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Abstract. A simple and robust greedy algorithm has been proposed for efficient
and quality decimation of polygonal models. The performance of a simplification
algorithm depends on how the local geometric deviation caused by a local deci-
mation operation is measured. As normal field of a surface plays key role in its
visual appearance, exploiting the local normal field deviation in a novel way, a new
measure of geometric fidelity has been introduced. This measure has the potential
to identify and preserve the salient features of a surface model automatically. The
resulting algorithm is simple to implement, produces approximations of better qua-
lity and is efficient in running time. Subjective and objective comparisons validate
the assertion. It is suitable for applications where the focus is better speed-quality
trade-off, and simplification is used as a processing step in other algorithms.
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1 INTRODUCTION

Polygonal meshes, in particular triangular meshes, have now become a de facto stan-
dard for encoding 3D spatial information because of their mathematical simplicity.
But because of growing complexity of polygonal meshes, it is hard to process, render
and transmit them using mid-level systems. Though there is a substantial enhance-
ment in the graphics acceleration techniques, complexity of polygonal meshes is
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increasing at a faster rate. The solution of this problem is simplification. In the
literature, there exist a large number of simplification algorithms, which focus (de-
pending on the application scenario) on

• constructing approximations of the best quality, time of simplification is of minor
concern [17, 12, 5, 25, 40],

• generating approximations with the best speed-quality tradeoff [36, 32, 22, 11,
14, 15, 18, 19, 30], or

• building approximations instantly, quality being of little concern [35, 27, 9, 3].

The proposed algorithm SESIMP (Simple and Efficient SIMPlification) falls in the
second category where both the quality of approximations and the simplification
time are crucial. The measure of local geometric distortion caused by a decimation
operation drives an iterative simplification algorithm and is the major differentiating
factor among such algorithms. Most of the methods, which are known for their good
speed-quality trade-off, employ distance, volume and area based measures of local
geometric distortion. The decimation operation distorts not only the geometry but
also the normal field of a polygonal surface. It is a fact that the visual appearance of
a 3D object depends on its normal field. Minimization of the normal field deviation
during the simplification process not only reduces the visual artifacts but also ensures
minimization of the geometric error [10]. As such, it is important for better visual
fidelity to focus on the local normal field deviation and to minimize it during the
process of decimation. Though the idea of using normal field deviation has been
around for a while, the way it has been used in previous work does not result in good
time-accuracy trade-off. In this paper, the local normal field deviation is exploited
in a novel way that results in better quality approximations.

The evaluation and comparison reveals that SESIMP has improvement in exe-
cution time and the visual quality of approximations over similar state-of-the-art
simplification methods. It preserves well the important surface features even at
very low levels of detail, consumes less memory and automatically prevents mesh
fold-overs. The implementation of SESIMP is quite simple and it is robust in the
sense that models at various levels of complexity can be decimated with the same
level of fidelity and efficiency.

The rest of the paper is organized as follows. Section 2 is devoted to the related
work. In Section 3, the new measure of geometric distortion is elaborated. Section 4
gives the description of SESIMP. Detailed discussion on the performance of SESIMP,
and its comparison with similar sate-of-the-art algorithms are provided in Section 5.
Section 6 concludes the paper.

2 RELATED WORK

In the graphics literature, there exist many good simplification algorithms, which
focus on different application domains. In the following discussion, our focus will be
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only on the algorithms dealing with applications where visual quality of approxima-
tions as well as speed are equally important. For a thorough survey, an interested
reader is referred to [28, 8, 15, 26]. In the following paragraphs, the review of some
recent related simplification techniques is provided; this review is not exhaustive at
all.

Though quadric error metric (QEM) [14] was proposed in 1997, it is still a bench-
mark for new proposals. QEM computes the importance of a vertex as a weighted
sum of its squared distances from the planes of its incident faces and stores it as
a 4×4 symmetric matrix. Though QSlim [14], the greedy algorithm based on QEM,
provides the best speed-quality tradeoff so far, it can not automatically preserve
surface discontinuities and visually important features, in particular, at very low
levels of detail. Also, it is not memory efficient; for each vertex it adds a memory
overhead of at least 44 bytes. A memoryless version of QEM was introduced in [25].
Though this version of QEM improves the quality of approximations, its running
time complexity is at least three times more than that of QSlim. The simplification
algorithms by Kim et al. [20], Yoshizawa et al. [41], Lee et al. [24] and Yan et al. [40]
employ QEM with additional heuristics to overcome its drawbacks. Although these
algorithms improve the quality of approximations, there is drastic increase in execu-
tion time. SESIMP does this job with reduced memory overhead and computational
cost.

The algorithms proposed in [1, 30] use volume and area for measuring the ge-
ometric distortion. The error measures proposed by Tang et al. [38] generalize
the error metrics introduced in [1, 30]. These techniques may be interesting from
theoretical viewpoint, but practically their impact is minor on the simplification
problem because despite significant increase in time and space complexity, there is
no significant improvement in the quality of approximations.

Normal field has also been considered for simplification; it has been employed
for two different purposes: to define an error measure for driving the greedy pro-
cedure [19, 18, 31, 37] and to perform clustering/sampling [3, 4, 10]. The greedy
approach proposed in [19] uses normal field deviation for defining the measure of
geometric fidelity; it overestimates geometric error because the normal field devia-
tion is computed by comparing the current normal vectors of the local neighborhood
of a vertex with their counterparts on the original mesh. Similarly, the greedy al-
gorithm presented in [18] overestimates the distortion error because the error is
accumulated every time an edge collapse takes place. Ramsey et al. [31] used nor-
mal field variation along with a threshold value for selecting edges for collapse; it
is not a sophisticated way of exploiting the normal field deviation. The approxi-
mation generated by this algorithm is not of good quality because of significant
volume loss. Southern et al. [37] define an error metric as a multiple of maximum
normal deviation and local volume loss over the local neighborhood of the edge to
be collapsed. All these methods are based on half-edge collapse and normal field
deviation. SESIMP exploits normal field in a more sophisticated way; a measure
of geometric fidelity is defined using the normal field deviation (computed consider-
ing normal field before and after half-edge collapse) over the local neighborhood of
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an edge and the normal field variation over the one-ring neighborhood with flaps of
the vertex to be eliminated.

Brodsky et al. [4] used normal field variation in their simplification algorithm
for clustering faces. This approach is fairly efficient in running time but the con-
structed approximations are of poor quality. Cohen-Steiner et al. [10] introduced
an error metric that is based on normal variation, and employed it in their global
non-linear optimization technique for finding the best n polygon subsampling of the
input detailed mesh. TopStoc [3] is based on stochastic sampling and topological
clustering; it uses normal field variation for defining the probability of survival of
a vertex. This method is computationally very efficient but constructs approxima-
tions of poor quality; it is suitable only for applications where speed is of major
concern.

3 MEASURE OF GEOMETRIC DEVIATION

SESIMP employs half-edge collapse as a decimation operator because it does not
leave unset degrees of freedom like edge-collapse and vertex-removal, and is simple
to implement, keeps original geometry and is suitable for more efficient progressive
transmission and integrated level of detail extraction [22].

3.1 Normal Field Based Error Measure

Normal field of a surface model plays an important role in its visual appearance.
Cohen-Steiner et al. [10] showed that normal field deviation is a better measure of
visual fidelity than distance. The Poincaré-Wertinger-Sobolev inequality indicates
that minimizing the normal field distortion ensures minimization of the geometric
deviation. This evidence in support of normal field motivated us in exploiting it in
a novel way to introduce a new error metric for deriving a greedy algorithm.

A typical half-edge collapse ~est(vs, vt) 7→ vt re-triangulates the submesh Rvs

consisting of faces incident on vs, see Figure 1 (a), and causes the deviation in the
normal field over Rvs . Each face f ∈ Rest (the set faces incident on edge est, see
Figure 1 (a)) is eliminated and each surviving face f ∈ Rvs\Rest is updated to have
vt instead of vs. One way of computing the geometric distortion caused by this half-
edge collapse is to consider the normal field deviation due to each face f ∈ Rvs\Rest ,
which is defined as follows:

NDf =

∫
∆c

‖n̂c − n̂p‖
2
d∆ = ∆c ‖n̂c − n̂p‖

2 (1)

where n̂p and n̂c are unit normal vectors of f before and after the collapse, respec-
tively, and ∆c the current area of f . Since ‖n̂c − n̂p‖

2 = (n̂c − n̂p) · (n̂c − n̂p) =
2(1− n̂c · n̂p), Equation (1) can be written as

NDf = 2∆c(1− n̂c · n̂p). (2)
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As ~nc = ‖~nc‖ n̂c = 2∆cn̂c, where ~nc is the current normal vector of f , Equation (2)
becomes

NDf = (2∆c − ~nc · n̂p). (3)

This expression is computationally more efficient and results in significant improve-
ment in execution time. The sum of the deviations due to each f ∈ Rvs leads to the
following measure of the local normal deviation introduced by the half edge collapse
~est(vs, vt) 7→ vt:

C(vs, vt) =
∑

f∈Rvs\Rest

NDf . (4)
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Fig. 1. (a) Half-edge collapse: ~est(vs, vt) 7→ vt with domain Rvs , the set of faces incident

on vs ; it removes the two faces incident on edge est – the set Rest . (b) Half-edges
having vs as their origin.

This error metric can be used to prioritize the half-edges for collapse, but order-
ing half-edges results in excessive increase in memory overhead because it requires
a heap of size ≈ 6n, where n is the number of vertices in the input mesh. Instead, it
is used to prioritize vertices. Using Equation (4), out of the half-edges whose origin
is vs (see Figure 1 (b)), the one with minimum cost is found. Let ~est(vs, vtm) and call
it optimal half-edge. The cost of ~est(vs, vtm) is used as a priority value for vs, which
is removed by collapsing ~est(vs, vtm) to the target vertex vtm . In this way, instead of
half-edges, vertices are ordered for collapse that requires a heap of size n, where n

is the number of vertices.
Note that the metric defined by the Equation (4) does not measure the exact

normal deviation over the region affected by a half-edge collapse. For efficiency rea-
sons the normal field deviation defined by this metric is an approximation computed
over the surviving triangles. In some situations it may not help to select the right
edge to be collapsed. One such situation in 2D setting (edges e1 and e01 represent
triangles before and after decimation) is shown in Figure 3 (a)–(b); in this case the
two vertices u, and v will have the same cost according to Equation (4) because
in both cases the edge length ‖e01‖ and normal deviations are same and both are
equally likely to be selected for decimation, but u is a low curvature vertex and must
be decimated before v. To overcome this weakness of the metric, we scale it with
a quantity that is reflective of the local geometry of a vertex and discriminates it
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Fig. 2. (a)–(b) An explanation in 2D setting of the situation when two vertices u, and v

with different local geometry have same cost according to Equation (4). (c) 1-ring
neighborhood of vs with flaps. (d) Parametrization of two adjacent faces f1 and f2
in (c), which is used to compute total normal field deviation over these faces.
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Fig. 3. (a) Half-edge ~e12 is legal whereas ~e34 is illegal for collapse. (b) The difference
between ~vts and ~vsr is reflective of the curvature of the boundary at vertex vs. (c)
The difference between the unit normal vectors to the faces fr and fb is a measure
of the normal field deviation due to the displacement of the boundary faces resulted
from the collapse of ~est.

well from other vertices. One such quantity that is simple and easy to compute is
the total normal field variation around a vertex; considering one-ring neighborhood

Fig. 4. (a) Cube model with #faces: 12 288. (b) Noisy cube with random noise, the level
of noise is 3% of B.B.D. (c) Simplified cube when 1-ring neighborhood with flaps
is used for κ(vs), #faces:100. (d) Simplified cube when only 1-ring neighborhood is
used for κ(vs), #faces:100. (e) Simplified model without κ(vs), #faces:100
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with flaps FRvs of vs (see Figure 2 (c)), is defined as follows

κ(vs) =
∑
e∈Evs

κ(e) (5)

where Evs is the set of interior edges of FRvs (see Figure 2 (c)) and the total normal
field variation across edge e is defined as follows ((see Figure 2 (d))):

κ(e) =

∫
∆f1

∫
∆f2

‖n̂f1(s1, t1)− n̂f2(s2, t2)‖
2
d∆1d∆2

= ∆f1∆f2 ‖n̂f1 − n̂f2‖
2

= 2∆f1∆f2(1− n̂f1 · n̂f2),

where d∆1 = (ds1, dt1) and d∆2 = (ds2, dt2) are area elements of f1 and f2, respec-
tively. For a curved surface, normal vectors corresponding to different points on the
parameter space of each face are different and can be approximated by interpola-
tion, but for efficiency reasons, we assume that the normal field over each triangle
is constant.

The reason for using 1-ring neighborhood with flaps is that it results in visu-
ally smoother approximations [16], whereas only 1-ring is more sensitive to noise
and a larger neighborhood adds to the time complexity. Figure 4 shows a cube
model with random noise, and its simplified versions; it is obvious that when only
1-ring neighborhood is used, faces of the simplified cube are not smooth whereas
1-ring neighborhood with flaps generates smooth approximation. Note that κ(vs)
depends on the neighborhood of a vertex irrespective of to which neighboring vertex
it is collapsed unlike C(vs, vt) and measures the local geometry of a vertex quite
well; it assigns negligible values to nearly flat vertices (those with nearly planar
neighborhoods), and higher values to higher curvature vertices because in that case
the variation in normal field is high. In this way, it causes to remove insignificant
vertices and preserves salient features because important geometric features involve
high curvature values. In addition, it results in visually smoother surfaces, see Figu-
re 4. Also, note that the faces directly connected to a vertex contribute more to the
local normal field variation around that vertex and these faces must be given more
weight. This observation is incorporated in the computation of κ(vs) by counting
direct faces twice; it has Gaussian-like smoothing effect.

Finally the cost of vs is expressed as follows:

Cost(vs) = κ(vs)C(vs, vt). (6)

Note that Cohen-Steiner et al. [10] compute a normal based error metric by com-
paring the normal vectors of a set of original triangles and its proxy, and employ
it in their k-proxy clustering algorithm for creating mesh approximations. In con-
trast, SESIMP computes a normal based error metric by comparing local normal
field before and after the decimation operation and considering the local normal
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field variation around a vertex; this metric is used to select the next vertex to be
eliminated in the iterative greedy procedure.

3.2 Preserving Boundary

A vertex on the boundary of an open mesh can be removed by collapsing either
a half-edge whose only tail is on the boundary, e.g., ~e34 in Figure 3 (a) or a half-edge
whose both tail and head are on the boundary, e.g., ~e12 in Figure 3 (d). Collapsing
a half edge of the first kind severely distort the boundary, so collapse of this kind
of edges is treated as illegal. Boundary is simplified by collapsing only edges of the
second kind.

The cost of a boundary vertex is normally less than that of an interior vertex
because 1-ring neighborhood of a boundary vertex is homeomorphic to a half-disk.
The greedy algorithm may be trapped in the local minima along the boundary and
will erode the surface indiscriminately. To tackle this problem a boundary constraint
is needed that brings the boundary vertices in line with interior vertices in respect
of their importance. For this purpose, we introduce the following constraint:

Cb(vs, vt) = ∆fr(D1 +D2) (7)

where D1 = 1 − n̂fr · n̂fb with n̂fr and n̂fb being the unit normal vectors to the
faces fr and fb (see Figure 3 (c)), and D2 = 1 − v̂rs · v̂rt with v̂rs and v̂rt being unit
vectors along ~vrs and ~vrt, respectively, see Figure 3 (c). Note that D1 ensures that
the normal deviation along the boundary is minimum, and D2 guarantees that the
removal of a boundary vertex does not distort the boundary; the closer the edges
ers and est are to be collinear, the more likely the vertex vs is to be removed by the
collapse of either ~est or ~esr.

Similar to the scaling factor κ(vs) for a interior vertex, the scaling constraint
κb(vs) for a boundary vertex is defined as follows:

κb(vs) = (LsrLst)
2 (λ+D3) , (8)

where D3 = 1 − v̂sr · v̂ts, with v̂sr and v̂ts being the unit vectors along ~vsr and ~vts
respectively, see Figure 3 (b), Lsr = ‖~vsr‖ and Lst = ‖~vts‖. It is to be noted that D3

is an indicator of the local curvature at the boundary vertex and it ensures that the
low curvature boundary vertices are removed first. The scalar parameter λ ≥ 0 is
used to control the level of boundary preservation. The greater the value of λ, the
more tightly the boundary is preserved. For results presented in this paper, λ = 1.0.

Together with boundary constraints, the cost of the boundary vertex vs is ex-
pressed as follows:

Costb(vs) = (κ(vs) + κb(vs)) (C(vs, vt) + Cb(vs, vt)) (9)
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4 DECIMATION ALGORITHM

SESIMP is based on the well-known greedy design technique. The input is a poly-
gonal mesh M containing n vertices and m triangular faces. Simple data structures
Face and V ertex corresponding to every face and vertex are created and stored in
the lists V L and FL. Face includes pointers to the three vertices and the normal
vector of the corresponding face. V ertex represents a vertex vs and contains its
geometric position ps(x, y, z), its cost Cost(vs), target vertex vtm , a dynamic list
of pointers to faces incident on this vertex adj faces(vi), and a heap backlink.
Flaps of the vertex vs are found by traversing adj faces(vi) corresponding to its
each neighbor vi. Vertex heap V H of size n is maintained for ordering the vertices
according to their cost.The pseudo code of the algorithm is as follows.

SESIMP(Mesh M(V ,F))
Input: Original triangular mesh M = (V ,F) and

the target number of faces numf

Output: An LOD with the given budget of faces
For each vertex vs ∈ V

Create V ertex and put in V L

EndFor

For each face f ∈ F
Create Face and put in FL

Add the pointer of Face to adj faces(vi) for each vi of f
EndFor

For each vertex vs ∈ V
Compute Cost(vs) (see Section 3) and find the target vertex vtm
Push vs into vertex heap V H

EndFor

While size of V F is greater than numf

Pop vs from V H

Remove each f ∈ Restm
from FL, and adj faces(vtm)

Update each f ∈ Rvs\Restm

by replacing vs with vt
Recompute the cost of each vi ∈ Nvs and update V H

Remove vs from V L

EndWhile

5 EXPERIMENTS AND COMPARISONS

For validating the performance of SESIMP, it is compared with two algorithms:
QSlim [14] and FMLOD [19]. QSlim still represents state-of-the-art algorithms
having the best speed-quality tradeoff [29]. Like SESIMP, FMLOD also employs
normal field deviation and competes well with QSlim in terms of quality and speed.
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Fig. 5. Plots of root mean square (RMS) error for hypersheet, bunny, Nicolo head and
Laurent hand models. In each of these plots RMS error (for five LODs of each model

as the % of the bounding box diagonal of the original model) has been drawn using
logarithmic y-axis.

As SESIMP is based on half-edge collapse, for fair comparison we used the variant
of QSlim that also employs half-edge collapse.

Model #Faces SESIMP FMLOD QSLIM-1 QSLIM-2

Hypersheet 3 832 0.047 0.067 0.031 0.092
Bunny 69 451 1.149 1.325 0.906 1.875
Nicolo Head 355 886 6.789 7.359 5.64 10.578

Laurent Hand 701 543 12.891 14.485 11.234 21.672
Satva 3 631 628 72.339 82.531 68.203 156.297
David 7 227 031 145.476 167.953 153.297 –

Table 1. Running times (in seconds to simplify to one face)
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Fig. 6. Plots of mean normal deviation for hypersheet, bunny, Nicolo head and Laurent
hand models. In each of these plots, mean normal deviation has been drawn using
logarithmic y-axis.

5.1 Simplification Time

Table 1 summarizes the execution times for simplifying models of different comple-
xities to one face on a system equipped with Intel Centrino Duo 2.1GHz and 2GB
RAM. Note that QEM does not prevent fold-overs automatically [14]; QSlim-1 and
QSlim-2 are the variants of QSlim without and with check for fold-overs. This table
shows that SESIMP is comparable with FMLOD and performs better than QSlim
in terms of speed. One reason for SESIMP to be more efficient than QSlim is that
it does not need any check for fold-overs; in the case of a fold-over, a face is flipped
causing drastic increase in the normal field deviation, and so the proposed error
measure assigns a big cost to the corresponding vertex and prevents its elimination
automatically. Also, note that QSlim-2 could not simplify David model and QSlim-1
takes relatively more time, perhaps, because of paging.
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% Improvement over

# Faces QSlim FMLOD SESIMP QSlim FMLOD

Hypersheet Model

200 0.469787 0.366432 0.267049 43 27
500 0.240903 0.175351 0.153235 36 13

1 000 0.116816 0.0962 0.082259 30 14
1 500 0.072448 0.077987 0.057186 21 27
2 000 0.049709 0.052434 0.040739 18 22

Bunny Model

500 0.43209 0.403112 0.303148 30 25
1 000 0.221372 0.217826 0.175455 21 19
2 000 0.117966 0.127485 0.097973 17 23
3 000 0.093825 0.08975 0.070483 25 21
4 000 0.071224 0.068523 0.054399 24 21

Nicolo Head Model

1 000 0.202267 0.166563 0.137615 32 17
2 500 0.083874 0.075487 0.061485 27 19
4 000 0.056629 0.051531 0.040477 29 21
5 500 0.039129 0.039148 0.029716 24 24
7 000 0.031941 0.032382 0.023918 25 26

Laurent Hand Model

1 000 0.195942 0.192913 0.158171 19 18
3 000 0.074502 0.069616 0.059462 20 15
5 000 0.046437 0.045634 0.038272 18 16
7 000 0.034189 0.033912 0.027894 18 18
9 000 0.027051 0.026985 0.022165 18 18

Table 2. Root Mean Square (RMS) error

5.2 Objective Comparison

For objective comparison, we selected four models with different levels of complexity:
hypersheet, bunny, Nicolo head, and Laurent hand, and used two quality measures
(RMS – root mean square, and normal field deviation). RMS is less sensitive to
outliers and is true predictor of overall geometric quality of approximations. Normal

Fig. 7. Hypersheet model simplified from 3 832 to 500 faces (13%) by (b) SESIMP, (c) FM-
LOD and (d) QSlim
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% Improvement over

# Faces QSLIM FMLOD SESIMP QSLIM FMLOD

Hypersheet Model

200 0.173424 0.126755 0.105459 39 17
500 0.103228 0.066423 0.063602 38 4

1 000 0.079078 0.048543 0.045727 42 6
1 500 0.059236 0.047083 0.039219 34 17
2 000 0.053569 0.040616 0.032454 39 20

Bunny Model

500 0.343592 0.291232 0.240481 30 17
1 000 0.229357 0.216944 0.179085 22 17
2 000 0.16432 0.157686 0.132325 19 16
3 000 0.135751 0.132026 0.111222 18 16
4 000 0.115814 0.114155 0.097664 16 14

Nicolo Head Model

1 000 0.302842 0.22129 0.186146 39 16
2 500 0.211346 0.145165 0.124049 41 15
4 000 0.161226 0.118144 0.099499 38 16
5 500 0.140916 0.100236 0.085477 39 15
7 000 0.123213 0.0895 0.076999 38 14

Laurent Hand Model

1 000 0.217581 0.157535 0.138561 36 12
3 000 0.131858 0.101766 0.089471 32 12
5 000 0.103285 0.083077 0.071956 30 13
7 000 0.087184 0.072776 0.061327 30 16
9 000 0.076748 0.064843 0.055614 28 14

Table 3. Mean Normal Deviation

Fig. 8. (a) Original bunny model (#faces 69 451) and (e) close-up of its head simplified to
2 000 faces (2.87%) by (b, f) SESIMP, (c, g) FMLOD, and (d, h) QSlim



540 M. Hussain

field deviation is an indicator of visual quality. Figure 5 shows the plots of RMS
error (as percentage of the bounding box diagonal) measured with Metro [6, 7] and
Figure 6 depicts the plots of the normal field deviation measured with MeshDev [33,
34]. These plots and the error statistics given in Tables 2 and 3 indicate that
SESIMP performs better and has improvement of 17–43% in terms of RMS and
16–39% in terms of mean normal deviation. Also, note that average improvement
of full edge collapse variant of QSlim is 30.6% [15] and that of SESIMP is 24.4%
over half-edge collapse variant of QSlim. It means that SESIMP is a better choice if
the limitation is to use only half-edge collapse. The reason why SESIMP performs
better is that it employs normal based error metric which captures the anisotropy
of the surface in a better way than distance based metric [10].

Fig. 9. (a) Original Nicolo head model (#faces 355 886) simplified to 3 000 faces (0.84%)
(b) SESIMP, (c) FMLOD, and (d) QSlim

Fig. 10. (a) Original Laurent hand model (#faces 701 543) simplified to 3 000 faces (0.43%)

by (b) SESIMP, (c) FMLOD, and (d) QSlim
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Fig. 11. (a) Original David model (#faces 7 227 031) along with close-up of eyes (L: left eye
-upper, R: right eye) simplified to 40 000 faces (0.55%) by (b) SESIMP, (c) FMLOD,
and (d) QSlim

Fig. 12. (e), (f) An LOD of David head model with close-up generated by (g), (h) SESIMP,
(i), (j) FMLOD and (k), (l) QSlim

5.3 Qualitative Comparison

For visual comparison, low resolution LODs, generated with the three algorithms,
of some polygonal models having different degrees of complexity are presented in
Figures 7, 8, 9, 10, 11, 12, 13; to keep the comparison transparent, these LODs are
rendered using flat shading. In addition, error maps (computed with Metro) of some
LODs are shown in Figure 14.

Figure 7 illustrates how well SESIMP preserves the original shape; note the
hole. It is noteworthy that most of the triangular faces in the LOD created by
SESIMP are well-shaped, which is important for numerical processing. Observe the
low resolution LODs of the bunny model shown in Figure 8; the visual appearance
of the model is kept by SESIMP in more better way, especially see the bunny eye in
the close-up view; the error maps of the bunny LODs in Figure 14 further validate
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Fig. 13. (a) Original Satva model (#faces 3,631,628) and (b) its close-up simplified to
18 000 faces (0.49%) by (c), (d) SESIMP, (e), (f) FMLOD, and (g), (h) QSlim

the assertion that the bunny LOD generated by SESIMP is of better quality. Also,
observe an LOD (with 0.84% faces) of Nicolo head model shown in Figure 9; visually
important features like eyes and the dimple on the right cheek are well preserved by
SESIMP.

Figure 10 shows the LODs of Laurent Hand model; the error maps of these LODs
depicted in Figure 14 illustrate that SESIMP outperforms FMLOD and QSlim.
Have a look at the LODs of huge David model (with more than 7 million faces)
and the close-ups of its left and right eyes in Figure 11, SESIMP preserves eyes
in a better way. Further, LODs in Figure 11 and their corresponding error maps
in Figure 14 show how well salient features of David head model are preserved by
SESIMP. Also, observe the LODs of Satva model (with more than 3.5 million faces)
shown in Figure 13; it is apparent that face features are better preserved in the LOD
created by SESIMP. Visual comparison and error maps of low resolution LODs of
polygonal models with different levels of complexity reveal that SESIMP generates
better quality LODs and preserves visually important features even at very low levels
of detail.

5.4 Memory Usage

The statistics about memory used by the three methods are given in Table 4 in
terms of the number of vertices n in a mesh. We assumed that the number of faces
is about 2n and that of edges is 3n. Note that QSlim uses 44 bytes for keeping
quadric corresponding to each vertex. It is obvious that SESIMP has less memory
overhead.

6 CONCLUSION

A simplification algorithm – SESIMP – has been proposed for in-core simplification.
It provides an alternative to state-of-the-art algorithms known for their good time-
accuracy trade-off like QSlim and FMLOD. It is based on a measure of geometric
fidelity that exploits local normal field variation of a surface. A thorough comparison
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Fig. 14. Error map of LODs of bunny, David head, and Laurent hand models generated by
(a), (d), (g) SESIMP, (b, e, h) FMLOD, and (c), (f), (i) QSlim. Color strip indicates
the error from minimum (blue) to maximum (red)

with similar state-of-the-art methods reveals that SESIMP is well-versed with the
potential of adaptively simplifying and preserving the important geometric features
of a surface model even at very low levels of detail, prevents fold-overs automatically,
involves less execution time and has less memory overhead. Moreover, it is simple
to implement, and is robust in the sense that it is capable of constructing LODs of
different kinds of polygonal surfaces with almost the same level of fidelity. It is suit-
able for applications where the focus is better tradeoff between quality and speed,
and simplification is used as a processing step in other algorithms. The only draw-
back of SESIMP is that it is applicable only for the situation where approximation
is needed to have vertices which form the subset of the original vertices. Also, this
is not suitable for applications which need approximations with tight error bound.
As SESIMP does not need to store any kind of geometric history, it can prove to be
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Simplex Data Item SESIMP FMLOD QSlim

Vertices Position 12n 12n 12n
Face Links 24n 24n 24n

Quadrics – – 88n
Cost 8n 8n –
Target vertex 4n 4n –
Heap backlink 4n 4n –

Edges Endpoints – – 24n
Target vertex – – 12n
Cost – – 12n
Heap backlink – – 12n

Faces Vertices 24n 24n 24n
Original normal – 24n –
Current normal 24n 24n –

Total 100n 124n 208n

Table 4. Statistics about memory usage in bytes

very useful for view-dependent refinement and out-of-core simplification. It is the
subject of our future work.
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