
Computing and Informatics, Vol. 32, 2013, 661–677

PARALLEL CLASSIFICATION
WITH TWO-STAGE BAGGING CLASSIFIERS

Verena Christina Horak∗

Department of Computer Sciences, University of Salzburg
5020 Salzburg, Austria
e-mail: vhorak@cosy.sbg.ac.at

Tobias Berka∗

Computer Laboratory, University of Cambridge
United Kingdom
&
Department of Computer Sciences, University of Salzburg
5020 Salzburg, Austria
e-mail: tberka@cosy.sbg.ac.at

Marian Vajteršic

Department of Computer Sciences, University of Salzburg
5020 Salzburg, Austria
&
Mathematical Institute, Slovak Academy of Sciences
840 00 Bratislava, Slovakia
e-mail: marian@cosy.sbg.ac.at

Abstract. Bootstrapped aggregation of classifiers, also referred to as bagging, is
a classic meta-classification algorithm. We extend it to a two-stage architecture
consisting of an initial voting amongst one-versus-all classifiers or single-class rec-
ognizers, and a second stage of one-versus-one classifiers or two-class discriminators
used for disambiguation. Since our method constructs an ensemble of elementary
classifiers, it lends itself very well to parallelization. We describe a static work-

∗ These co-authors contributed equally to this work.

662 V. Horak, T. Berka, M. Vajteršic

load balancing strategy for embarrassingly parallel classifier construction as well
as a parallelization of the classification process with the message passing interface.
In our experiments, which are evaluated in terms of classification performance and
speed-up, we obtained an up to three-fold increase in precision and significantly
increased recall values.

Keywords: Classification methods, bagging classifiers, parallel algorithms

1 INTRODUCTION

In machine learning, ‘classification’ denotes the problem of deriving, applying and
evaluating a function or more generally an algorithm – which will be called a clas-
sifier – that categorizes yet unlabeled data according to information provided by
already categorized data. A typical example is blood typing, for which several medi-
cal parameters are chosen to determine the blood type of a not yet categorized blood
sample. In general, classification consists of two steps: the construction of classifiers
for which given labeled data is analyzed and the application of these classifiers on
unlabeled data.

Construction of classifiers using labeled training examples is an established su-
pervised learning task. Given a pattern, typically represented as a vector, we seek
to predict the class of that pattern using a classifier.

There is a broad range of classification models, methods and algorithms to be
used in a wide range of circumstances (cf. [1]). Bootstrapping as a population re-
sampling technique applied to clustering has been introduced as “bagging”, short for
bootstrap aggregation, in [2]. One highly popular extension is “boosting” [3], where
the selection of individual items is not purely random but is directed to maximize
the classification accuracy according to a gradient descent.

Both bagging and boosting have successfully been parallelized [4]. The authors
report that bagging, quite naturally, achieves nearly linear speed-up in the number
of processes with only a marginal overhead. Boosting has been adapted to MapRe-
duce for cloud computing and other, more relaxed parallel environments in [5].
Resampling methods are also used for the construction of clustering ensembles to
deal with the high computational complexity, e.g. in the CLARA and CLARANS
algorithms [6].

In this paper, we present a meta-classification method, which in turn uses other
elementary classification methods in order to alleviate this problem. It is motivated
by two ideas from the fields of machine learning and statistics: one-versus-all classifi-
cation [7] and the statistical method of bootstrapping [8] applied to the construction
of classifiers in an approach called bagging. A classifier construction algorithm is
executed on several sampled subsets of the training information to obtain a set of
different classification criteria. The classification is performed separately on each of
these criteria and combined by voting to form an overall result.

Parallel Two-Stage Bagging Classifiers 663

We describe its application on an adaption of a decision rule construction al-
gorithm called SCALLOP [9, 10]. This classifier was originally developed for data
streams, operating on large amounts of low-dimensional information. In our experi-
mental evaluation, we demonstrate that we can use our meta-classifier algorithm to
successfully apply SCALLOP to relatively small, high-dimensional data sets.

Furthermore, our method is very well suited for parallelization, and we introduce
and evaluate two simple and intuitive parallelization strategies.

Hence, the paper is structured as follows: The main idea of our approach is
introduced in the second section and parallelized in the third section. After the
evaluation in the fourth section, we give a short summary and conclude with the
future work.

2 A TWO-STAGE BOOTSTRAPPING APPROACH
USING TWO-CLASS CLASSIFIERS

Bootstrapping is a resampling method, whereby only a small part of a sample is
selected at random to generate a new, smaller population of samples. The naive ap-
plication of bootstrapping to classification is to construct an independent classifier
for every resampled population, which can “independently” predict the class label
for any new object. The final prediction can then be obtained by voting. We have
combined this statistical technique with the “one-versus-all” approach to classifier
construction. Instead of building a single classifier capable of predicting every class,
we construct a set of classifiers. Every one of these classifiers is a two-class dis-
criminator, and it distinguishes between the instances of a single class and all other
classes (hence the name one-versus-all classifier). In order to break ties in the vot-
ing process, we also observe the “all-versus-all” approach to classifier construction.
Here, we consider all pairs of classes and ignore the patterns of all other classes.

For our purposes, every pattern can be written as a vector in Rn. Let us assume
that all vectors are normalized and shifted to fit into [0, 1]n, for simplicity. We have
C classes which are identified as labels. These class labels are elements of the set
{0, . . . , C − 1}.

To construct classifiers, we require labeled training data. Let X be a given set of
N ′ normalized patterns, meaning that X ⊂ [0, 1]n and |X| = N ′. These N ′ labeled
“training vectors” can (but need not) be contained within the set of N patterns to
be classified.

The elements of X are labeled with a function l : X → {0, . . . , C − 1}, which
maps every individual training pattern x from the set X to the known class mem-
bership l(x).

As a convenient shorthand notation, let us denote by X(c) selected training
instances for an individual class c ∈ {0, 1, . . . , C − 1}, formally X(c) = {x ∈ X |
l(x) = c}.

For statistical reasons, we require that each class is represented approximately
equally often, which means that the cardinality of X(c) corresponds to approximately

664 V. Horak, T. Berka, M. Vajteršic

N ′/C for each c ∈ {0, . . . , C − 1}.
A classifier π for predicting the class membership is a function π : [0, 1]n →

{0, . . . , C−1}. Based on the labeled training instances, we can construct a classifier
with a learning (or training) algorithm C, which maps the set of training patterns
X and the labeling function l to a classifier π = C(X, l).

The first step is to build one-versus-all training sets. For each class c, we rela-
bel the patterns in X by assigning 0 if the label corresponds to c or 1 otherwise.
Formally, we construct a new labeling function lc : X → {0, 1} with the assignment
rule lc(x) = 0 if x ∈ X(c) or 1 otherwise.

In the second step, we consider all-versus-all classification [7]. As before, new
data sets are generated by relabeling elements of X. This time, we build new subsets
for every pair of classes (i, j), where 0 ≤ i < j ≤ C − 1, containing all patterns
with labels i and j, formally X(i,j) = X(i) ∪X(j). These sets are relabeled to 0 or 1
with labeling functions l(i,j) : X(i,j) → {0, 1}, where l(i,j)(x) = 0 if x ∈ X(i) and 1
if x ∈ X(j). Hence we receive C(C − 1)/2 new training sets with approximately
2N ′/C elements each due to the requirement that |X(c)| ≈ N ′/C for each class c.
Although the name “all-versus-all” classification is common in the literature, we
prefer to speak of “one-versus-one” sets, since we will only inspect individual sets
during the voting process.

The third step of our algorithm is called “selection for iteration”. For large
data sets and a small number of classes it would be fine to work with the training
sets Xi and X(i,j) described above. However, for small data sets this is not the case.
Therefore, we introduce an iterative process which generates additional subsets by
bootstrapping. We thereby receive iteration subsets X t

i or X t
(i,j) of size 2s, where

s is smaller than or equals N ′/C, i.e. the approximate cardinality of each X(c), and
0 ≤ t ≤ I−1 for I iterations. However, since this is a bootstrapping method, s should
be somewhat smaller than the total number of patterns of one class. Formally, we
define an operator S which randomly selects s elements of a set X and returns
them as a resampled set S(X, s). In special cases where further information on
the vectors to be classified is given it may be useful to choose different numbers
of iterations, i.e. I1 6= I2, for the generation and application of one-versus-all and
one-versus-one classifiers. Although the underlying (given) classifier is exactly the
same for both one-versus-all and one-versus-one classifiers, it is common to speak of
recognizers and discriminators, which will be denoted by ϕ and ψ, respectively. We
have summarized the key notation, and our global variables, in Table 1.

Algorithm 1 gives an accurate description of the general case with the same
number of iterations for recognizers and discriminators.

To predict the class membership of new patterns, a voting algorithm is used to
combine the outputs of all of the individual classifiers.

First, only the recognizers are taken into account, which is illustrated in Figure 1.
If the result is unambiguous, the estimated label is assigned to the pattern straight
away. Otherwise, the second part of the voting algorithm, which is visualized in
Figure 2, is applied.

Parallel Two-Stage Bagging Classifiers 665

Algorithm 1: Bootstrapped Generation of Classifiers

Input: The set of labeled training patterns X, and the number of classes C
and iterations I.

Result: IC recognizers ϕt
0, . . . , ϕ

t
C−1 and IC(C − 1)/2 discriminators ψt

(i,j)

for t ∈ {0, . . . , I − 1} and 0 ≤ i < j ≤ C − 1.

for t← 0 to I − 1 do
for i← 0 to C − 1 do

T ← S(X(i), s); T̂ ← S(X \X(i), s);

let l(u) =

{
0, if u ∈ T
1, if u ∈ T̂

;

ϕt
i ← C(T ∪ T̂ , l);

for j ← i+ 1 to C − 1 do

T ← S(X(i), s); T̂ ← S(X(j), s);

let l(u) =

{
0, if u ∈ T
1, if u ∈ T̂

;

ψt
(i,j) ← C(T ∪ T̂ , l);

Winning Class(es)

...

...

Vote Array

Determine

Winner(s)

...

Iteration

0

Iteration

1

Iteration

I-1

Not

Recognized

+

Recognizers Class

0

...

Iteration

0

Iteration

1

Iteration

I-1

Not

Recognized

+

Recognizers Class

1

Recognizers Class

C-1

...

Iteration

0

Iteration

1

Iteration

I-1

Not

Recognized

+

...

Pattern

Figure 1. Voting Stage 1

666 V. Horak, T. Berka, M. Vajteršic

...

Vote Array

Determine

Winner

Winning Class

...

Iteration

0

Iteration

1

Iteration

I-1

+

Discriminators Tied Classes

0-1

...

Iteration

0

Iteration

1

Iteration

I-1

+

Discriminators Tied Classes

0-2

Discriminators Tied Classes

0-(C-1)

...

Iteration

0

Iteration

1

Iteration

I-1

+

...

Pattern

+ + +

...

Iteration

0

Iteration

1

Iteration

I-1

+

Discriminators Tied Classes

1-2

Discriminators Tied Classes

1-(C-1)

...

Iteration

0

Iteration

1

Iteration

I-1

+

...

+ +

...

Discriminators Tied Classes

(C-2)-(C-1)

...

Iteration

0

Iteration

1

Iteration

I-1

+

+

+

+

+

Tied Classes

...
Discriminators

+

Figure 2. Voting Stage 2

Parallel Two-Stage Bagging Classifiers 667

Symbol Usage

n Number of variables or features

N Number of instances or patterns to be classified

N ′ Number of labeled training instances or patterns

X Set of all training vectors

C Number of classes

X(c) Set of pattern vectors with label c

l Labeling function

s Sample size

I Number of iterations

π Classifier

C Classifier construction operator

S Resampling operator

ϕt
i Recognizer for class i from iteration t

ψt
(i,j) Discriminator for classes i and j from iteration t

Table 1. Notation and global environment

The second stage of the voting uses the discriminators ψt
(i,j) to distinguish be-

tween the two most promising classes. In the case that this comparison does not
deliver a unique result, we randomly assign either label i or j to the actual pattern –
which has never turned out to be necessary in our tests. The combination of these
two voting stages is shown in Algorithm 2.

3 PARALLELIZATION

We have used the message passing interface (MPI) as middleware for our parallel im-
plementation [11]. It is an appealing choice for our algorithm because it offers high-
performance implementations for broadcasts and reductions such as parallel vector
summation. Each of the P individual parallel processes is identified by a number
r ∈ N, 0 ≤ r ≤ P − 1. Table 2 summarizes the additional notation.

The computationally expensive part of our algorithm is the construction of the
individual two-class discriminators. Fortunately, our approach allows us to construct
all classifiers individually and in an embarrassingly parallel manner. We simply re-
sample the data set and conduct a number of independent executions of the classifier
construction algorithm.

However, since the structure of the classifier architecture is highly regular, we
can devise a systematic way to construct all the individual classifiers for C classes
and P processes.

For the one-versus-all classifiers, we have to distribute a total of I C classifier
construction tasks amongst P processes. This means that every individual process
has to build approximately I C/P recognizers which results in an uneven distribution
of tasks if (I C)%P 6= 0 (% denotes the modulo operator). To balance the load
evenly, we split our processes into two groups: the processes of the first group

668 V. Horak, T. Berka, M. Vajteršic

Algorithm 2: Two-Stage Voting

Input: A pattern vector x.
Result: An estimated label for x.

/* First stage (one-versus-all classification) */

for t← 0 to I − 1 do
for i← 0 to C − 1 do

if ϕt
i(x) = 0 then vote[i] ← vote[i] + 1;

;

M ← argmax
0≤i<C

vote[i];

if |M | = 1 then
return m ∈M ;

/* Second stage (one-versus-one classification) */

else
for (i, j) ∈M ×M, i < j do

for t← 0 to I − 1 do
if ψt

(i,j)(x) = 0 then

vote[i] ← vote[i] + 1;

else if ψt
(i,j)(x) = 1 then

vote[j] ← vote[j] + 1;

M ← argmax
0≤i<C

vote[i];

if |M | = 1 then return m ∈M ;
;
else

return random element of M ;

construct b(I C)/P c+ 1 recognizers and those from the second group build one less.
Using these workload sizes, we can compute the first and last classifier construction
task for every process. The procedure Responsibilities computes the local classifier
tasks, and derives the concise classes and corresponding numbers of iterations.

For the one-versus-all classifiers, we have to extend the approach to distribute
all I C (C − 1)/2 individual classifiers amongst our P processes. We can again use
the Responsibilities procedure to allocate a total of C (C−1)/2 artificial classes, but
we need to decode these into pairs of classes for the discriminators. The procedure
Decode implements this conversion.

Algorithm 3 uses the procedures Responsibilities and Decode to construct the
two sets Φr and Ψr that contain all one-versus-all and one-versus-one classifiers for
the process identified by r. The sampling operator S and classifier construction

Parallel Two-Stage Bagging Classifiers 669

Symbol Usage

P Number of processes

r Numerical identifier for a process r

Φr All recognizer for a process r

Ψr All discriminators for a process r

Table 2. Notation and global environment

Algorithm 3: Parallel Classifier Construction

Input: The set of all training patterns X and the sample size s.
Result: Returns the sets of recognizers Φr and discriminators Ψr for each

local process r.
parallel for r ∈ {0, . . . , P − 1} do

Φr ← ∅; Ψr ← ∅;
R = Responsibilities(C, I, P, r);
for (c, i) ∈ R do

do i times

T ← S(X(c), s); T̂ ← S(X \X(c), s);

let l(u) =

{
0, if u ∈ T
1, if u ∈ T̂

;

Φr ← Φr ∪ {C(T ∪ T̂ , l)};

R = Decode(Responsibilities(C(C−1)
2

, I, P, r), C);
for (c, c′, i) ∈ R do

do i times

T ← S(X(c), s); T̂ ← S(X(c′), s);

let l(u) =

{
0, if u ∈ T
1, if u ∈ T̂

;

Ψr ← Ψr ∪ {C(T ∪ T̂ , l)};

return Φr, Ψr;

algorithm C are an abstract notation for any suitable implementation of these two
processes.

The construction of the classifiers can be parallelized with little communication
effort. Only a single broadcast at the beginning is required – or even without any
explicit communication if the training set can be simultaneously read from a parallel
file system.

Unfortunately, the voting part cannot be parallelized so easily. Assume that we
have set up the system and all classifiers are available according to the responsibilities
outlined above. The voting can be parallelized as described in Algorithm 4 in which
the iteration index t of all recognizers and discriminators is omitted for readability

670 V. Horak, T. Berka, M. Vajteršic

Procedure Responsibilities

Input: The number of (pairs of) classes C, of iterations I, of processes P ,
and the local process identified by r.

Result: A set R with pairs (cj, ij) specifying the classes and number of
iterations for the process identified by r.

U = C I; R← ∅;
if r > U%P then

p0 ← (U
P

+ 1)(U%P) + U
P

(r − U%P);
else

p0 ← (U
P

+ 1)r;

if (r + 1) > U%P then
p1 ← (U

P
+ 1)(U%P) + U

P
(r + 1− U%P)− 1;

else
p1 ← (U

P
+ 1)(r + 1)− 1;

c0 ← bp0I c; c1 ← b
p1
I
c;

if c0 = c1 then
R← R ∪ {(c0, p1 − p0 + 1)};

else
R← R ∪ {(c0, I − p0%I)};
for k ← c0 + 1 to c1 − 1 do

R← R ∪ {(k, I)};
R← R ∪ {(c1, p1%I + 1)};

return R;

Procedure Decode
Input: A set R of encoded pairs (c, i) of encoded classes and iterations, and

the total number of classes C.
Result: A set R′ containing decoded triples (c, c′, i) of pairs of classes (c, c′)

and iterations.
R′ ← ∅;
for (c, i) ∈ R do

j ← 0;
for k ← C − 1 downto 0 do

if c < k then
R′ ← R′ ∪ {(j, c+ j + 1, i)};
break;

c← c− k;
j ← j + 1;

return R′;

Parallel Two-Stage Bagging Classifiers 671

purposes. As we can see, MPI’s collective communication operations, specifically
MPI Reduce with a sum operator, allows us to avoid point-to-point communica-
tion primitives. This greatly simplifies the algorithm and leads to a more efficient
implementation.

Algorithm 4: Parallel Voting

Input: A pattern vector x.
Result: An estimated label for x.

parallel for r ∈ {0, . . . , P − 1} do
for ϕi ∈ Φr do

if ϕi(x) = 0 then voter[i] ← voter[i] + 1;
;

reduce all-to-all : vote[i] ←
∑R−1

r=0 voter[i] ;
;
M ← argmax

0≤i<C
vote[i];

if |M | = 1 then
return m ∈M ;

else
for (i, j) ∈M ×M, i < j do

for ψ(i,j) ∈ Ψr do
if ψ(i,j)(x) = 0 then

voter[i] ← voter[i] + 1;

else if ψ(i,j)(x) = 1 then
voter[j] ← voter[j] + 1;

reduce (0 : P − 1)→ 0 : vote[i] ←
∑R−1

r=0 voter[i] ;
;
if r = 0 then

return disambiguation as in Algorithm 2;

4 EVALUATION

The evaluation of our algorithms is two-fold. Firstly, we need to evaluate the abil-
ity of our bootstrapping strategy to improve the classification performance com-
pared to the underlying classification method on actual data. Secondly, we have to
evaluate the actual performance of our parallel algorithms under real-world condi-
tions.

In both cases, we must select commonly used, freely available real-world bench-
mark data-sets to ensure comparability and repeatability. We therefore retrieved

672 V. Horak, T. Berka, M. Vajteršic

most of our data sets from the UCI Machine Learning Repository [12]. Based
on the requirements of our approach, we primarily selected data sets with a high
number of features, i.e. a high dimensionality, and a low number of training pat-
terns. Our first choice was the Semeion Digit Recognition data set1 consisting of
1 593 instances with 256 features in 10 classes. In order to test the parallel scal-
ability on a larger collection, we have decided to use the Letter Recognition data
set2 with 20 000 instances of 16 features in 26 classes. Thirdly, we have extracted
three-dimensional 8 × 8 × 8 HSV color histograms from the images in the Wang
image collection3. This collection consists of 1 000 instances with 512 features and
10 classes.

Table 3 shows the results for the individual categories of the Semeion data set.
These were obtained with 10 iterations, which were performed on a training set
composed of 50 patterns per class.

For some categories, e.g. for the numbers seven and nine, we observe a significant
improvement in the classification performance. In Table 4, the comparison of the
classification performance of our approach is summarized. For reasons of clarity
and comprehensibility, the average precision and recall have been calculated over all
classes. The measurements clearly indicate that our bootstrapping strategy allows
us to overcome SCALLOP’s weaknesses in working with these data sets.

Category 0 1 2 3 4 5 6 7 8 9

Pnew 0.93 0.57 0.79 0.81 0.66 0.67 0.96 0.87 0.88 0.67
Pold 0.65 0.32 0.32 0.55 0.54 0.46 0.22 0.13 0.49 0.12

Rnew 0.90 0.89 0.64 0.85 0.87 0.88 0.78 0.67 0.71 0.91
Rold 0.36 0.77 0.60 0.40 0.34 0.44 0.22 0.80 0.25 0.75

Table 3. Classification performance for individual categories of the Semeion data set, com-
paring the precision Pnew and recall Rnew of our approach to the precision Pold and
recall Rold of the adapted SCALLOP

Collection Name Semeion
Letter

Recognition
Wang

Pnew 0.81 0.65 0.86
Pold 0.39 0.17 0.44

Rnew 0.79 0.62 0.85
Rold 0.44 0.41 0.65

Table 4. Classification performance for the three data sets, comparing the average preci-
sion Pnew and recall Rnew of our approach to the average precision Pold and recall
Rold of the adapted SCALLOP over all categories

1 http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
2 http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
3 http://wang.ist.psu.edu/docs/related.shtml

Parallel Two-Stage Bagging Classifiers 673

To evaluate the speed-up of our parallel voting strategy experimentally, we have
implemented our algorithm in C using OpenMPI and conducted response time mea-
surements on a small cluster consisting of eight nodes interconnected via an In-
finiband network. Each node is equipped with dual Intel Xeon E5520 processors
clocked at 2.27 GHz with 4 cores and 48 GiB of RAM. Figure 3 depicts our timing
measurements and the corresponding speed-up results.

Due to the fact that each construction of a recognizer or discriminator, i.e. ϕt
i or

ψt
(i,j), is independent from each other and hence no communication is needed, it is

obvious that under the assumption that these constructions all take the same time
to be executed, the whole classifier construction can be done with ideal speed-up.
However, we have implemented Algorithm 3 just to validate this in practice for our
SCALLOP adaptation. As our expectations were fully satisfied, we omit further
discussion of execution time and speed-up for the classifier construction.

Although some parts of the voting – the actual classification – are also embar-
rassingly parallel and hence could be done with ideal speed-up, the final steps of
both voting stages constitute a bottleneck since all local results need to be gathered
and evaluated to compute the global result. From a theoretical point of view, the
second stage of the parallel voting also has potential for ideal speed-up (aside from
the communication effort and the bottleneck at the very last step), but de facto the
patterns which need to pass the second stage will not follow the uniform distribution
for which our static parallelization algorithm is a priori perfect. In the – theoreti-
cally and empirically extremely unlikely – worst case it could happen that there is
no speed-up at all for the second phase of the voting.

We can clearly see that for the two small data sets Wang and Semeion (Fi-
gures 3 a) and 3 b)), we can get a reasonable speed-up for up to eight processes.
These results indicate that we can obtain some speed-up by programming a multi-
core CPU with MPI, but the low number of classes C = 10 limits the utility of
the parallel voting process. The Letter Recognition data set with more classes
(C = 26) has a better ratio between communication and processing and therefore
the speed-up values in Figure 3 c) are very promising. This demonstrates the utility
of our approach for larger numbers of classes. It is obvious that a large number of
patterns N which has to be classified, as well as a large number of classes C, leads
to a better ratio between execution and communication time and hence to a better
speed-up.

As the last comment on Figure 3, we would like to mention the influence of
architecture, interconnection and cache memory, which are reasons for non-smooth
speed-up curves. Clearly, different results can be expected if, for example, 4 pro-
cesses are allocated on a single processor or 2 processes on each of 2 processors.
Furthermore, differences with regard to communication times are likely to occur if
2 processes are allocated on the same processor or not. With this in mind, it is not
completely surprising that under certain circumstances, such as the case P = 4 in
Figure 3 c) shows, a super-linear speed-up can be observed.

Recapitulating, we have demonstrated that our parallel voting strategy can be
used to accelerate the classification on one or more multi-core processors.

674 V. Horak, T. Berka, M. Vajteršic

 0.08

 0.12

 0.16

 0.2

 2 4 6 8 10

ex
ec

u
ti

o
n

 t
im

e

processes

 0.5

 1

 1.5

 2

 2 4 6 8 10

sp
ee

d
-u

p

processes

a)

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10

ex
ec

u
ti

o
n

 t
im

e

processes

 1

 1.5

 2

 2.5

 2 4 6 8 10

sp
ee

d
-u

p

processes

b)

Parallel Two-Stage Bagging Classifiers 675

 0

 10

 20

 30

 4 8 12 16 20 24

ex
ec

u
ti

o
n

 t
im

e

processes

 0

 2

 4

 6

 8

 10

 4 8 12 16 20 24

sp
ee

d
-u

p

processes

c)

Figure 3. Parallel Voting Performance Measurements: a) Wang (n = 512, N = 1000,
C = 10), b) Semeion (n = 256, N = 1593, C = 10), c) Letter Recognition (n = 16,
N = 20000, C = 26)

5 SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel method for the construction of classifiers for
problems with a high dimensionality but a low number of training patterns, enabling
us to obtain an up to three-fold increase in precision and significantly increased recall
values in our experiments. It is based on a combination of a bootstrapping method
with a one-versus-all classifier construction method. By resampling the training
examples, we construct a range of two-class discriminators that determine if a new
data point belongs to one particular class, or to any other class.

We combine these individual classifiers into a two-stage meta-classifier archi-
tecture, which treats the output of the individual classifiers as votes. Since our
approach is a meta-classification framework that relies on a voting in an ensemble of
elementary classifiers, the construction of the individual classifiers is embarrassingly
parallel and can be achieved with a trivial data replicated, task parallel approach.

The classification process requires some more thought, and we have thus outlined
parallelization methods for the classifier construction and the voting. A parallel
classification algorithm based on message-passing has been derived, and we have
conducted an evaluation of the run-time performance on server-grade hardware.
Our results indicate that parallel voting is indeed a useful approach for data sets
with a large number of classes.

676 V. Horak, T. Berka, M. Vajteršic

For the reason of a more balanced workload, we aim to design a more dynamic
distribution of the second stage of our algorithm. Despite the fact that the parallel
implementation is not the core contribution of this paper, it would be interesting to
test the performance of such an improved parallel approach for other architecture
concepts (e.g. GPU), which could lead to a reduction of the communication overhead.
Last but not least, in place of adapted SCALLOP, we plan to further investigate and
apply our approach to other well-known classifiers, for example k-nearest neighbor
or proper classifiers from the artificial neural network area.

Acknowledgements

The authors wish to thank the reviewers for their helpful comments. The third
co-author was partly supported by the VEGA grant No. 2/0003/11 from the Scien-
tific Grant Agency of the Ministry of Education and Slovak Academy of Sciences,
Slovakia.

REFERENCES

[1] MacQueen, J. B.: Some Methods for Classification and Analysis of Multivariate
Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability 1967, pp. 281–297.

[2] Bauer, E.—Kohavi, R.: An Empirical Comparison of Voting Classification Al-
gorithms: Bagging, Boosting, and Variants. Machine Learning, Vol. 36, July 1999,
pp. 105–139.

[3] Schapire, R. E.: The Strength of Weak Learnability. Machine Learning, Vol. 5, July
1990, pp. 197–227.

[4] Yu, C.—Skillicorn, D. B.: Parallelizing Boosting and Bagging. Technical report,
Queen’s University, Kingston, Canada 2001.

[5] Palit, I.—Reddy, C. K.: Scalable and Parallel Boosting with MapReduce. IEEE
Trans. Knowl. Data Eng., 2011, No. 99, p. 1.

[6] Ng, R. T.—Han, J.: CLARANS: A Method for Clustering Objects for Spatial Data
Mining. IEEE Trans. on Knowl. and Data Eng., Vol. 14, 2002, pp. 1003–1016.

[7] Rifkin, R.—Klautau, A.: In Defense of One-vs-All Classification. Journal of Ma-
chine Learning Research, Vol. 5, 2004, pp. 101–141.

[8] Efron, B.: Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics,
Vol. 7, 1979, pp. 1–26.

[9] Ferrer-Troyano, F. R.—Aguilar-Ruiz, J. S.—Riquelme, J. C.: Mining
Low Dimensionality Data Streams of Continuous Attributes. Proc. EPIA 2003,
pp. 264–278.

[10] Discovering Decision Rules from Numerical Data Streams. Proceedings of the 2004
ACM Symposium on Applied Computing, ser. SAC ’04, pp. 649–653.

[11] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-
dard, Version 2.2, 2009.

Parallel Two-Stage Bagging Classifiers 677

[12] Frank, A.—Asuncion, A.: UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml, University of California, Irvine, School of Information and Com-
puter Sciences 2011.

Verena Christina Horak studied mathematics, computer
sciences and philosophy at the University of Salzburg, Austria,
where she received Bachelor degrees in applied informatics
(2005) and mathematics (2005), and Master degrees in math-
ematics (2008), applied mathematics (2008) and applied infor-
matics (2010).

Tobias Berka received a B. Sc. and M. Sc. with honors in com-
puter sciences from the University of Salzburg, Austria, in 2008
and 2009, and his Ph. D. in early 2012 as a student of Prof. Ma-
rian Vajteršic. As a visiting researcher, he has worked at the
Computer Laboratory of the University of Cambridge, U.K.,
INRIA Saclay, France, and Purdue University, U.S.A. He has
published five journal articles and seventeen peer-reviewed full
papers, including two full papers as sole author. His research is
in the field of parallel algorithms and parallel computing with
applications in information retrieval and data mining. In 2012,
he was awarded a highly competitive ERCIM Fellowship.

Marian Vajter�sic graduated in numerical mathematics from
Comenius University, Bratislava (Slovak Republic) in 1974. He
received his C. Sc. (candidate of sciences) degree in mathemat-
ics from the same university in 1984 and he defended there the
Dr. Sc. (doctor of sciences) degree in 1997. In 1995, he obtained
the habilitation degree in numerical mathematics and parallel
processing from the University of Salzburg (Austria). His re-
search activity is focused on the area of parallel numerical algo-
rithms for high-performance computer systems. He is author of
two monographs, co-author of five other books and of more than

100 scientific papers. Since 1974, he is with the Slovak Academy of Sciences in Bratislava,
Slovakia. As a visiting professor he has been with the universities of Vienna, Bologna,
Milan, Linz, Salzburg, Amiens and Munich. Since 2002 he is a Professor for Scientific
Computing and Computer Architecture at the Department of Computer Sciences of the
University of Salzburg, Austria.

