimum Chain Completion problem.
A graph is (P5, gem)-free, when it does not contain P5 or a gem. In [2] the

authors present O(n2) time recognition algorithms for (P5, gem)-free graphs.
In [9] the authors give approximation algorithms for two variants of the Minimum

Chain Completion problem, where a bipartite graph G = (U, V,E) is given, and the
goal to find the minimum set of edges F that need to be added to G such that the
bipartite graph G′ = (U, V,E ′) (E ′ = E ∪ F ) is a chain graph.

In [9] the authors discuss the following two variants:

Total Minimum Chain Completion (T-mcc). Given a bipartite graph G =
(U, V,E), find the minimum set of edges F that need to be added to G such
that the bipartite graph G′ = (U, V,E ′), where E ′ = E ∪ F , is a chain graph.
The value of the solution is |E ′|.
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Additional Minimum Chain Completion (A-mcc). Given a bipartite graph
G = (U, V,E), find the minimum set of edges F that need to be added to G
such that the bipartite graph G′′ = (U, V,E ′′), where E ′′ = E ∪ F , is a chain
graph. The value of the solution is |F |.

Since the A-mcc problem is NP-hard [30], so is the T-mcc problem.
We shall determine a weakly decomposition (A,N,R) with N ∼ R for G. If G

is a bipartite chain graph the G is a gem-free graph. [A]G is 2K2-free if and only
if G − R is P5-free. It follows from [2] that there exists an O(n2) time recognition
algorithms for(P5, gem)-free graphs.

An algorithm for the Minimum Chain Completion problem tests, for every i ∈
A−B, for every j ∈ A−B, if ((N(i)−N(j) 6= ∅) and (N(j)−N(i) 6= ∅)) and then
adds (i, k) to E (where k ∈ (NG(j)−NG(i)) ∩B).

The possible 2K2 in [A]G are eliminated, which means that [A]G becomes, from
a bipartite graph, a bipartite chain graph.

The test ((N(i)−N(j) 6= ∅) and (N(j)−N(i) 6= ∅)) means that the vertices i
and j in A−B have uncommon neighbours in B. By adding the edge (i, k), where
k is a neighbour of j and is not a neighbour of i in B, the vertices i and j in A−B
have a common neighbour in B.

Let ni be the number of neighbours (that, clearly, belong to B) of i in A−B.
Let nj be the number of neighbours (that, clearly, belong to B) of j in A−B.
The number of distinct paths of length 2 between i and j represents the number

of neighbors in common of i and j (paths that, clearly, go through B) – let this be
nc.

Then the test ((N(i)−N(j) 6= ∅) and (N(j)−N(i) 6= ∅)) can be replaced with
the test ((ni− nc > 0) and (nj − nc > 0)).

A cut, vertex cut, or separating set of a connected graph G is a set of vertices
whose removal renders G disconnected. The connectivity or vertex connectivity
k(G) is the size of a smallest vertex cut. A graph is called k-connected or k-vertex-
connected if its vertex connectivity is k or greater. A vertex cut for two vertices u
and v is a set of vertices whose removal from the graph disconnects u and v. The
local connectivity k(u, v) is the size of a smallest vertex cut separating u and v.

In [1] we can find the following result.

Theorem 5 (Menger’s theorem). Let G be an undirected graph, and let u and v
be nonadjacent vertices in G. Then, the maximum number of pairwise-internally-
disjoint (u, v)-paths in G equals the minimum number of vertices from V (G)−{u, v}
whose deletion separates u and v.

By Menger’s theorem, for any two vertices u and v in a connected graph G, the
numbers k(u, v) can be determined efficiently using the max-flow min-cut algorithm.
The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method
for computing the maximum flow in a flow network in O(nm2). It is asymptotically
slower than the relabel-to-front algorithm, which runs in O(n3), but it is often
faster in practice for sparse graphs. The algorithm was first published by a Russian
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scientist, Yefim (Chaim) Dinic, in 1970 [6] and independently by Jack Edmonds and
Richard Karp in 1972 [8] (discovered earlier). Dinic’s algorithm includes additional
techniques that reduce the running time to O(n2m).

So the algorithm for the minimum chain completion problem becomes:

Algorithm – Minimum Chain Completion
Input: A connected, non-complete graph G = (V,E).
Output: The transformation of G from bipartite graph to bipartite chain graph
begin

For every i ∈ A−B
For every j ∈ A−B

If ((ni− nc > 0) and (nj − nc > 0)) then
add (i, k) to E (where k ∈ (NG(j)−NG(i)) ∩B)

end.
EndMinimumChainCompletion

The complexity is O(n2)

7 CONCLUSIONS AND FUTURE WORK

In this paper we give an efficient recognition algorithm for bipartite chain graphs and
some combinatorial optimization algorithms, based on weakly decomposition. We
point out some applications of bipartite chain graphs in chemistry and approach the
Minimum Chain Completion problem. Our future research will focus on recognition
algorithms for weak-bisplit graphs.
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