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Abstract. Constrained financial portfolio optimization is a challenging domain
where the use of multiobjective evolutionary algorithms has been thriving over the
last few years. One of the major issues related to this problem is the dependence of
the results on a set of parameters. Given the nature of financial prediction, these
figures are often inaccurate, which results in unreliable estimates for the efficient
frontier. In this paper we introduce a resampling mechanism that deals with un-
certainty in the parameters and results in efficient frontiers that are more robust.
We test this idea on real data using four multiobjective optimization algorithms
(NSGA-II, GDE3, SMPSO and SPEA2). The results show that resampling signifi-
cantly increases the reliability of the resulting portfolios.

Keywords: Financial portfolio optimization, robust portfolio, multiobjective evo-
lutionary algorithms

1 INTRODUCTION

The problem of choosing the right combination of financial assets has been the
subject of research for a long time and it is one of the most active research lines in
finance. This is often framed as a multiobjective optimization problem where the
investor tries to find the right set of portfolios with the best risk/return profiles. The
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simultaneous minimization of risk and maximization of returns using two different
objective functions defines a Pareto front that is referred to as the efficient frontier.

A large portion of the academic literature on this subject builds on the semi-
nal work by Markowitz [13, 10]. The approach suggested by this author works
under some assumptions that allow the problem to be tackled with quadratic pro-
gramming. Unfortunately, these assumptions do not hold in the real world, which
calls for alternatives. That is the reason why the framework of evolutionary com-
putation is getting traction on this area. The solutions that have been suggested
for this multiobjective problem using evolutionary computation range from weight-
ing objectives into a single objective function. Chiranjeevi and Sastry [3] follow
the first approach and break the above-mentioned objective into five components
that are combined into a single fitness function that is optimized under cardinality
constraints. Soleimani et al. [24] perform classic mean-variance optimization con-
sidering constraints such as transaction costs, round lots or cardinality constraints
using a standard genetic algorithm. Among the authors that fall on the second
category we could mention Skolpadungket et al. [3]. They test the performance of
a set of multi-objective algorithms (VEGA, SPEA2, NSGA-II. . . ) on a constrained
version of the two objective problem. We also find more references [1, 7, 23]. For
instance, the first one introduces a customized hybrid version of NSGA-II and the
last two compare the performance of different multiobjective algorithms. Another
example could be [18], where the authors compare FastPGA, MOCELL, AbYSS,
and NSGA-II in both of the basic problems, and an extended version that considers
the dividend yield as a third objective.

One of the most important factors that asset managers face when they have
to assess the results provided by any of the above-mentioned methods is stability.
Very often, the expected efficient frontier lies far from the actual one as the forecast
risk/return profile of the portfolios is not accurate. This problem is one of the major
reasons why some practitioners mistrust these kinds of approaches and the search
for solutions has cleared the way for the field of robust portfolio optimization. The
works mentioned before handle risk and return, but do not deal with the robustness
of solutions. The main contribution of our work is the introduction of a resampling
mechanism that reduces the risk mentioned before under a constrained portfolio
problem.

When we forecast the risk and return of a specific portfolio, we rely on estimates
for the expected returns of individual assets and the variance-covariance matrix. The
forecasts for the expected returns might be inaccurate and the variance-covariance
may suffer from the same problem. These forecasts are usually based on past data
and this data may not be representative to picture the future due to, for instance,
the presence of outliers.

In this context, there are several potential ways to approach the problem. The
main two ones are either putting an emphasis on having robust estimates for the
above-mentioned parameters [16] or implementing a system that deals with uncer-
tainty in the estimation process [17, 25]. The approach suggested in this paper falls
in the latter category. We will use multiobjective evolutionary algorithms (MOEAs)
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enhanced with a resampling mechanism that changes the parameters of the fitness
function during the evolution process. We consider that using an evolutionary mul-
tiobjective algorithm that resamples past data to generate different scenarios and
evolves the system using that information will improve the reliability of the resulting
Pareto front.

The use of resampling in the context of portfolio optimization has been studied
in [22, 20]. The most comparable traditional approach is described by Idzorek [11]
who suggests combining traditional quadratic programming (QP) with a Monte
Carlo simulation to derive a set of fronts that are subsequently merged into a single
solution. The using of resampling within the context of multiobjective evolutionary
algorithms is a better strategy because real-world constraints are intractable by QP
and, at the same time, the approximation to the efficient frontier is made in a single
run [15].

The rationale for the approach is that optimizing for a single scenario bears
the risk of getting solutions that might be extremely sensitive to deviations in the
parameters used in the fitness evaluation. Given that it is almost certain that we will
not be able to accurately predict the behavior of all the assets, we could consider the
alternative of targeting portfolios that offer appropriate risk/return tradeoffs under
different scenarios.

The approach used in this work builds on [9] and extends the solution to the
constrained version of the problem. We also test it on new algorithms. The nature of
the resampling approach described in this paper is compatible with a wide array of
evolutionary multiobjective algorithms. Given their different nature and behaviour,
the study will compare the effect of adding the resampling strategy to the fitness
functions on the representative set testing their performance. For this purpose,
we have selected NSGA-II [6], one the most referenced algorithms in the field of
multiobjective optimization. We have also chosen GDE3 [12], a differential evolution
strategy, and SPEA2 [27], an algorithm that has been confirmed [23] to offer a good
performance in portfolio optimization context. Finally, a multiobjective algorithm
based on swarm, SMPSO [14], has been selected to explore the capability of swarm
formulation in our context.

The rest of the paper is organized as follows. First, we make a formal intro-
duction to the financial portfolio optimization problem. Then, we briefly present
the evolutionary multiobjective algorithms used in this work. After that, we will
describe our approach in detail. That will be followed by the experimental results
and, finally, there will be a section devoted to summary and conclusions.

2 FINANCIAL PORTFOLIO OPTIMIZATION

The portfolio can be defined as a collection of investments or assets held by an insti-
tution or a private individual. The Modern Portfolio Theory was originated in the
article published by Harry M. Markowitz in 1952 [13]. It explains how to use diver-
sification to optimize the portfolio. In general, the portfolio optimization problem
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is the choice of an optimum set of assets to include in the portfolio and the distri-
bution of the investor’s wealth among them. Markowitz [10] assumed that solving
the problem requires simultaneous satisfaction of maximizing the expected portfolio
return E(Rp) and minimizing the portfolio risk (variance) σ2

p, that is, solving a mul-
tiobjective optimization problem with two output objective functions [24, 3, 23, 18].
The portfolio optimization problem can be formally defined as follows:

• minimize the risk (variance) of the portfolio:

σ2
p = Σn

i=1Σ
n
j=1wiwjσij (1)

• maximize the return of the portfolio:

E(Rp) = Σn
i=1wiµi (2)

• subject to:
Σn
i=1wi = 1 (3)

0 ≤ wi ≤ 1; i = 1 . . . n (4)

where n is the number of available assets, µi the expected return of the asset i, σij
the covariance between asset i and j, and wi are the decision variables giving the
composition of the portfolio. The constraints referenced in Equations (3) and (4)
require full investment of funds and prevent the investor from shortening any as-
set, respectively. In a quantitative way, the risk is represented with the standard
deviation σp.

The solution to the problem should also consider some real world constraints [2]
such as:

• Cardinality constraint: it is possible to define the maximum Cmax and minimum
Cmin number of assets in which it is possible to invest (wi 6= 0):

Cmin ≤ Σ(wi 6= 0) ≤ Cmax. (5)

• Values limit constraint: each weight wi must have a value in the interval [liminf ,
limsup], where:

wi ≥ liminf ≥ 0.0;wi ≤ limsup ≤ 1.0; liminf ≤ limsup. (6)

All of these equations are solved by a set of points that constitute the efficient
frontier of the problem. The points will define a curve similar to that in Figure 1,
plotted in the risk-return space of all possible portfolios. The points of this curve
represent portfolios which have the minimum amount of risk given a certain expected
return (and vice versa).
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Figure 1. Efficient frontier

3 EVOLUTIONARY MULTIOBJECTIVE ALGORITHMS

As mentioned in the introduction, different evolutionary multiobjective algorithms
have been tested in the context of our work.

The field of evolutionary mutiobjective optimization has been growing steadily
over the last few decades since David Schaffer introduced VEGA in 1984 [21]. Un-
like more traditional approaches, these algorithms do not target a single solution,
but a whole set of alternatives that offer good compromises among the range of
objectives. Each of these alternatives is non dominated. This means that there
exists no other feasible solution which would provide an improvement in terms of
an objective without causing a simultaneous deterioration in terms of another one.
Not only that, they target the set of solutions in a single run.

Their structure has changed over time but second generation algorithms, such as
the ones used in this paper, tend to have some traits in common. These algorithms
are based on the idea of dominance, that is the algorithm favors those solutions
that are non-dominated and makes a wide use of elitism. This usually means that
there is an external population, or a secondary one, that stores the non-dominated
individuals found along the evolutionary process. In addition to that, they usually
include diversity preservation mechanisms that ensure that the solutions offered by
the algorithm are spread along the whole Pareto front and not clustered together.
Those who look for an introduction to the field or its applications might find [5]
or [4] interesting.

As an illustration, we provide the description of SPEA2 [27], one of the algo-
rithms most used to test resampling. SPEA2 was developed by Zitzler, Laumands
and Thiele to solve some weaknesses of a previous version by the same authors
called SPEA. Among the improvements, we could mention a fitness function that
takes into account, for each solution, the number of individuals dominated by this
one and the number of individuals which dominates it. This version also adds a den-
sity estimation of the population.
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This algorithm uses a population and an archive. It assigns each individual a fit-
ness value that is the sum of its strength raw fitness plus a density estimation. In
each generation the non-dominated individuals of both the original population and
the archive are used to update the archive; if the number of non-dominated individ-
uals is greater than the population size, a truncation operator based on calculating
the distances to the kth nearest neighbor is used. All this procedure is known as
Environmental Selection. Then, the algorithm applies the selection, crossover, and
mutation operators to members of the archive in order to create a new population
of offsprings which becomes the population of the next generation.

Algorithm 1 SPEA2 Algorithm Pseudocode
Input: N Population size
Input: N Archive size
Input: T Maximum number of generations
Input: Crossover probability
Input: Mutation probability
1. Initialization: Create the initial population P0 and the empty archive (external
set) P0 = ∅. Set t = 0.
2. Fitness assignment: Calculate fitness values of individuals in Pt and Pt
3. Environmental selection: Copy all non-dominated individuals in Pt and P t to
P t+1. If size of P t+1 exceeds N then reduce P t+1 by means of the truncation operator,
otherwise if size of P t+1 is less than N then fill P t+1 with dominated individuals in
Pt and P t
4. Termination: If t ≥ T or another stopping criterion is satisfied then set A to the
set of decision vectors represented by the non-dominated individuals in P t+1. Stop.
5. Selection: Perform binary tournament selection with replacement on P t+1 in
order to fill the mating pool.
6. Variation: Apply recombination and mutation operators to the mating pool and
set Pt+1 to the resulting population. Increment generation counter (t = t+ 1) and go
to Step 2.
Output: Non-dominated set.

The approach introduced in this paper was also tested with the following algo-
rithms: NSGA-II, GDE3 and SMPSO.

NSGA-II, proposed by Deb et al. [6], is one of the most widely used mul-
tiobjective metaheuristics. It represents the new version of the NSGA algorithm
proposed by the same author. It is a generational genetic algorithm based on
obtaining an auxiliary population from the original one by applying the typical
genetic operators (selection, crossover and mutation). Then, the two populations
are merged and the individuals are sorted according to their rank. Inside each
of these ranks, the crowding distance is used to sort the individuals from less to
more crowded. A solution with a smaller value of this distance measure is, in some
sense, more crowded by other solutions. Finally, the best solutions are selected to
compose the new population that will be used to create the new offspring popula-
tion.
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GDE3 [12] is the third version of the Generalized Differential Evolution algo-
rithm (GDE), extension of Differential Evolution strategy (DE) for global optimiza-
tion with an arbitrary number of objectives and constraints. GDE3 starts with
a population of random solutions. At each generation, an offspring population is
created using the differential evolution operators; then, the current population for
the next generation is updated using the solutions of both the offspring and the
current population. Before creating the next generation, the size of the population
is reduced using non-dominated sorting and a pruning technique aimed at diversity
preservation, in a similar way as NSGA-II. However, GDE3 modifies the crowding
distance of NSGA-II in order to solve some of its drawbacks when dealing with
problems having more than two objectives.

SMPSO, proposed by Nebro et al. [14], is the new multiobjective particle swarm
optimization algorithm (PSO) characterized by the use of a strategy to limit the
velocity of the particles. It is based in OMOPSO [19] but including the velocity
constriction procedure. This mechanism is useful when the velocity becomes too
large because it can produce new effective particles positions. SMPSO also works
with an external archive that stores the non-dominated solutions found during the
searching process. Polynomial mutation [26] is used in the algorithm as a turbulence
factor.

All the algorithms are implemented in jMetal [8], a Java framework aimed at
multiobjective optimization with metaheuristics. By reusing the base classes of
jMetal, all the techniques share the same basic core components (solution encodings,
operators, etc.), which ensures a fair comparison of the considered techniques.

4 SUGGESTED MODELING APPROACH

The portfolio optimization problem is tackled in this work using different evolutio-
nary multiobjective algorithms. All of them share the same chromosome structure
and fitness evaluation procedure. This section introduces the details related to both
issues and the metrics used in the experimental section.

4.1 Solution Encoding

The encoding chosen will represent each portfolio as a vector of real numbers; this
means that the algorithms will work with real elements instead of binary ones.
Each of these numbers represents the percentage of investment per asset (also called
weight: wi when i goes from 1 . . . n, where n is the number of investable assets).
Here, each portfolio will be represented by a single element of the population.

Every individual must follow the constraints specified by Equations (3), (4)
explained before. The sum of weights per individual must be 1.0, that is full in-
vestment is required. Also, the individuals must satisfy additional real-world con-
straints showed in Equations (5) and (6). Therefore, in order to satisfy all these
constraints, the individuals are repaired after initializing the population (see Algo-
rithm 2) and after applying the genetic operators (see Algorithm 3). Both repairing
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algorithms are based on the most intuitive procedure to transform chromosomes into
portfolio satisfying constraints. Each individual of the population is checked and
repaired. Whenever the number of invested assets does not belong to the interval
[Cmin, Cmax], its number is adjusted to ensure compliance with the cardinality con-
straint. This is achieved either by adding assets to the portfolio or dropping them
until the requirement is met. In case the sum of weights per individual is not 1.0,
the algorithm fine-tunes the holdings adding or subtracting random amounts up to
the required adjustment. These changes are forced to comply with the investment
limits [liminf , limsup]. The details of this process are described in Algorithms 2
and 3.

Algorithm 2 Reparation after initialization
Initialize population P as a set of vectors with real numbers xi = (xi1, . . . , xin); xij ∈
[liminf , limsup]
for each individual xi of P do

A random number ∈ [Cmin, Cmax] of values 0 is assigned to coordinates of vector xi
while Σn

j=1xij 6= 1 do
if Σn

j=1(liminf/xij 6= 0) > 1 then
select randomly one coordinate j of vector xi such that xij 6= 0 and assign xij = 0

end if
if Σn

j=1(liminf/xij 6= 0) < 1 then
select randomly one coordinate j of vector xi such that xij = 0 and assign
xij = limsup

end if
if Σn

j=1xij 6= 1 then
select randomly one coordinate j of vector xi such that xij 6= 0
add/subtract the quantity left to make the Σn

j=1xij = 1 respecting the limits
[liminf , limsup]

end if
end while

end for
Return(P )

4.2 Fitness Functions: Resampling Parameters

As we mentioned, in this paper a resampling strategy is used to evaluate the fitness
function with the purpose to obtain more robust and stable solutions for the portfolio
optimization problem.

As apparent from Equations (1) and (2), these functions are very dependent on
the values of the expected asset returns and the variance-covariance matrix. One
of the most important challenges that portfolio managers face when they operate
within Markowitz’s framework is the dependence of the solutions on the estimates for
these parameters. Given the difficulty inherent to financial forecasting, it is normal
that these parameters are not accurate. This lack of accuracy is likely to result in



Multiobjective Algorithms with Resampling for Portfolio Optimization 785

Algorithm 3 Reparation after genetic operators
for each individual xi of P do

if there are less xij = 0 than Cmin then
set one random xij = 0 to xij = liminf

end if
if there are more xij = 0 than Cmax then

set the xij 6= 0 with less value to xij = 0
end if
while Σn

j=1xij 6= 1 do
if Σn

j=1(liminf/xij 6= 0) > 1 then
select randomly one coordinate j of vector xi such that xij 6= 0 and assign xij = 0

end if
if Σn

j=1(liminf/xij 6= 0) < 1 then
select randomly one coordinate j of vector xi such that xij = 0 and assign
xij = limsup

end if
if Σn

j=1xij 6= 1 then
select one random xij 6= 0 ∈ [liminf , limsup]
add/subtract one random quantity left to make the Σn

j=1xij = 1 respecting the
limits [liminf , limsup]

end if
end while

end for
Return(P )

a set of portfolios that are expected to behave in one way and do so in a completely
different one. Figure 2 shows a real example of one Pareto front where the solutions
are evaluated using the forecast parameters (represented with “+” points at the top)
and the real parameters (represented with “x” points at the bottom). The portfolios
that were optimised for the most likely scenario (mean return for each asset over
a period of time, and variance-covariance matrix computed using the same data)
define the Pareto front on top. However, it is clear that, once we calculate the
risk and returns for the very same portfolios using the real observed parameters
(actual assets returns instead of the mentioned averages), their profiles can be very
different. The difference between the two fronts, that represent the same solution,
can be potentially very important. For this reason, we suggest altering the fitness
function to manage this risk.

The basic idea behind the solution that we suggest is to keep changing, for
every generation, the parameters of the fitness functions during the evolution pro-
cess. This prevents the efficient frontier from being specialized in a single scenario.
Furthermore, the algorithm may find solutions with good performance evaluated un-
der resampled scenarios whose values are likely to be close to the real ones. These
solutions would have better performance for the real value of the parameters (only
known a posteriori).
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Figure 2. Solution evaluated with forecast and real parameters

The resampling mechanism has very little computational cost (almost not per-
ceived) to the algorithm. The starting point for the evaluation of portfolios is the
framework introduced in Section 2, where the fitness of each individual is determined
by evaluating the two objective functions: return E(Rp) to be maximized, and the
risk σp to be minimized. In our approach, once the individual is evaluated in one
resampled scenario, it is not evaluated any more until the end of the execution when
its objectives are calculated under the forecast non-resampled scenario. Moreover,
different individuals are evaluated in different scenarios along the evolution process,
which can avoid getting all solutions specialized in a single scenario.

The approach that we use to generate these scenarios is a nonparametric boot-
strap. The usual way to forecast the value of parameters for the model is averaging
the returns and computing the associated variance covariance matrix over a num-
ber of periods. Our algorithm starts from the same point, the definition of a time
window. Instead of using all the data to derive a single estimate for the parameters,
data are resampled. The resampling process selects a random set of time periods
that has the same size as the original window (each period might be selected more
than once). Then, we average the returns for those time periods and compute the
variance-covariance matrix. Every time we do this, we generate new estimates for
the parameters that are based on past data. These estimates can subsequently be
used to calculate the risk and return of the portfolios. The process is described in
Algorithm 4.
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Algorithm 4 Resampling method
S is the original sample set with a size Ns.
S′ is the new sample set with a size N ′s. At the beginning, S′ = ∅ and N ′s = 0.
while N ′s 6= Ns do

Select randomly Xi ∈ S.
S′ = S′ ∪ {Xi}.

end while
Return(S′)

Hence, when we use resampling we create a set of “likely scenarios” that produces
less specialized solutions in just one scenario which can be close, or not, to the reality,
making the solution more robust.

4.3 Evaluation Metrics

Solutions resulting from different runs of the multiobjective algorithms must be
compared using quantitative metrics that measure the success of the algorithms.
It is generally admitted that there is no single metric that can be used to evaluate
those objectives simultaneously; this is especially true when the best Pareto-optimal
front is not known.

The metrics most widely used in multiobjective context are Hypervolume and
Spread [28]. These metrics could be useful when we look for well distributed and
strong dominant fronts. However, they are not appropriate to capture the effect
showed in Figure 2. For this reason, we define a specific metric based on the Eu-
clidean Distance to model the reliability of the solutions.

The metric used in this work is calculated separately for both return and risk
objectives. The aim is to evaluate the distance between the forecast risk/return for
every portfolio in the efficient frontier (σ2

p, E(Rp)) and the actual risk/return for
the same portfolio computed with the real parameters ((σ2

p)
′, E ′(Rp)), that is, the

distance between the estimates for tn based on data from t1 to tn−1, and the actual
values at tn.

The expression in terms of return is formally defined for each efficient frontier
in Equation (7).

EDE(R) =

√∑N
p=1(E(Rp)− E ′(Rp))2

N
(7)

where N is the number of portfolios in the Pareto front. The equivalent in terms of
risk is Equation (8).

EDσ2 =

√∑N
p=1(σ

2
p − (σ2

p)
′)2

N
(8)

These metrics are specific for each efficient frontier and the lower the values are,
the shorter the distance between the forecasted risk and return and the actual ones
in terms of each objective.
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5 EXPERIMENTAL VALIDATION

In this section we test the aforementioned approach on a specific asset allocation
problem. We try to identify the mixes of broad investment categories that provide
the optimal balance between expected risk and return, while increasing robustness.

As we described in the the introduction, we consider different multiobjective
meta-heuristics on the constrained version of the problem. For every algorithm,
NSGA-II, SPEAII, SMPSO and GDE3, we compare the performance of the stan-
dard version versus the resampled equivalent. For experimental purposes, the cardi-
nality constraints [Cmin, Cmax] and the value limit constraints [liminf , limsup] are set
to [2, 6] and [0.1, 0.8], respectively. The choice of these limits is arbitrary but in line
with the values found in the literature. These limits were set from the beginning
and no experimentation was made for any alternative value.

Section 5.1 describes the data sets used in this work. Section 5.2 gives details
about the parameter settings for multiobjective algorithms and some general param-
eters of the problem. Finally, Section 5.3 presents and analyses the experimental
results.

5.1 Data Set

The sample used for the experimental analysis consists of 240 monthly returns for
eight broad financial indexes representing that many asset classes. The series of
monthly returns cover January, 1990 through December, 2009 and the source is the
data vendor Datastream. Given the nature of the source, the sample cannot be made
available by the authors. However, the list of indexes and codes is provided in Table
1, making the experimental work replicable.

Name Code

Frank Russell 2000 Value FRUS2VA

Frank Russell 2000 Growth FRUS2GR

Frank Russell 1000 Value FRUS1VA

Frank Russell 1000 Growth FRUS1GR

S & P GSCI Commodity Total Return GSCITOT

MSCI EAFE MSEAFEL

BOFA ML CORP MSTR ($) MLCORPM

BOFA ML US TRSY/AGCY MSTRAAA ($) MLUSALM

Table 1. Data Sets

5.2 Experimental Settings

We implement the sliding window technique. Each window has a size n of 120
series of returns. The series t1 to tn−1 are used in the algorithm to get the final
solutions and the period tn is used to evaluate them. Each time the window moves
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one month. In our experimentation the window is moved 120 times taking the
interval from 31/01/1990 to 31/12/2009. Previous experiments modifying the size
of the windows have been carried out. In order to work with full years we studied
the window sizes which were multiples of 12 and we saw that the best one for our
case was 120.The reason is that, using less than 120 periods per window, the Pareto
fronts are less accurate, but with more than 120 the time of computation grows
significantly while the quality of the fronts remains similar.

Under the parameters described in Table 2, the algorithms are run 20 times per
window getting for each window a set of 20. The results are reported in Section 5.3.

SPEA2

Population size 50, 200 and 500 individuals
Archive size 50, 200 and 500 individuals
Crossover SBX, pc = 0.9
Mutation Polynomial, pm = 1/L
Selection of Parents Binary tournament

NSGA-II

Population size 50, 200 and 500 individuals
Crossover SBX, pc = 0.9
Mutation Polynomial, pm = 1/L
Selection of Parents Binary tournament

SMPSO

Archive size 50, 200 and 500 individuals
Swarm size 50, 200 and 500 particles
Mutation Polynomial, pm = 1/L

GDE3

Population size 50, 200 and 500 individuals
Crossover DE crossover, CR = 0.9
Mutation DE mutation, F = 0.5
Selection of Parents DE selection

Table 2. Parameters. L = 8 (individual length). The termination condition is to compute
100 iterations.

5.3 Experimental Results

This section shows the results of the experimental process described before. For
every multiobjective algorithm tested, we compare the performance of the standard
and the resampled version of the algorithm. The version of the algorithm is labeled
either as “NR”, for the standard non-resampled version, or “R”, the resampled one.
The population size is also used to label the experiment. For instance, NR-200
corresponds to the standard version of the algorithm using a population size of 200.

Results are provided as descriptive statistics (Average, Medium, Variance) for
the average prediction error across the 120 time periods for both risk and return
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objectives. Here, errors are defined in terms of the metrics described in Section 4.3.
In order to simplify the comprehension, tables show descriptive statistics, across
20 experiments, for the average results for the metrics EDE(R) (Equation (7)) and
EDσ2 (Equation (8)). These are denoted as “Return” and “Risk”, respectively.
To compare the performance of the non-resampled and resampled versions of the
algorithms, the difference between the errors obtained by both versions, labeled as
% Av., is also reported.

The first set of results is reported in Table 3. This table shows the results for
NSGA-II. The advantage in terms of error distance of using resampling ranges from
17 % to 19 % and 16 % to 18 % for return and risk, respectively. The lowest prediction
errors are achieved using the largest population size and also the difference between
using resampling and the standard algorithm is most evident.

Return Risk

Average Median Variance % Av. Average Median Variance % Av.
NR-50 2.4055 1.8437 5.0467 0.0215 0.0172 0.0012
R-50 1.9848 1.4206 3.8320 −0.1749 0.0180 0.0134 0.0009 −0.1601
NR-200 2.4066 1.7901 5.2318 0.0216 0.0172 0.0013
R-200 1.9901 1.4232 3.7390 −0.1731 0.0180 0.0133 0.0009 −0.1673
NR-500 2.4044 1.7462 5.3553 0.0217 0.0171 0.0014
R-500 1.9574 1.3864 3.7524 −0.1859 0.0177 0.0130 0.0009 −0.1842

Table 3. Metrics values for Euclidean Distance – NSGA-II

Like NSGA-II, GDE3 also shows the inverse relationship between prediction
error and population size. In global terms, GDE3 systematically beats NSGA-II
in the standard configuration. Once we add resampling, the differences are less
apparent as the algorithm reduces the prediction error to a lower extent. As we
can see in Table 4, NSGA-II shows marginally better results in terms of risk for
population sizes of 50 and 500.

Return Risk

Average Median Variance % Av. Average Median Variance % Av.
NR-50 2.1653 1.5232 4.5713 0.0203 0.0161 0.0012
R-50 1.9450 1.4249 3.8725 −0.1017 0.0181 0.0142 0.0012 −0.1067
NR-200 2.1703 1.5124 4.8341 0.0203 0.0162 0.0013
R-200 1.9127 1.3676 3.7686 −0.1187 0.0178 0.0139 0.0011 −0.1243
NR-500 2.1607 1.5084 4.9065 0.0202 0.0160 0.0014
R-500 1.8804 1.3360 3.7995 −0.1297 0.0178 0.0137 0.0011 −0.1208

Table 4. Metrics values for Euclidean Distance – GDE3

The third algorithm, SMPSO, offers intermediate results that are more in line
with GDE3. The difference between the expected behaviour of the portfolios in
the solution and the observed ones drops with resampling, but the improvement
is slightly lower than that achieved by the differential evolution. Given that the
starting errors (those offered by the basic algorithms) are very similar, these results
are the second best alternative of the three mentioned. The results reported in
Table 5 show improvements that range from 10 % to 13 %
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Return Risk

Average Median Variance % Av. Average Median Variance % Av.
NR-50 2.1890 1.5396 4.6426 0.0203 0.0161 0.0013
R-50 1.9711 1.4408 3.9476 −0.0995 0.0182 0.0142 0.0012 −0.1039
NR-200 2.1808 1.5013 4.8605 0.0204 0.0163 0.0013
R-200 1.9342 1.3855 3.7287 −0.1131 0.0179 0.0140 0.0011 −0.1201
NR-500 2.1841 1.5062 5.0983 0.0204 0.0162 0.0014
R-500 1.9049 1.3750 3.8518 −0.1278 0.0179 0.0137 0.0011 −0.1209

Table 5. Metrics values for Euclidean Distance – SMPSO

Finally, the resampled version of SPEA2 seems to be the best option in this
domain among the alternatives considered. Table 6 shows that the set of portfolios
selected by the basic algorithm is the most unreliable. However, adding resampling
reduces the average distance between the expected return and the real one up to
31 %. If we consider the differences in terms of risk, they drop to 29 %.

Return Risk

Average Median Variance % Av. Average Median Variance % Av.
NR-50 2.5337 1.8637 5.8800 0.0225 0.0183 0.0014
R-50 1.8286 1.3373 3.1472 −0.2783 0.0168 0.0127 0.0008 −0.2556
NR-200 2.5593 1.8341 6.0887 0.0229 0.0183 0.0015
R-200 1.8317 1.3093 3.2972 −0.2843 0.0168 0.0123 0.0008 −0.2668
NR-500 2.5755 1.8190 6.2906 0.0232 0.0183 0.0016
R-500 1.7800 1.2503 3.2099 −0.3089 0.0165 0.0120 0.0008 −0.2882

Table 6. Metrics values for Euclidean Distance – SPEA2

The differences between the errors shown by the basic and resampled versions of
the algorithm, % Av., were tested for statistical significance. We used the protocol
described in Algorithm 5 and all the differences were significant at 1 %.

Algorithm 5 Statical testing protocol
if the values follow a Normal distribution of Gauss (applying the Kolmogorov-Smirnov
test) then

if the variances are homogeneity (the Levene test is used to check it) then
A t-test is performed.

else
A Welch test is executed.

end if
else

A Wilcoxon test is applied to compare the medians of the solutions
end if

As we could see in the previous results, the suggested resampling mechanism re-
sulted in a systematic and significant increase in the reliability of the solutions across
the algorithms. The minimum decrease in average error was 10 % for SMPSO and
the maximum gain was 31 % for SPEA2. This improvement comes at a low compu-
tational cost and no additional fitness evaluations. Furthermore, the differences in
average errors were insignificant at 1 % regardless of the population size.
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There is a potential explanation for relative gain of robustness of the basic
versions of SPEA2 and NSGA-II vs. the resampled alternatives. The inspection of
a sample of efficient frontiers for different experiments suggests that both SPEA2
and NSGA-II tend to provide fronts that are slightly wider on the high risk/high
return side of the efficient frontier than the ones offered by the rest of the standard
algorithms. Given that the portfolios located in that section are more prone to large
deviations, this tends to result on a worse baseline. Furthermore, the differences in
average errors were insignificant at 1 % regardless of the size. This is likely to make
the improvement on a relative basis higher than average.

6 CONCLUSIONS

Portfolio optimization is one of the most active research lines in finance. The choice
of the right combination of financial assets can be framed as a multiobjective op-
timization problem where the investor tries to find set of portfolios with the best
risk/return profiles. These problems can be approached in different ways, but evo-
lutionary multiobjective algorithms (MOEAs) are increasingly used as they provide
the flexibility necessary to deal with real-world scenarios.

Portfolio managers often face the problem that the expected efficient frontier
derived from their forecasts for future returns is subject to uncertainty. This means
that if the real parameters differ from the forecasted ones, the risk and returns of
the portfolios included in the estimated efficient frontier might deviate substantially
from the predictions. This could result in extreme underperformance on some port-
folios. This uncertainty is one of the major reasons why some practitioners mistrust
quantitative methods based on modern portfolio theory, and the search for solutions
has cleared the way for the development of robust portfolio optimization.

Robust optimization can not be addressed by traditional techniques, such as QP,
because considering real-world constraints converts the basic portfolio into a more
complex problem impossible to solve by QP. We presented a resampling mecha-
nism based on a nonparametric bootstrap that, used in combination with MOEAs,
should lower the likelihood of getting solutions whose behaviour, under normal cir-
cumstances, is much worse than anticipated. The mechanism resamples past data to
generate different scenarios that are used during the evolutionary process to evaluate
the portfolios that are added to the population. This prevents the efficient frontier
from being specialized in a single scenario.

The approach was tested on real data on a sample of monthly returns for eight
indexes representing different broad investment categories including stock, bonds,
etc. In this study the performance of several multiobjective meta-heuristics has
been compared in both basic and resampled versions. We have experimented with
four multi-objective metaheuristics (NSGA-II, GDE3, SMPSO and SPEA2) over 120
time periods using a sliding window. The results show that resampling significantly
enhances the reliability of the solutions as measured by average error committed
predicting the performance of the final set of portfolios both in terms of risk and
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return. This is very important as it indicates that decision makers could rely more in
the robust front to pick the right portfolio according to their preferences. The best
results were obtained using SPEA2 and resampling, which resulted in improvements
on the average reliability of the portfolios selected of up to 31 %.
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