
Computing and Informatics, Vol. 32, 2013, 461–485

A GENERIC DEVELOPMENT AND DEPLOYMENT
FRAMEWORK FOR CLOUD COMPUTING
AND DISTRIBUTED APPLICATIONS

Binh Minh Nguyen, Viet Tran, Ladislav Hluchý

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: {minh.ui, viet.ui, hluchy.ui}@savba.sk

Communicated by Jacek Kitowski

Abstract. Cloud computing has paved the way for advance of IT-based on demand
services. This technology helps decrease capital expenditure and operation costs,
solve scalability issue and many more user and provider constraints. However, devel-
opment and deployment of distributed applications on cloud environment becomes
a more and more complex task. Cloud users must spend a lot of time to prepare, in-
stall and configure their applications on clouds. In addition, after development and
deployment, the applications almost cannot move from one cloud to another due to
the lack of interoperability between them. To address these problems, in this paper
we present a novel development and deployment framework for cloud distributed
applications/services. Our approach is based on abstraction and object-oriented
programming technique, allowing users to easily and rapidly develop and deploy
their services into cloud environment. The approach also enables service migration
and interoperability among the clouds.

Keywords: Cloud computing, distributed application, abstraction, object-oriented
programming, interoperability

Mathematics Subject Classification 2010: 68-M14

462 B. M. Nguyen, V. Tran, L. Hluchý

1 INTRODUCTION

Cloud computing is described as a business model for on-demand delivery of com-
putation power, in which consumers pay providers what they used (“pay-as-you-
go”). The critical point that distinguishes cloud from other computing paradigms
is that cloud itself is considered fully virtualized, making illusion of the unlimited
resources. Therefore, cloud enables providers to optimise their provisioning and
users gain utility computing on demand. With the trend towards cloud model,
individuals and businesses have gradually changed their habits of using the com-
putational resources from their local computers or servers to data centers managed
by third party. Conceptually, cloud computing gathers key features like high avail-
ability, flexibility and elasticity, that intends to reduce total cost and decrease risk
for both users and providers. Today, consumers can buy raw resources, platforms
or applications over cloud infrastructures. In the language of this market, the com-
modities are usually referred to X-as-a-service (XaaS) paradigm (XaaS is commonly
used to express “anything/something”-as-a-service), which mainly includes Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS).

In principle, cloud-based appliances or services often provide higher availability
and lower cost than the traditional IT operations. For this reason, there is now
a strong trend of deploying and migrating appliances to cloud. This process could
be realized by using PaaS or IaaS. On the one hand, the PaaS clouds provide plat-
form (programming language, databases and messaging) for implementing services
and environments for hosting them. The platform also manages the execution of
these appliances and optionally offers some advanced features like automatic scaling.
Thus, this model allows developers to simply create their cloud services without the
need to manually configure and deploy virtual machines (VMs). On the other hand,
the IaaS clouds provide raw resources (VMs, storages) where the users have full
access to the resources and manipulate them directly in order to create their own
platform and deploy services there.

It can be realized easily that, while PaaS binds developers into certain existing
platforms, building cloud services in IaaS will be their choice to meet specific re-
quirements. However, the use of IaaS is perceived as difficult with the developers,
requiring advanced computer skills for the installation and usage. Otherwise, since
several commercial cloud systems have been already marketed, the problem of inter-
operability between these systems also arises, i.e. it would be possible and feasible to
move appliances from a cloud provider to another, or to deploy an existing appliance
on resources provided by several different cloud providers. Such possibility would
have very large impact on the competitiveness of providers, as it would require them
to offer better quality services at lower prices without forcing customer to rely on
their resources through vendor lock-in.

Although several standardizations and solutions in this area have emerged, they
have not yet brought any comprehensive solution for the service development and
deployment issue on IaaS clouds. Therefore, from the view of general cloud users,

Cloud Application Development and Deployment Framework 463

they need to have an instrument, which can solve the problem. In this way, cloud
service developers will achieve the highest work performance from cloud computing.
For example, developers can write, pack and deliver the codes of their services for
deployment on various IaaS clouds. In addition, the developers also may manage the
services via a unified interface without worrying about the incompatible application
programming interfaces (APIs). Thereof, cloud users are not IT experts, who can
exploit cloud computing easily to perform their complex tasks.

The work presented in this document is dedicated to innovative research and
development of an elastic instrument (called high-level Cloud Abstraction Layer –
CAL) allowing easy development and deployment of services on resources of multiple
infrastructure-as-a-service (IaaS) clouds simultaneously. A primary design idea of
CAL was introduced in [1] before; relying on this, we continue to mature it with de-
veloping components and experimenting effects on cloud environment. Technically,
the CAL provides a total novel approach with emphasis on abstraction, inheritance
and code reuse. Then, cloud-based services can be developed easily by extending
available abstractions classes provided by the CAL or other developers. Interoper-
ability between different clouds is solved by the basic abstraction classes of the CAL
and all services are inherited and benefited from the advantage. The work does not
stop on theoretical work but also continues in applying CAL to build cloud services
in order to deal with real problems.

2 PRESENT STATE OF THE ART AND RELATED WORKS

This section presents and points out the advantages as well as disadvantages of
existing solutions that relate to the issue of service development, deployment and
interoperability. These solutions could be divided into two groups according to their
characteristics, namely de-facto cloud standards and abstractions APIs.

2.1 De-Facto Cloud Standards

Open Virtualization Format (OVF) [2] is one of the numerous projects of Distributed
Management Task Force (DMTF) [3]. The project aims at creating a VM standard
that ensures a flexible, secure, portable and efficient way to distribute VMs between
different clouds. The VM standard is called virtual appliances [4]. Users can package
a VM in OVF and distribute it on a hypervisor. The OVF file is an XML file that
describes a VM and its configuration. Application-specific configurations can be
packaged and optimized for cloud deployment, as multiple VMs, and maintained
as a single entity in OVF format. For instance, an application may comprise the
web server, application server and database server. Hypervisors that support OVF
include VMware [5], Oracle VirtualBox [6], Citrix XenServer [7], and IBM AIX
running on Power systems [8], Microsoft Hyper-V [9] and IBM Mainframe Linux
z/VM [10]. Although appliances/services can move among various clouds along with
the OVF image, creating cloud-based services still requires considerable effort from

464 B. M. Nguyen, V. Tran, L. Hluchý

developers, who must carry out a lot of complicated steps such as preparing VM and
development platform, deploying and managing the services. Additionally, all of the
operations are performed without any utility functionalities or any supports from
cloud providers. This causes time-consuming and increased cost. Otherwise, the
incompatible APIs issue also brings about the service operations are not guaranteed
when they migrate from one cloud to another.

Open Cloud Computing Interface (OCCI) [11] is a recommendation of the Open
Grid Forum [12]. The OCCI is a RESTful Protocol [13] and API for all kinds of
management tasks. OCCI was originally initiated to create a standard management
API for existing IaaS clouds, allowing users to manage and use various clouds under
single unified interface that intends to enable cloud interoperability. Technically,
users send HTTP/HTTPS requests in turn to OCCI web service with actions and
parameters to control and manage resources on cloud. The parameters are stan-
dardized and defined in a XML or JSON (JavaScript Object Notation) file, which
is attached to the requests. OCCI web service then responds to the user with XML
content, including necessary information of cloud resources. Although OCCI enables
cloud users to manage resources from different clouds at the same time, unfortu-
nately, the users still have to directly connect to VMs in order to create their own
platform for service development and deployment. In this way, the service migration
is almost impossible.

In addition, the critical weakness of the cloud standardizations is that they force
cloud providers to accept and support their products. Such scenario would have
a very large impact on competitiveness of the cloud vendors, as it would require
them to offer better quality services at lower prices without locking customers to
rely on their resources.

2.2 Abstraction APIs

Similar to OCCI, abstraction APIs (e.g. Simple Cloud API [14], Deltacloud [15],
SAGA API [16]) have been created for managing resources from various clouds at
the same time. These APIs support a set of functionalities that are a common
denominator among different providers and hide technological differences by their
interfaces. Therefore, the APIs do not require any support from the cloud vendors.
A typical solution is Simple Cloud API, which provides a management interface in
form of PHP library. Functionally, the PHP implementation of the Simple Cloud
API uses the Factory and Adapter design patterns [17]. To work with a particular
cloud, user calls the appropriate factory method with an array of configuration
parameters. The class returned by the factory method is an adapter to a particular
cloud service. The adapter maps the Simple Cloud API calls to the service-specific
calls required by each cloud provider.

Apache Deltacloud is categorized into cloud research about provisioning and
management. Deltacloud defines a REST-based API for managing and manipulat-
ing cloud resources in a manner that isolates the API client as much as possible
from the particulars of specific cloud API’s. The Deltacloud API is implemented

Cloud Application Development and Deployment Framework 465

via HTTP request methods. All data is communicated via the REST interface to
a Deltacloud server, which similarly has a REST interface. To simplify operation of
the REST interface, the Deltacloud project provides a CLI (commandline interface)
tool, as well as client libraries in Ruby, Java, C, and Python. This makes Deltacloud
differ from other solutions including Simple Cloud API, Apache Libcloud [18], etc.
in which all these libraries are tied to a specific programming language – Simple
Cloud API to PHP, Apache Libcloud to Python. Deltacloud, on the other hand, is
entirely independent of languages and is the only cloud abstraction API that can
also be used as a web service. The advantage of this approach is that through
the use of widely accepted and existing standards such as HTTP and XML, an
open architecture is created independency from platforms and programming lan-
guages.

SAGA API is an API for deploying applications to distributed computing sys-
tems. The API defines an abstraction layer for scheduling jobs to grid or cloud
infrastructures, including execution, management functions of files or data. This
abstraction scheduler is essentially a resource broker (which is about negotiating be-
tween those who want to consume resources and providers). Applications are thus
represented as jobs. However, since it is built based on grid computing, there are
drawbacks when applying it to cloud. In real time, the SAGA API applications are
not services. The life cycle of the applications only consists of three stages: submit
to computational resources, run or calculate, return results or outputs. After that,
the used resources will be terminated. Consequently, the API is only suitable for
computational applications (e.g. calculation, simulation), not for development and
use of cloud services.

Besides the API abstraction tools presented above, there are others, which could
be mentioned such as: jclouds [19], boto [20], Apache Cloudstack [21], enStartus
enterprise [22], Right Scale [23], Scalr [24] and so on. All of them are developed
based on the abstraction approach in order to provide cloud users a tool for managing
resources from clouds. As identified before, the advantage of the API abstractions is
independent of cloud vendors. However, like OCCI, these abstractions do not help
developers develop and deploy services more easily than the traditional way. Thus,
the developers still have to prepare a platform and develop the services by connecting
directly to VMs. Although there are abstraction APIs, which offer support for
service deployment via scheduling job mechanism like Simple Cloud API, jcloud
and SAGA API, due to limitations of the mechanism, they cannot be used for
developing services. At present, no APIs have provided a comprehensive solution
for both development and deployment tasks.

Clearly, the problem of service development and deployment is a big gap of cloud
computing today. There are three reasons for this:

• PaaS cloud type limits developers/users to concrete platforms and APIs.

• Lack of suitable programming model for service development on IaaS.

• Lack of interoperability between different IaaS clouds.

466 B. M. Nguyen, V. Tran, L. Hluchý

So far, there are not any ideas or solutions, which address and resolve this diffi-
cult problem. In comparison with all solutions above, our approach has differences
and advantages in the following aspects:

Support for both development and deployment of cloud services – CAL
allows developers to write, package and deploy services into IaaS clouds. The ap-
proach customization and extension are emphasized: developers can take service
developed by others and customize/extend to new capabilities without access to
the original code.

Enabling service interoperability between cloud infrastructures – CAL is
independent from underlying cloud middlewares, so developers can choose the
target cloud infrastructure to deploy the developed services and manage them
in a unified interface.

Value-added providers – the approach enables value-added providers, who do
not require supporting CAL, to simultaneously achieve easy use for their users.

3 GENERAL APPROACH

Currently, services in IaaS clouds are usually developed and released in form of
pre-defined images, which are very cumbersome, difficult to modify, and generally
non-transferable between different cloud providers. For example, marketplace of
AWS appliances [25], VMware Virtual Appliance [26] StratusLab [27], etc. provide
a large number of services in that way. Though OVF can partially solve image move
problem, it almost cannot be applied to commercial clouds that have held the largest
market share of cloud computing uses (see Section 2.1).

Therefore, coming from the requirement of a solution that allows users and
developers to use diverse clouds at the same time irrespective of the differences
in cloud models (e.g. public, private), middlewares (e.g. image, hypervisor) and
incompatible APIs, we propose design and development of a high-level layer based
on abstraction approach, which would:

• simplify and streamline the deployment of cloud services, not dissimilar to the
way it is currently being handled in the cloud environments via standard VM
images;

• remove vendor lock-in of cloud providers by a single unified interface.

For this purpose, the approach releases cloud services as installation
and configuration packages that will be installed on VMs already deployed
in cloud resources and containing only the base operation system (OS). Then, users
just choose an OS provided by clouds (e.g. Ubuntu 12.04 LTS) and deploy the
configuration packages to create their own services. The advantages of this service
approach are as follows:

• Most cloud infrastructures support images with base OS, so the services are
easily transferrable. For instance, at the time of this writing, Ubuntu 12.04

Cloud Application Development and Deployment Framework 467

LTS is the popular OS provided by most of providers (both public and private
clouds).

• VMs are always started correctly with cloud middlewares, unlike image delivery
of the OVF approach and the marketplaces presented above, which must have
acceptance and support from providers.

• Services can work on unknown infrastructures without changing codes imple-
mented before.

• The approach allows taking full advantages of many existing applications (es-
pecially legacy ones) that already have had install/setup tools or via package
managers of base OS (e.g. apt, rpm and git package of Debian/Ubuntu).

• Allowing automatic deployment of developed services with near zero VM tuning.

One of the techniques supporting the abstraction approach is object-oriented
programming (OOP). The reason is that the encapsulation and polymorphism
mechanism of OOP allow hiding state details and standardizing different interaction
types, and those are the beginnings of the abstraction [28, 29]. Through these
mechanisms, OOP brings the ability of defining a common interface over different
implementations and behaviors of various systems. In addition, the OOP inheritance
mechanism also allows creating new abstraction layers over an initial abstraction
layer easily [30].

Relying on OOP, we offer services as modules or objects. A strong configuration
and control interface together with a programming language for component control
would allow this. Nowadays, many appliances are already provided in a package
which specifies the configuration interface (Android and iOS appliances are typical
examples) allowing developers to hide appliance details and thus optimize them in
the manner the developers want. At the same time, users use cloud services
exclusively via interface provided by developers.

Since services and their functions are defined in form of OOP objects, they can be
extended and customized in order to create new services based on the existing codes.
In this way, developers can reuse service codes via the inheritance mecha-
nism without learning implementation details of the origin. To achieve this
feature, CAL provides basic functionalities of VMs with base OS. Developers will
inherit the code and modify/add functions related to their services. CAL then acts
as foundation for development and deployment of cloud services on IaaS clouds. The
advantages of the code reuse are as follows:

• Service developers do not have to use any middleware functionality directly. As
a consequence, the codes of services are portable between different clouds.

• Developers just focus on service aspects, not on the clouds; in this way, the
approach reduces the efforts to learn about cloud middlewares.

• Enabling developers themselves to create PaaS, SaaS based on IaaS.

468 B. M. Nguyen, V. Tran, L. Hluchý

4 DESIGN OF HIGH-LEVEL CLOUD ABSTRACTION LAYER

The high-level abstraction layer for IaaS cloud aims to be a ubiquitous environment
serving distributed application and services. Therefore, the layer is expected to be
flexible enough to support several different clouds. The term “development” means
that the CAL allows developers to create cloud services easily and independently
from underlying infrastructures (create one, run anywhere). “Deployment” means
that the layer allows the developers to deploy the developed services easily to cho-
sen infrastructure via a simple, unified interface. In order to achieve this purpose,
as presented in Section 3, the approach of this research is based on abstraction
technique.

4.1 Abstraction of Cloud Resources

4.1.1 Data Abstraction

Theoretically, an abstraction hides details of an entity. In the context of using cloud
computing, there are many “entities” that need to be mentioned. However, due to
abstraction approach and OOP, the entities are encapsulated as data abstractions,
which can be used easily via programming methods. Figure 1 shows the hierarchical
data abstraction of cloud resources.

The cloud resource abstraction is divided into two parts, namely VM and mid-
dlewares. While the abstraction of VM allows simplifying the use with VM, the
abstraction of middlewares enables CAL users (service developers) to manage VM
simply under a single interface.

4.1.2 VM Abstraction

The abstraction of VM comprises two components: hardware and software. CAL
represents them as data to be used without understanding implementation details.

Hardware Abstraction: Like traditional computer, hardware of VM includes de-
vices provided as “virtual”, consisting of CPU, memory, disk space, OS platform
and network. As a rule, IaaS clouds offer their users VM types, in which each
type implies a set of the hardware devices. In other words, these types are ab-
stractions of VM hardwares. For example, Amazon EC2 enables users to select
several types of VM with different attributes [31]. The Small Instance type is
equipped with one virtual core CPU, 1.7GB of memory, 160GB of disk storage
and 32-bit or 64-bit platform of OS. The other types are equipped with more
powerful hardware and bring higher performance for VM. Besides, most of pub-
lic clouds provide the network by associating automatically a public IP address
with VM. For open source clouds, there are some exceptions (e.g. OpenStack [32]
which requires users to associate floating IP address manually).

In the heterogeneous environment of multiple clouds, the existing VM types
usually are diverse. Therefore, to use these clouds simultaneously, CAL defines

Cloud Application Development and Deployment Framework 469

Resource Abstraction

VM Abstraction Middleware Abstraction

Abstraction of

Hardware

Abstraction of

Software

Cloud B

Abstraction

Cloud A

Abstraction

Cloud C

Abstraction

VM Types

Base OS

Abstraction

Common

application

abstractions

Specific

application

abstractions

Base

software Application

names,

configura-

tions

Cloud A

functionalities

Cloud B

functionalities

Cloud C

functionalities

Application

names,

Additional

applications,

configura-

tions

Fig. 1. High-level abstraction of cloud resources

a high-level abstraction of VM hardwares based on the types provided by the
clouds. More specifically, all types of VM are grouped into the following classes:
small, medium and large, which are abstract data and can be used within the
OOP methods. The small is abstraction of the smallest VM types of well-
known clouds. Similarly, the medium is the abstraction of one of the medium
types and the large is the abstraction of the largest type. CAL also ensures that
created VMs always have access via IP address provided by cloud middlewares.
Most clouds support this. For the exceptions presented above, CAL provides
a mechanism that enables automatic association between VMs and floating IP
addresses. This mechanism is implemented based on API cloud functionalities
provided by cloud vendors. Furthermore, CAL allows capability of extending to
support more other types according to user requirements.

Due to hardware abstraction, CAL users just select one of the types above to
create a VM with different configurations. The small is set to default type,
which is suitable for test purposes. So, users can deploy services on VM without
setting this type in functions of CAL. On the other hand, users set other types
when they want to use higher configurations.

Software Abstraction: Software of VM is the collection of programs that provides
instructions for controlling the machine what to do and how to do it. In the
context of virtualization, the software refers to base OS, common and specific
applications. In the same way of hardware abstraction, the implementation of
CAL also abstracts VM software in form of data.

470 B. M. Nguyen, V. Tran, L. Hluchý

• Base OS(s): VM base OS(s) are often preconfigured and released together
with images. Ubuntu/Debian, RedHat Linux, CentOS, Fedora, Windows
Server, etc. are the popular base OSs provided and used in clouds. The
abstraction of base OS(s) is described by abstract data, containing the OS
name and its versions (e.g. Ubuntu 12.04, CentOS 6.3). The data can be
used easily in OOP methods. Thereby, CAL enables users to achieve the
simplification in creating VM with a desired OS.

• Common applications: Common applications of VM are applications that
are used widely. In most cases, they can be installed with default configura-
tions via advance packaging or manager tools (e.g apt package manager of
Ubuntu and Debian). MySQL, TomCat, Apache, Java and Python libraries,
etc. are typical examples of the common applications. There is some infor-
mation, which is required to abstract the applications covering their names
and configurations: application name is a word or term used for identifying
the application. The name thus discriminates applications from each others.
Additionally, the application names normally are expressed together with
development versions, which are used to assign in increasing order and cor-
respond to new release in the application. For instance, the data abstraction
of database application is defined as “MySQL 5.1”, in which “MySQL” is the
application name and “5.1” is its version. Application configurations are ini-
tial settings for an application. Application configuring allows users to choose
suitable parameters, ensuring the application work as they want. Username
and password setting are often required for the configuration process.

• Specific applications: Specific applications are constituted from many com-
ponents that can be common applications or file configurations. In general,
these applications comprise a core and additional supplements. The process
of abstracting these applications is carried out one after another as follows:
installation of the core, installation of the supplements and configuration of
whole applications. For example, to build a web server (specific application),
developers have to install and configure Apache, MySQL and PHP (common
applications) in turn. Then they configure parameters of the whole server
such as privacy, web directory, etc.

4.1.3 Middleware Abstraction

One of the objectives of CAL is to manage resources from many cloud middlewares
at the same time. Currently, most of the clouds provide APIs, which are efficient
management means for users. Many existing cloud tools have been built based on the
APIs (see Section 2). Essentially, API is an abstraction of cloud functionalities such
as creation, termination, VM snapshot and so on. As mentioned before, API has
many different forms and each cloud usually offers a separate API that differs from
others. To achieve the objective defined in the previous section, CAL implements the
APIs as data abstractions. In this way, each cloud has a data abstraction for its own
and the abstraction provides only necessary functionalities to manage resources of

Cloud Application Development and Deployment Framework 471

the cloud. At the higher level, abstraction of middlewares encapsulates the API data
abstractions in the form of new type, allowing manageability of multiple middlewares
under a single unified interface.

Abstraction of middlewares can be considered as a common denominator of
functionalities provided by various clouds. Basically, prevalent cloud functionalities
include: creation, termination, VM description, snapshot creation/restoration. They
are basic management functions for developing cloud services on VM. Most of them
are supported by every cloud through their APIs. Beside the basic functions pre-
sented, there are many other functionalities such as IP allocation and association,
user key creation, deletion, etc. According to requirements of CAL users, the imple-
mentation of API data abstractions can be extended in order to add more functions
for the abstraction of middlewares.

4.2 CAL Architecture

Architecture of CAL is depicted in Figure 2. It contains three components: interface,
drivers and data repository. The interface provides interaction between CAL and
its users. Therefore, from the view of service developers, it is visible. Otherwise,
the drivers and data repository are designed to hide under the interface. Since the
number of variations of VMs is often limited (some major base OS flavors or VM
types), making these functionalities operate correctly on a given cloud infrastructure
can be solved with reasonable efforts.

C
lo

u
d

 A
b

st
ra

ct
io

n
 L

a
y

e
r

(C
A

L)

Data

Repository

Driver 3Driver 2Driver 1

Provisioning Monitoring VM snapshot

Interface

Execution TransferSetting Cloud

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Virtual

Machine

Fig. 2. CAL architecture

472 B. M. Nguyen, V. Tran, L. Hluchý

4.2.1 CAL Interface

The interface is designed to provide functional abstractions of the cloud resources.
Using the CAL, service developers just reuse the functions of CAL interface to create
their services. For easier understanding, the functions are divided into numerous
groups, consisting of:

Setting Cloud: enables developers to set which cloud will be used. This group has
only the setCloud() function.

Provisioning: consists of the start() and stop() function to create and terminate
the VMs.

Monitoring: getting actual information of the machines (cloud provider, IP ad-
dress, ID instance and so on) by the status() function.

Execution: running commands on VMs by the execute() function.

Transfer includes two functions: put data() to upload and get data() to down-
load data from the VMs.

VM Snaphost: creates/restores snapshot of VM into an image. The group in-
volves the create snapshot() and restore snaphsot() function.

While the functions of Provisioning, Monitoring and VM Snapshot group use
cloud APIs to implement actions of VM, Execution and Transfer do not. The reason
is that there are no APIs that support the operations. The advantage of CAL is to
provide developers with functionalities in order to overcome the restrictions. In this
way, CAL abstracts the connection, realization process and hides implementation
details by the functions of Execution and Transfer. As the result, developers can run
commands or upload, download their data without having to directly connect to VM.
Since VMs are normally connected via public IP addresses under authentications
(e.g. key pair, usernames, passwords), Execution and Transfer functionalities are
used for all VMs even when they belong to different clouds.

4.2.2 CAL Drivers

CAL may have many drivers. Each driver is a module of API data abstraction,
which allows CAL to manage resources from a cloud via its API. As mentioned
before, the number of drivers is in proportion to the number of clouds that a CAL
supports. For example, if a CAL supports Amazon EC2 and OpenNebula cloud,
it means that it will have two drivers. When a CAL needs to expand its support
for other clouds, the only thing to do is creating the new driver without changing
the original codes, including interface and existing drivers. The relationship between
each driver and the interface within a CAL is similar to the relationship of a hardware
device (e.g. graphic card) and an application or OS in traditional computer, where
hardware driver acts as translator between the device and application. Indeed, the
drivers of CAL also act as intermediaries to translate the developers commands (via

Cloud Application Development and Deployment Framework 473

functionalities of CAL interface) to clouds. Because of the incompatibility of APIs,
every cloud must have a driver of its own.

Because CAL provides only basic functionalities of VM, the drivers thus do
not need to implement all API actions. The CAL functionalities are implemented
through APIs covering Provisioning, Monitoring and VM snapshot.

4.2.3 CAL Data Repository

Beside interface and drivers, data repository plays the part of memorizing parame-
ters related to VM and services during CAL usage. For example, the repository
stores name of default base OS(s), VM snapshot, VM IP address, VM ID and
other configuration parameters (e.g. administrator name, password, database name).
A data repository for CAL brings many advantages for service developers, including:

• Optimization of the CAL usage – the developers do not have to repeat the
values of VM IP address, VM ID or other parameters (e.g. service password) in
every functional abstraction. All of them are stored automatically in the data
repository, thus simplifying CAL use.

• Elimination of repeating service installations, since VM snapshot names are
stored in the repository. Service developers can optimize the VM start process
by checking existing services. If a service is available, its snapshot will be used
to create VM. Otherwise, the developers will deploy developed services in the
normal way (with a base OS).

4.3 Inheritance of CAL Functions

Initialization

init(), config(), start(), stop(),

….

setCloud(), start(),

execute(), stop(), …

Backup/Restoration

data_backup() , data_restore(),

create_snapshot(), …

execute(), put_data(), get_data(),

create_snapshot(),

restore_snapshot()

Software Layer 1

Service Functionalities

function_1(), function_2(), …

put_data(), get_data(), execute(), …

S
e

rv
ic

e

Execution

execute()

Transfer

put_data(),

get_data()

Provisioning

start(), stop()

Monitoring

status()

VM Snapshot

create_snaphsot(),

restore_snapshot()

Cloud Abstraction Layer - CAL

Setting Cloud

setCloud()

Fig. 3. Inheritance feature of CAL

As mentioned before, developers can easily create cloud services by using CAL.
This is shown in Figure 3. The developers just have to inherit the existing functional

474 B. M. Nguyen, V. Tran, L. Hluchý

abstractions of CAL for creating new service functions, which can be grouped as
follows:

Initialization: Developers just reuse the Setting Cloud functionality of CAL to
select cloud in order to deploy their services. Then they create a VM on the cloud
by using the functions of Provisioning. The developers can add OS commands to
install software packages on newly created VM by Execution. Otherwise, they
also can upload their initial data or applications into the VM by Transfer.

Backup/Restoration: comprise service functions to perform two tasks:

• Creating/restoring VM snapshot for the service. For this purpose, the devel-
opers inherit VM Snapshot functionalities.

• Creating/restoring user backup data. The developers reuse Execution and
Transfer.

Service functionalities: Developers can create other functions for their services
by reusing and combining the existing functional abstractions of CAL. For exam-
ple, for database servers, they can add a number of functions to import database,
make query, and so on. The database functions are programmed based on Exe-
cution and Transfer.

One of the most important things is that during development, the developers do
not need to use any specific-middleware APIs or connect directly to VMs as well.
They only inherit the functions provided by CAL. The developers can thus simply
select the target cloud to deploy their service without having to worry about incom-
patible cloud systems. Meanwhile, their user (distinguish from the developer) will
just use the service via Initialization, Backup/Restoration and service functionali-
ties. The user would not have to care about how and where the service is developed
and deployed.

4.4 Software Layering

A software layer, which was created by a developer, can also be used and further
extended by other developers in the same way. Figure 4 shows the inheritances
by multiple service developers. In this figure, the first developer defines software
layer 1 with new functionalities on demand from his or her users. In other words,
software layer 1 hides implementation details of CAL in its functionalities. Simi-
larly, the second developer defines functionalities for software layer 2 over the layer 1
by inheriting layer 1 functionalities. As the result, each software layer is practically
a platform-as-a-service by itself, because users only use the services via a clear inter-
face provided by the developers without interacting directly with VMs on clouds. For
concrete example, a developer creates a LAMP stack (Linux-Apache-PHP-MySQL)
layer that is equivalent to web-hosting platforms for his or her service users. Another
developer can use this LAMP layer to provide web applications (e.g. websites, wiki
pages and forum) without manipulating the cloud infrastructures.

Cloud Application Development and Deployment Framework 475

IMPLEMENTATION

IMPLEMENTATION

IMPLEMENTATION

MUITI-CLOUD INFRASTRUCTURES

INTERFACE

INTERFACE

INTERFACE

Service Users

Service

Developer

Service

Developer

APPLIANCE

APPLIANCE

CAL

Software Layer 1

Software Layer 2

Service Users

Service Users

Fig. 4. Software layering of CAL development framework

Since higher software layers are independent from cloud infrastructures, if CAL
operates with multi-clouds correctly, any services using CAL will also operate cor-
rectly on the infrastructures. Generalized interoperability problem of cloud systems
can be reduced into the interoperability problem of selected software layers in this de-
velopment framework. Developers can easily move services (software layers) among
various clouds without depending on providers. Consequently, the approach enables
perfectly interoperability of cloud services.

5 CASE STUDIES

5.1 Experimental Setup

Our current implementation of CAL prototype is based on the installations of three
middlewares: OpenStack Folsom release, Eucalyptus 2.0.3 (open source version) [33]
and OpenNebula 3.6 [34]. The purpose of this setup is to provide VMs that belong to
those middlewares at the same time. Tests are successful if and only if all VMs have
SSH access. For that purpose, all three middlewares are installed and configured
separately in the data center of Institute of Informatics, Slovak Academy of Sciences
(II – SAS) [35]. Each of them consists of a controller node, a management network
(switch) and at least two compute nodes. For controller nodes, each server blade
is equipped with Xeon processor including 16 cores (2.93 GHz), 24 GB of RAM and
1 TB hard drive, meanwhile for compute nodes, each server blade is equipped with
Xeon processor with 24 cores (2.93 GHz), 48 GB of RAM and 2 TB hard drive. Linux
is installed for all servers as OS. KVM hypervisor is used for all three systems.

476 B. M. Nguyen, V. Tran, L. Hluchý

Ubuntu 12.04 images are created and deployed on the clouds. While OpenStack
and Eucalyptus are configured with Glance [36] and Walrus [37] respectively as
internal image storage services, OpenNebula uses non-shared file systems [38] with
transferring image via SSH for test purpose.

5.2 Development and Deployment of Cloud Monitoring Service

The realistic services are the best way to show and demonstrate the CAL effects.
In the direction, this section presents the development and deployment of a cloud
monitoring service for distributed systems based on CAL. Additionally, the layering
feature of the services is also demonstrated here.

A monitoring service must have the ability to provide data usage of components
within VM and fundamental aspects of appliances in that VM. As a consequence,
the service needs to be adaptable and extensible in order to support the expand-
ing functionality. To address all of the requirements and functionalities, the main
features for service to be taken into account are as follows:

• Scalability: ensures that that the monitoring can cope with large numbers of
VMs.

• Adaptability and extensibility: ensure that the monitoring framework can adapt
to varying computational load.

• Federation: ensures that any VM which resides on various clouds can be moni-
tored.

To establish such features, the monitoring service is built based on Nagios core
framework application. First reason of the choice is that Nagios core is a powerful
monitoring solution that is used by large IT organizations [39]. Otherwise, it also
has been one of the most prevalent monitoring solutions known in open source
community. The second reason is that the core does not contain any checking tools
(called Nagios add-ons) at all. Due to this important feature, Nagios core can
provide a robust, reliable and extensible framework for any type of check that a user
can come up with. Currently, the most general Nagios add-ons are:

• NRPE (Nagios Remote Plugin Executor) provides the ability to monitor VM
metrics (e.g. disk space, CPU workload).

• Nagios BPI (Bussiness Process Inteligence) creates a way to visualize business
process health by grouping hosts and services together, and creating rules to
discern the true health of the network infrastructure as it relates to the business.

• Nagiosgraph extracts information from the Nagios output, processes it, and then
insert it into one or more round-robin database (RRD) files. The plugin also
embedded RRD file directly into Nagios interface in form of graphs as trend
reports.

Cloud Application Development and Deployment Framework 477

5.2.1 Nagios Monitoring Framework Service

Using Python language [40], the high-level abstraction layer is represented as “CAL”
class, which provides the basic functions of VM. For each cloud infrastructure, we
define separate classes: Openstack, Eucalyptus and OpenNebula, which are the
drivers of these clouds.

Figure 6 describes the software layering of monitoring framework service. In
the context of the implementation using CAL, the framework can be considered as
platform-as-a-service layer that can be used for many different monitoring purposes.
Based on the layer, developers can program to provide various specific monitoring
services by installing Nagios add-ons. In this way, the Nagios add-on services are
equivalent as software-as-a-service layer over the monitoring framework.

MUITI-CLOUD INFRASTRUCTURES

NAGIOS MONITORING FRAMEWORK

BPI Nagiosgraph NagvisNRPE

D
e

v
e

lo
p

m
e

n
t

F
ra

m
e

w
o

rk

SaaS

PaaS

IaaS

u
se

Monitoring Users

u
se

u
se

u
se

CAL

Fig. 5. Nagios monitoring framework service

Although Nagios core is a large and complicated application that normally
requires expert computer skills to install and configure, using CAL, the develop-
ment process of monitoring framework service can be carried out quite easily. The
monitoring framework service is implemented as Nagios class. Service methods
are created by reusing (inheritance mechanism) the CAL methods. Beside com-
mon methods, namely setCloud(), start(), stop(), create snapshot() and
restore snapshot(), the service provides two specific methods for SaaS layer de-
velopers:

• put data() uploads plugin packages or configuration file to the server.

• execute() runs Nagios configuration commands inside server.

The monitoring framework service is implemented to operate on Linux server.
Installation commands of Nagios are predefined in configuration files, which are

478 B. M. Nguyen, V. Tran, L. Hluchý

uploaded to VM. Then the files are called to perform via CAL execute() method.
The service codes are developed as follows:

c l a s s Nagios (CAL) :
#i n h e r i t i n g a l l CAL f u n c t i o n s

de f setCloud (s e l f , c loud) :
#choos ing c loud to deploy s e r v i c e
CAL. setCloud (s e l f , c loud)

de f c o n f i g (admin name , password) :
#c o n f i g u r i n g s e r v i c e admin name and password
. . .

de f s t a r t (s e l f , baseOS , instanceType) :
#s t a r t s e r v i c e
CAL. s t a r t (s e l f , baseOS , instanceType)
CAL. put data (s e l f , ‘ c o n f i g f i l e ’)
CAL. execute (s e l f , ‘ r u n c o n f i g f i l e ’)
. . .

de f stop (s e l f) :
CAL. stop (s e l f , ‘ ’)

de f put data (s e l f , d a t a f i l e) :
CAL. put data (s e l f , ‘ d a t a f i l e ’)

de f execute (s e l f , command) :
CAL. execute (s e l f , ‘command ’)

de f c r ea t e snapsho t (s e l f) :
CAL. c r ea t e snapsho t (s e l f)

de f r e s t o r e s n a p s h o t (s e l f) :
CAL. r e s t o r e s n a p s h o t (s e l f)

Due to CAL, the service can be deployed on all three cloud middlewares with
diverse VM types. This process is realized by the following commands:

s e r v i c e = Nagios ()
s e r v i c e . setCloud (‘ OpenStack ’)
s e r v i c e . c o n f i g (‘ admin ’ , ‘ mysecret ’)
s e r v i c e . s t a r t ()

Cloud Application Development and Deployment Framework 479

After start() method is called and performed, it returns web interface URL of
the Nagios framework service. Users can login by admin name and password that
they just have set.

5.2.2 NRPE Monitoring Service

As mentioned before, NRPE is one of the most popular add-ons of Nagios core. This
section describes the implementation and use of NRPE service, which can monitor
resources and services running on cloud VMs. In the development framework, NRPE
monitoring service is equivalent to SaaS layer because it is developed based on
a platform (Nagios monitoring framework service). NRPE add-on provides a lot of
different monitoring functionalities such as check disk, CPU load, memory, users,
number of running/zombie process, service status (http, apache, MySQL), and so
on. All of the functions are defined in the object definition files. In this way, users
have the ability to choose which resource or services are monitored.

The NRPE functions are implemented as methods of NRPE class. Similar to
monitoring framework service, the installation commands also are predefined in
configuration files that are uploaded to VM to execute. Otherwise, to remove or
stop NRPE service on monitoring framework, the removing file with un-installation
commands defined inside is used.

c l a s s NRPE(Nagios) :
#i n h e r i t Nagios f u n c t i o n s

de f s t a r t (s e l f) :
Nagios . put data (s e l f , ‘ c o n f i g n r p e f i l e ’)
Nagios . execute (s e l f , ‘ r u n c o n f i g n r p e f i l e ’)

de f stop (s e l f) :
Nagios . put data (s e l f , ‘ r emove conf ig nrpe ’)
Nagios . execute (s e l f , ‘ run remove conf ig nrpe ’)
. . .

de f add host (s e l f , IP in s t ance) :
#c o n f i g f o r Nagios s e r v e r
Nagios . put data (s e l f , ‘ a d d s e r v e r f i l e ’)
Nagios . execute (s e l f , ‘ r u n a d d s e r v e r f i l e ’)

#c o n f i g f o r host
Nagios . put data (s e l f , ‘ IP ’ , ‘ c o n f i g h o s t f i l e ’)
Nagios . execute (s e l f , ‘ IP ’ , ‘ r un c o n f i g h o s t ’)

de f remove host (s e l f , IP in s t ance) :
. . .

480 B. M. Nguyen, V. Tran, L. Hluchý

Transparently, during the service development, only monitoring framework ser-
vice functions are used. Developers do not need to know about VM, SSH, SCP
commands as well as implementation details of the monitoring framework service.
The NRPE monitoring is called through the following commands:

check = NRPE()
check . s t a r t ()
check . add host (‘ VM IP address ’)

To remove a monitored host from the server, users only enter the command:

check . remove host (‘ VM IP address ’)

5.3 Experimental Results

To evaluate operation of CAL, Nagios framework monitoring service and NRPE
service, the deployment process is tested on three cloud installations with various
VM types. The experimental measurement is repeated 20 times for each of the VM
type of each cloud. The NRPE service deployment process is experimented based
on Nagios framework layer, which already has been deployed into the VMs of three
cloud middlewares. The average times are summarized in Table 1. The duration
time is calculated in seconds.

VM Type Nagios framework NRPE service
monitoring service

OpenStack
small 346.296 20.276

medium 341.407 19.128
large 334.121 17.765

Eucalyptus
small 626.204 58.421

medium 621.812 53.357
large 618.698 52.245

OpenNebula
small 808.742 70.603

medium 796.186 66.679
large 788.233 60.603

Table 1. Deployment time results of Nagios framework monitoring service

Figure 6 represents the deployment time results of Nagios framework monitor-
ing service described in Table 1. There are some observations that can be made
from inspecting the results: first, Nagios framework monitoring service can oper-
ate well on all three cloud infrastructures at the same time without changing its
implementation codes. Second, in comparison between OpenStack with the rest,
the middleware gains better performance. This is demonstrated by the experiment
results presented in Table 1. Specifically, the deployment process of Nagios core
framework service using OpenStack is faster than using Eucalyptus (by approx.
49 %) and using OpenNebula (by approx. 57 %).

Cloud Application Development and Deployment Framework 481

0	

200	

400	

600	

800	

1000	

sm
al
l	

m
ed

iu
m
	

la
rg
e	

sm
al
l	

m
ed

iu
m
	

la
rg
e	

sm
al
l	

m
ed

iu
m
	

la
rg
e	

OpenStack	
 Eucalyptus	
 OpenNebula	

Du
ra
>o

n	

(s
)	

Fig. 6. Deployment time of Nagios framework monitoring service

The deployment time results of NRPE service are illustrated by the diagram
in Figure 7. The experiment proves that NRPE service operates well on Nagios
monitoring framework deployed on the different clouds. More importantly, the de-
velopment and deployment process of NRPE service emphasize that CAL software
layering feature as well as the feasibility of our approach.

0	

20	

40	

60	

80	

sm
al
l	

m
ed

iu
m
	

la
rg
e	

sm
al
l	

m
ed

iu
m
	

la
rg
e	

sm
al
l	

m
ed

iu
m
	

la
rg
e	

OpenStack	
 Eucalyptus	
 OpenNebula	

Du
ra
=o

ns
	
 (s
)	

Fig. 7. Deployment time of NRPE monitoring service

In summary, the case studies give the following important outcomes:

• CAL operates well with the installed cloud middlewares. It provides the devel-
opment and deployment framework for service developers and users.

• The framework enables software layering, in which each layer is the foundation
for new layers over it. During the development, deployment and use process,
they only inherit and reuse available functions of preceding layers instead of
directly using any functionality of VM and cloud middlewares.

• The developed services were tested and work well.

482 B. M. Nguyen, V. Tran, L. Hluchý

• The developed services are independent of cloud infrastructures and they have
the ability to be deployed on different clouds at the same time.

• The process of deploying services takes a long time; however, since the process is
realized automatically, the time for deployment is always less than manipulation
of the traditional approaches.

6 CONCLUSIONS

The study described in this paper was carried out in the emerging context of cloud
computing with the issue linked to the development and deployment of services over
IaaS clouds at once. In this direction, this research focused on building a tool that
enables every service to be able to develop and deploy into different clouds without
requiring additional complicated work form developers and special supports from
providers or middlewares. The tool was named “CAL” that brings the following
results:

Mechanism to simply develop and deploy services in different IaaS clouds:
cloud services are treated as objects with strongly defined interfaces. The ser-
vices thus are developed based on abstraction approach and OOP. CAL acts as
development framework for the services. It includes basic functionalities of VMs
that belong to many clouds. With the available functions, developers easily de-
fine the interface for their services without the necessity to access application
code directly; in other words, without connecting directly to VMs to configu-
re, install the applications. In addition, developers also can customize, extend
services developed by others to create new services without access to original
codes. Due to CAL, the services are developed and used with minimum VM
manipulations. The mechanism thus allows simplification in development and
deployment of services within cloud environments.

Mechanism to enable interoperability of cloud computing services: ser-
vice codes that are implemented using CAL can be packed and delivered for
deployment on various clouds without obstacles such as incompatible APIs, vir-
tualization technologies or other middleware components. This means, the codes
are written once but can be used on many clouds without re-implementation.
In this way, this mechanism allows achieving the interoperability, which is one
of the invaluable features for cloud computing today.

Adding values for cloud providers: due to the abstraction approach of CAL,
cloud services are developed and deployed independently of providers. So, the
providers do not have to change in order to support the services. This still en-
sures the competitiveness among the vendors. Otherwise, they achieve benefits
when service developers/users exploit cloud resources more easily, exciting the
growth of consumer market for IaaS cloud providers.

Since CAL services are independent from underlying infrastructures, they can
be published in a marketplace that allows other service developers or pure users to

Cloud Application Development and Deployment Framework 483

download and use them without coding. Consequently, in the near future, we will
continue to build the marketplace for CAL services.

Acknowledgements

This work is supported by projects SMART II ITMS: 26240120029, CRISIS ITMS:
26240220060, VEGA No. 2/0054/12, CLAN No. APVV 0809-11.

REFERENCES

[1] Nguyen, B. M.—Tran, V.—Hluchý, L.: Abstraction Layer for Development and
Deployment of Cloud Services. In Computer Science, Vol. 13, 2012, No. 3.

[2] Open Virtualization Format web site. Available on: http://www.dmtf.org/

standards/ovf, 2013.

[3] Distributed Management Task Force web site. Available on: http://dmtf.org, 2013.

[4] Kecskemeti, G.—Terstyanszky, G.—Kacsuk, P.—Nemeth, Z.: An Ap-
proach for Virtual Appliance Distribution for Service Deployment. Future Generation
Computer Systems, Vol. 27, 2011, No. 3, p. 280–289.

[5] Li, P.: Selecting and Using Virtualization Solutions: Our Experiences with VMware
and VirtualBox. Journal of Computing Sciences in Colleges, Vol. 25, 2010, No. 3,
pp. 11–17.

[6] Watson, J.: VirtualBox: Bits and Bytes Masquerading as Machines. Linux Journal,
Vol. 2008, No. 166.

[7] Takemura, C.—Crawford, L. S.: Citrix XenServer for the Enterprise. In The
Book of Xen: A Practical Guide for the System Administrator, William Pollock, San
Francisco 2009, p. 159.

[8] Tzortzatos, E.—Bartik, J.—Sutton, P.: IBM System z10 Support for Large
Pages. IBM Journal of Research and Development, Vol. 53, 2009, No. 1, pp. 17:1–17:8.

[9] Leinenbach, D.—Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with
VCC. 2nd World Congress of Formal Methods, Eindhoven 2009.

[10] Schwarz, E. M.—Kapernick, J. S.—Cowlishaw, M. F.: Decimal Floating-
Point Support on the IBM System z10 Processor. IBM Journal of Research and
Development, Vol. 53, 2009, No. 1, pp. 4:1–4:10.

[11] Open Cloud Computing Interface web site. Available on: http://occi-wg.org, 2013.

[12] Open Grid Form web site. Available on: http://www.gridforum.org, 2013.

[13] Edmonds, A.—Metsch, T.—Papaspyrou, A.—Richardson, A.: Toward
an Open Cloud Standard. Internet Computing, Vol. 16, 2012, No. 4, pp. 15–25.

[14] Simple Cloud API web site. Available on: http://www.simplecloud.org, 2013.

[15] Apache Deltacloud web site. Available on: http://deltacloud.apache.org, 2013.

[16] Kawai, Y.—Iwai, G.—Sasaki, T.—Watase, Y.: SAGA-Based File Access Ap-
plication over Multi-filesystem Middleware. In Proceeding of 19th International Sym-
posium on High Performance Distributed Computing, Chicago 2010, pp. 622–626.

484 B. M. Nguyen, V. Tran, L. Hluchý

[17] Amies, A.—Sluiman, H.—Tong, Q. G.—Liu, G. N.: Developing and Hosting
Applications on the Cloud. IBM Press 2012.

[18] Apache Libcloud web site. Available on: http://libcloud.apache.org, 2013.

[19] jclouds web site. Available on: http://www.jclouds.org, 2013.

[20] Klaver, A.: Python in the Cloud. Linux Journal, Vol. 2011, No. 7, p. 210.

[21] Baun, C.—Kunze, M.—Nimis, J.—Tai, S.: Apache Cloud-stack. Cloud Comput-
ing, Springer, Berlin–Heidelberg 2011, pp. 49–62.

[22] enStartus enterprise. Available on: http://www.enstratus.com, 2013.

[23] Mikkilineni, R.—Sarathy, V.: Cloud Computing and the Lessons from the Past.
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Groningen 2009, pp. 57–62.

[24] Moreno-Vozmediano, R.—Montero, R. S.—Llorente, I. M.: Elastic Ma-
nagement of Cluster-Based Services in the Cloud. 1st Workshop on Automated Con-
trol for Datacenters and Clouds, Barcelona 2009, pp. 19–24.

[25] Amazon Web Service Marketplace web site. Available on: https://aws.amazon.

com/marketplace, 2013.

[26] VMware Virtual Appliance Marketplace web site. Available on: http://www.vmware.
com/appliances, 2013.

[27] StratusLab Marketplace web site. Available on: http://stratuslab.eu, 2013.

[28] Page-Jones, M.: Encapsulation and Connascence. Fundamentals of Object-
Oriented Design in UML, Indianapolis, Addison-Wesley 1999, pp. 210–212.

[29] Akin, E.: Object-Oriented Programming Concept. Object-Oriented Programming
via Fortran 90/95, Cambridge University Press 2003, p. 37.

[30] Budd, T. A.: Inheritance and Substitution. An Introduction to Object-Oriented
Programming (3rd Edition), Corvallis, Oregon, Addison-Wesley 2001, p. 161.

[31] Amazon Elastic Compute Cloud web site. Available on: http://aws.amazon.com/

ec2, 2013.

[32] Pepple, K.: Deploying OpenStack. O’Reilly Media 2011.

[33] Nurmi, D.—Wolski, R.—Grzegorczyk, C.—Obertelli, G.—Soman, S.—
Youseff, L.—Zagorodnov, D.: The Eucalyptus Open-Source Cloud-Computing
System. 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CC-GRID ’09), pp. 124–131.

[34] Dejan, M.—Llorente, I. M.—Montero, R. S.: OpenNebula: A Cloud Manage-
ment Tool. Internet Computing, IEEE 15, 2011, No. 2, pp. 11–14.

[35] Institute of Informatics, Slovak Academy of Sciences web site. Available on: http:

//www.ui.sav.sk, 2013.

[36] von Laszewski, G.—Diaz, J.—Wang, F.—Fox, G. C.: Comparison of Multiple
Cloud Frameworks. Proceedings of IEEE Cloud 2012, pp. 734–741.

[37] Lonea, A. M.: A Survey of Management Interfaces for Eucalyptus Cloud. Pproceed-
ings of 7th IEEE International Symposium on Applied Computational Intelligence and
Informatics (SACI) 2012, pp. 261–266.

[38] Wen, X.—Gu, G.—Li, Q.—Gao, Y.—Zhang, X.: Comparison of Open-Source
Cloud Management Platforms: OpenStack and OpenNebula. Proceeding of 9th

Cloud Application Development and Deployment Framework 485

IEEE International Conference on Fuzzy Systems and Knowledge Discovery 2012,
pp. 2457–2461.

[39] Ma, M.—Kouril, D.—Prochazka, M.—L’Orphelin, C.—Lequeux, O.—
Veyre, P.—Triantafyllidis, C.—Kanellopoulos, C.—Korosoglou, P.:
EGI Security Monitoring. Proceedings of The International Symposium on Grids
and Clouds (ICGC 2012), Taipei 2012.

[40] Python programming language web site. Available on: http://www.python.org,
2013.

Binh Minh Nguyen received his M. Sc. in informatics from
Tambov State Technical University (Russia) in 2008. Currently,
he is working as a project assistant at Department of Paral-
lel and Distributed Computing, Institute of Informatics, Slovak
Academy of Sciences (Slovakia). He is also final year Ph. D.
student at Faculty of Informatics and Information Technology,
Slovak University of Technology in Bratislava. He is the author
and co-author of several scientific papers. His research interests
include cloud computing, distributed systems, service-oriented
architecture and data integration.

Viet Tran is a researcher at Institute of Informatics, Slovak
Academy of Sciences (Slovakia) from 1996. He received his
Ph. D. degree in 2002 in parallel and distributed computing. He
participated in a number of 4th, 5th, 6th and 7th EU FP projects
as team leader and work-package leader. He is the scientific coor-
dinator of several Slovak projects (VEGA, APVV). His research
topics are focused on distributed computing and cloud comput-
ing. He is also the author and (co-)author of scientific books
and over 100 scientific papers. He is a member of program com-
mittees and reviewer of many international scientific conferences
and workshops.

Ladislav Hluch�y is the Director of the Institute of Informatics
of the Slovak Academy of Sciences and also the Head of the De-
partment of Parallel and Distributed Computing at the institute.
He received M. Sc. and Ph.D. degrees, both in computer science.
He is project manager and work-package leader in a number of
4th, 5th, 6th and 7th EU FP projects, as well as in Slovak projects
(VEGA, APVV). He is a member of the IEEE. He is also the
(co-)author of scientific books and numerous scientific papers,
contributions and invited lectures at international scientific con-
ferences and workshops.

