
Computing and Informatics, Vol. 32, 2013, 827–843

PAY-AS-YOU-GO SOFTWARE ARTIFACTS
MANAGEMENT

Ying Pan

College of Computer and Information Engineering
Guangxi Teachers Education University
Nanning, 530023 P.R. China
e-mail: panying6@mail3.sysu.edu.cn

Yong Tang

School of Computer Science
South China Normal University
Guangzhou, 510631 P.R. China
e-mail: ytang@scnu.edu.cn

Communicated by Ján Paralič

Abstract. One of the major challenges in software engineering research is to ma-
nage software artifacts effectively. However, software artifacts are often changed
during software development, the full, one-time integration technique is not feasible
to manage such heterogeneity and evolving data. In this paper, we concern about
the application of dataspace techniques, which emphasize the idea of pay-as-you-
go data management, to software artifacts management. To this end, we present
a loosely structured data model based on the current dataspace models to describe
software artifacts, and a strategy to query this model. We also present how to
gradually add semantics to query processing for improving the precision and recall
of query results. Furthermore, the validity of our work is proved by experiment.
Finally, the differences between our work and traditional work are discussed.

Keywords: Software artifacts management, dataspace, pay-as-you-go, software en-
gineering

Mathematics Subject Classification 2010: 68P10

828 Y. Pan, Y. Tang

1 INTRODUCTION

One of the major challenges in software engineering research is to manage software
artifacts effectively. Extensive efforts have been brought forth to address the issue.
For example, different data models (such as XML-based source code representa-
tion [1, 2] and graph model [3]) have been proposed to represent software artifacts for
managing data effectively. In addition, Semantic Web technologies (e.g., ontology)
are proposed to enhance semantic software artifacts descriptions [4, 5]. Utilizing the
available ontologies and ontology reasoners, the approaches and tools can provide
semantic-based retrieval on software artifacts at the semantic level.

Despite successes, to the best of our knowledge, the works mentioned above
pay little attention to managing software artifacts in a gradually, pay-as-you-go
(PAYG) fashion. These works involve traditional database technologies or data in-
tegration technologies which require hard up-front investment to define a schema
for the data before the useful services are provided. That is, they manage artifacts
in a pay-before-you-go (PBYG) fashion. The up-front investment is high-cost in
a PBYG fashion, because it is a difficult work to describe all software artifacts into
the strict data models which enforce a schema over the data. Furthermore, before
semantic retrieval is supported, semantic-based approaches require full semantic in-
tegration of the data sources; but, it is difficult to understand the data and fully
create these semantic mappings immediately. Moreover, software artifacts evolve
over time, and then artifact descriptions need to be changed accordingly. There-
fore, the full, one-time integration technique is not feasible to manage such hetero-
geneity and evolving data, which should be integrated and managed in a PAYG
fashion.

A new style of PAYG data management called dataspace [6] addresses the above
challenges. Dataspace offers best-effort services on heterogeneity data without re-
quiring the up-front effort, and automatically enhance services over time. In this
paper we concern about the application of dataspace techniques to software artifacts
management. The work presented in this paper is based on our previous work [7],
which presents a framework of a dataspace system for software artifacts manage-
ment. The new contributions of this paper can be summarized as follows:

1. We present a model Software Artifacts Graph (SAG) based on the current data-
space data models. SAG is a very loosely structured data model which represents
software artifacts and the relationships among them. Moreover, SAG may be
constructed in a PAYG, ongoing fashion.

2. We present an approach to query SAG, and introduce the basic steps of the
approach, including query translation and model transformations between SAG
and the dataspace model.

3. We introduce the technique to gradually add semantics to query processing. Fur-
thermore, we show how to combine this technique with keyword- and structure-
based query for improving the precision and recall of query results.

Pay-As-You-Go Software Artifacts Management 829

The rest of this paper is organized as follows. The next section introduces the
dataspace techniques which are relevant to our research. Section 3 introduces SAG
and its properties. Section 4 shows how to query SAG. Section 5 discusses semantic
addition during query processing. Section 6 shows the experimental results and
Section 7 evaluates our work in comparison to related work. Finally, Section 8
concludes the paper and outlines our future work.

2 DATASPACE TECHNIQUES

Dataspace was put forward in 2005 SIGMOD [6]. A dataspace contains all informa-
tion relevant to a particular organization regardless of its location and format, and
models any kind of relationships between individual data sources [8].

Dataspace Management System (DSMS) provides the required services (e.g.,
search and query) over dataspaces without requiring expensive semantic integration.
That is, DSMS provides an abstraction for accessing, understanding, managing, and
querying over all autonomous and heterogeneous data sources, and organizing their
data over time in an incremental, PAYG approach [6].

One of the fundamental shortcomings of existing information integration systems
and database systems is the long setup time required. In sharp contrast to them,
DSMS emphasizes the idea of PAYG data management: it offers best-effort services
on data without requiring the upfront effort, and improves the services as more
investment is made into identifying semantic relationships [9]. That is, dataspace
system offers varying levels of services according to the situation. For example,
dataspace system should begin by offering base services such as keyword search over
a collection of data even before semantic mappings are created, and return best-
effort or approximate answers to users. Over time, if a higher level of semantic
integration is required, users (or database administrators) decide where and when
it is worthwhile to invest more efforts in providing semantic mappings or other kind
of semantic constructs that improve the accuracy of query results.

Personal information management has received considerable attention in data-
spaces communities, with some famous Personal Dataspace Management Systems
(e.g., iMeMex [10]) being developed. iDM [11], the iMeMex data model, represents
structured, semi-structured and unstructured data into a resource view graph, which
is a logical representation of personal information. One important aspect of iDM
is that it is lazily computed, i.e., all nodes and connections in the graph may be
computed dynamically as deemed necessary. On top of iDM, the query language
iQL is proposed to allow users to write intuitive keyword searches with structural
restrictions. Moreover, iTrails [12] technique which provides a mapping from one
query to another is proposed in iMeMex. With iTrails technique, users may gradually
provide lightweight semantics to query processing, and then the accuracy of query
results is improved.

830 Y. Pan, Y. Tang

3 REPRESENTING SOFTWARE ARTIFACTS

3.1 iDM and AVG Data Model

iDM [11] represents all personal information (e.g., MS Word or other Office docu-
ments, XML, relational data, file content, folder hierarchies, email, data streams and
RSS feeds) into a logical graph. In recent years, some dataspace data models based
on iDM are proposed for different aims [12, 13]; we denote the model mentioned in
[13] as attribute-value graph model, which is summarized in the following definition.

Definition 1 (Attribute-Value Graph, AVG). The data on the dataspace is repre-
sented by an attribute-value graph G := (N,E), where N is a set of nodes, each
node Ni is a set of attribute-value pairs. E is a set of edges (Ni, Nj, L), where L is
a label and Ni, Nj ∈ N, i 6= j.

Each resource view in iDM can be seen as a set of attribute-value pairs [14],
that is, iDM and AVG are equivalent. Therefore, the techniques in iMeMex system
support both iDM and AVG.

3.2 Software Artifacts Graph

All the current dataspace data models, including iDM and AVG, have not involved
the issue of the representation of software artifacts, especially source code. Although
iDM and AVG may describe software artifacts, they are not much suitable for soft-
ware artifacts management. iDM only describes the sequence relationship of the
data sources; although it may describe complex relationships by describing the se-
quence relationship, users still have difficulty to model complex relationships. As
to AVG, it can not represent the relative order among the connections established
between nodes.

For better describing the software artifacts, we propose a data model SAG based
on the model iDM and AVG, with extending the concept of edge component to
describe more complex data sources and their relationships. SAG is summarized in
the following definition.

Definition 2 (Software Artifacts Graph, SAG). Software artifacts are represented
by a logical software artifacts graph G := (V,E), where V is a set of nodes, each node
Vi is a 3-tuple (ηi, τi, χi). ηi is the name of Vi. τi is a 2-tuple (W,T), where W rep-
resents the attributes of Vi and T represents their corresponding values. χi records
the content of Vi; it may represent arbitrary unstructured content. E is a set of
edges between Vi and other nodes. E is a 2-tuple (R,L), where R represents nodes
which are related to Vi, and L, the label of the edge, represents the relationship
between Vi and R. R is also a 2-tuple (A,B), where A is a set of nodes and B is
an ordered sequence of nodes, and A ∩B = ∅1.

1 We use the symbols ∩ just like the literature [11] to denote intersection not only
between sets, but also between a set and a sequence.

Pay-As-You-Go Software Artifacts Management 831

If there exists an edge in E, such that a node Vk is reachable from Vi, then we
say that Vk is directly related to Vi. If Vk is reachable from Vi by traversing more
than one edge in E, then we say that Vk is indirectly related to Vi.

From the definitions above, we can see that SAG has the following properties
which are owned by iDM or AVG:

1. SAG is a logical graph. Nodes in SAG contain a sequence of components that
ex-press structured, semi-structured, and unstructured pieces of the data, and
all parts of the SAG can be computed lazily.

2. SAG may represent fine-grained logical entities in software artifacts. These en-
tities can be files or structural elements inside files, such as a class, a function of
source code, or a chapter, a section of a text document. SAG may also represent
the outside structural information of files such as folder hierarchies. Further-
more, it is important to describe the relative order among software artifacts
(such as the relative order of sections and chapters in the document), and we
may represent them in the sequence B.

3. It is important to note that SAG is a very loosely structured model which does
not enforce a schema over the data, that is, the set of attributes of each node may
be different, and E may be empty set. In general, E contains explicit connections
among nodes. When all the connections among nodes are not explicit, E = ∅.

In the following, we show detailed representation of some software artifacts pre-
sent in Figure 1 a).

Figure1: SAG represents software artifacts

(a) Software Artifacts

Figure2:software artifacts

search.java

project1

1 Introduction
 …
2 Database Descriptions

…
3 Function Descriptions

3.1Search Function
 …

import java.net.*;

public class search{

public static void main(String[] args) {

 try {
InetAddress address=InetAddress.getByName…

System.out.printIn(address);

 }

 catch (Exception e1) {

System.out.printIn ("Sorry, the site or IP has …

software-design.doc

(b) SAG

search

import

main

try

catch

Introduction

Database Descriptions

project1

search.java software-design.doc

Search Function

Function Descriptions

Figure 1. SAG represents software artifacts

832 Y. Pan, Y. Tang

We represent the “project1” folder as a node Vproject1 as follows:

• Vproject1:

ηproject1 = “project1”;

τproject1 = {(type, “folder”), (size, 29 684), (createddate, 21/07/2008 13:04),

(updateddate, 15/12/2008 18:45) . . .};
χproject1 = 〈〉; // the null value is denoted by 〈〉
Eproject1 = {(A,LA), (B,LB)}

= {(A,LA) = ((Vsoftware−design.doc, “hasFile”),

(Vsearch.java, “hasFile”)), (B,LB) = 〈〉},

where LA and LB are the labels of the two sets of edges, respectively.

We represent the document “software-design.doc” as a node Vsoftware−design.doc,
and the components of Vsoftware−design.doc and its related nodes are partly shown as
follows:

• Vsoftware−design.doc:

ηsoftware−design.doc = “software-design.doc”;

τsoftware−design.doc = {(type, “Docfile”), (size, 3 508),

(createddate, 21/09/2008 10:34),

(updateddate, 25/10/2008 11:42), (author, “MingLi”),

(version . . .) . . .};
Esoftware−design.doc = {(A,LA) = 〈〉, (B,LB) = ((VIntroduction, “hasSection”),

(VDatabaseDescriptions, “hasSection”),

(VFunctionDescriptions, “hasSection”) . . .)},

where B represents the relative order of sections in the document “software-
design.doc”.

• VIntroduction :

ηIntroduction = “Introduction”;

τIntroduction = {(class, “section”), (createddate, 21/09/2008 10:34),

(updateddate, 25/10/2008 11:42), (author, “MingLi”),

(version . . .) . . .};
χIntroduction = 〈text content〉.

We represent the file “search.java” as a node Vsearch.java, and the components of
Vsearch.java and its related nodes are partly shown as follows:

Pay-As-You-Go Software Artifacts Management 833

• Vsearch.java:

ηsearch.java = “search.java”;

τsearch.java = {(type, “Javafile”), (size, 5 786), (createddate, 27/08/2008 19:24),

(updateddate, 21/10/2008 09:52), (author, “MingLi”) . . .};
Esearch.java = {(A,LA) = 〈〉, (B,LB) = ((Vimport, “importDeclaration”),

(Vsearch, “classDeclaration”))}.

• Vimport:

ηimport = “import”;

τimport = {(package name, “java.net.*”), . . .};

The data and their relationships are represented as SAG that is shown in Figu-
re 1 b). Each node is labeled with its name component. For the sake of readability,
we have omitted all edge labels and the relative order among nodes.

There are many XML-based representations for source code (e.g. C, C++ and
Java [1, 15]), and our data model can represent XML document in the way shown
as follows: Each node in the XML document is represented as a corresponding node
in SAG, and the connections among nodes are represented by E components.

4 QUERYING SAG ON TOP OF AVG

In this section, we describe how to query SAG on top of AVG. The key idea of our
strategy is as follows. We encode SAG as AVG, and implement a query qS on SAG
by translating qS to an equivalent query qA over AVG. The approach is shown in
Figure 2. The basic steps of the approach are:

1. Converting SAG to AVG;

2. Translating a query qS on SAG to a query qA on the AVG;

3. Getting the results from qA, and converting them from AVG back to SAG.

In the following sections, we specify the steps listed above.

4.1 Transformations Between SAG and AVG

We show the transformations between SAG and AVG as follows:

1. SAG: name component ηi ⇔ AVG: (name, ηi)

2. SAG: content component χi ⇔ AVG: (content, text)

3. SAG: attribute-value component τi = (W,T) ⇔ AVG: (W,T)

834 Y. Pan, Y. Tang

Figure2: SAG query processing on top of AVG
S

A
G

 t
o
 A

V
G

User

Results: SAGqS SAG

Results: AVGqA

A
V

G
 t

o
 S

A
G

Q
u

er
y

 r
ew

ri
ti

n
g

AVG

Figure 2. SAG query processing on top of AVG

4. SAG: E component

EV i = {(A,B) , L)} ⇔ AV G :

edges: {(Vi, VA1, LA1) , . . . , (Vi, VAm, LAm)}∪
{(Vi, VB1, LB1), . . . , (Vi, VBn, LBn)}

attribute – value pair of Vi :
(SubNode, [VB1, . . . , VBn])

where VAj ∈ A (1 6 j 6 m); VBk ∈ B (1 6 k 6 n) and the value of SubNode is
a sequence of nodes.

For example, the transformation between E component of Vsoftware−design.doc and
AVG is shown as follows:

SAG : Esoftware−design.doc = {(A,LA) = 〈〉, (B,LB) = ((VIntroduction, “hasSection”),

(VDatabaseDescriptions, “hasSection”), (VFunctionDescriptions, “hasSection”) . . .)}.

⇔ AV G :

edges: {(Vsoftware−design.doc, VIntroduction, “hasSection”),
(Vsoftware−design.doc, VDatabaseDescriptions, “hasSection”),
(Vsoftware−design.doc, VFunctionDescriptions, “hasSection”) . . .}

attribute – value pair of Vsoftware−design.doc :
(SubNode, [VIntroduction, VDatabaseDescriptions, VFunctionDescriptions])

4.2 Translating qS to qA

The language used to query AVG model is a subset of iQL [11], which is similar in
spirit to NEXI [16]. However, iQL includes features important for a DSMS, such as
support for updates and continuous queries.

Pay-As-You-Go Software Artifacts Management 835

We present some example queries as follows:

• Q1 : “software design”
returns those nodes containing the phrase “software design”.

• Q2 : // Introduction / *[“database”]
returns those nodes that are directly related to a node named “Introduction”.
In addition, all returned results contain the keyword “database”.

• Q3 : // Project //Introduction [updateddate < yesterday ()]
returns those nodes named “Introduction” that are indirectly related to a node
named “Project”. In addition, all returned results have an updated date before
yesterday.

Since SAG can be translated to AVG, a query qS on SAG can be expressed as
a equivalent query qA on AVG.

Example 1. A user wants to find the sections which not only contain the keyword
“search” but also pertain to the directory named “project1”.

The corresponding query qS is: ‘return those nodes that are indirectly related
to a node V1 having η1 = “project1” and τ1 = (type, “folder”). In addition, all
returned nodes contain the keyword “search”’.

Then qS is equivalent to qA: ‘return those nodes that are indirectly related to
a node having a set of attribute – value pairs {(name, “project1”), (type, “folder”)}.
In addition, all returned results contain the keyword “search”’. That is,

qA := // project1[type = “folder”] // *[“search”].

The returned nodes are Vsearch.java, VsearchFunction and Vsearch.
In fact, a query qS can be translated to a equivalent query qA by transforming

the SAG components into the AVG components, according to the transformation
method discussed in Section 4.1.

5 ADDING SEMANTICS TO QUERY PROCESSING

iTrail is a semantic trail which provides a mapping from one query to another; it may
be used to encode schema information from different data sources, without requiring
full integration of all sources from the start. iTrail is defined as follows [12].

Definition 3 (iTrail). iTrail could be unidirectional or bidirectional; an iTrail is
denoted either as:

ψ := Q1 −→ Q2 or ψ := Q1 ←→ Q2.

The unidirectional trail states thatQ1 inducesQ2, i.e., whenever we query forQ1,
we should also query for Q2. The bidirectional trail also states that Q2 induces Q1.

836 Y. Pan, Y. Tang

Users may define iTrails by themselves, or obtain a set of trail definitions by
mining semi-automatically from content. For example, ontologies and Wordnet can
be exploited to extract equivalences among keyword queries (e.g., ψ := car −→
automobile could be automatically generated from Wordnet). Machine learning
techniques can also be used to create keyword-to-keyword trails.

iTrail definitions are explored during query processing to improve the precision
and recall of query results. In the following, we present how to add semantics to
query processing through iTrails.

Example 2. Adding semantics to software artifacts query

The iTrails are assumed to be defined as follows:

ψ1 := search −→ query,

ψ2 := function −→ class = function.

ψ1 states that a query Q1 := “search” induces a query Q2 := “query”, ψ2 states
that a query Q1 := “function” induces a query Q2 := [class = “function”].

When users query for keywords “search” and “function”, the search should in-
clude not only the results of the original query Q := “search” and “function”, but
also the results of the query Q′ := “query”[class = “function”].

6 EVALUATION

In this section, experiments have been performed:

1. to evaluate the performance of software artifacts query approach mentioned in
Section 4;

2. to estimate how the performance of artifacts query would be affected by the
semantics addition approach given in Section 5.

6.1 Experimental Setup

In order to evaluate our approach, we acquired software artifacts from the SCR
directory of FreeMarker 2.1.52, which is a template engine to generate text and/or
HTML. The artifacts contain 314 files, 18 folders, and the total size is 1.43 MB; the
file types include XML, HTML, TXT, JAVA, etc. All experiments were performed
on top of iMeMex system which we have extended to support software artifacts
management, and the computer used for the experiments was a dual Intel R© AtomTM

CPU 1.66 GHz with 1 GB of RAM. SAG was constructed automatically by extracting
these artifacts, which contained 556 nodes and 545 edges.

2 http://freemarker.sourceforge.net/

Pay-As-You-Go Software Artifacts Management 837

6.2 Performance of Software Artifacts Query

The queries evaluated are based on both keywords and structure. The queries and
their average response times are shown in Table 1. The response times are obtained
on a warm cache, i.e., each query is run several times until the deviation on the
average response time becomes small. From the experimental result, we can see that
all queries response times are less than 0.5 seconds. In addition, SAG is essentially
a graph model, and we could use the strategies of keyword query on graph [17, 18]
to accelerate the query-response times. Thus, we can draw the conclusion that our
approach is feasible according to [19], which suggested that a response time of less
than 1 second would be available for every computer system.

Query ID Expression # of Results Response time (s)

Q1 html 292 0.48

Q2 //testcase/*[“html”] 138 0.35

Q3 date > 28.01.2003 size > 34 077 0 0.04

Q4 test main 40 0.16

Q5 animal class = “file” 6 0.19

Table 1. The number of results and the response times of queries

6.3 Performance of Semantics Addition

We compare the artifacts query without semantics addition to that with semantics
addition by rewriting the queries utilizing iTrails technique.

We have assessed the results using the IR metrics recall and precision. Recall
computes the percentage of the number of relevant retrieved documents for a query
over the total number of relevant documents for that query. Precision computes the
percentage of the number of relevant retrieved documents over the total number of
retrieved documents.

iTrails used for evaluation are defined as follows:

ψ1 := html −→ //*.html ∪ //*.htm,

ψ2 := date←→ lastmodified,

ψ3 := test −→ //testcase//*,

ψ4 := animal −→ //elephant,

ψ5 := animal −→ //fish.

The average response times of queries with semantic addition are shown in Ta-
ble 2. Taken as a whole, the gap of response times between semantic addition and
without semantic addition (see Table 1) is very limited. Furthermore, according to
[12], the query response times are also in the acceptable range as the number and
complexity of iTrails increase, so we can draw the conclusion that our approaches
do not add much overhead for semantic addition.

838 Y. Pan, Y. Tang

Query ID With iTrails applied # of Results Response time (s)

Q1 ψ1 301 0.48

Q2 ψ1 147 0.38

Q3 ψ2 5 0.05

Q4 ψ3 42 0.17

Q5 ψ4, ψ5 12 0.19

Table 2. The number of results and the response times of queries with semantics addition

Figure 3 shows the recall and precision of queries with/without semantics addi-
tion. As we may notice, the recall or precision of all queries are improved in different
degree by adding trails in a pay-as-you-go fashion. For example, the precision of Q4

with iTrails (i.e., ψ3) is about 5% higher than that without iTrails, and the recall
of Q5 with iTrails (i.e., ψ4 and ψ5) is about 50% higher than that without iTrails.
Moreover, both the recall and the precision of Q3 without iTrails are 0, because the
attribute “lastmodified” rather than “date” is used to denote the information of the
file date and time in these artifacts. After adding semantics, both the recall and the
precision of Q3 with iTrails (i.e., ψ2) are sharply improved.

In summary, the experimental results show that our semantics addition method
strongly improves the quality of query results when compared to the approach pro-
viding keyword and structural search which has no integration semantics of the
data.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Q1 Q2 Q3 Q4 Q5

R
e
c
a
ll

No iTrail With iTrail

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Q1 Q2 Q3 Q4 Q5

P
re

ci
si

o
n

No iTrail With iTrail

Figure 3. The recall and precision of queries with/without semantics addition

7 RELATED WORK

In this section, we compare our work with traditional work from several aspects:
software artifacts descriptions and retrieval, as well as semantics addition. The
comparison results are shown in Table 3.

Pay-As-You-Go Software Artifacts Management 839

Measurements Our Work Traditional Work PAYG Features
in Our Work

Software Artifacts Descriptions and Retrieval

Software
Artifacts
Descriptions

SAG: loosely
modeled

XML, graph,
ontology, . . . : strict
models

• without
requesting to
fully materialize
SAG beforehand

• with little
up-front cost

Software
Artifacts
Retrieval

• query SAG by
iQL

• keyword-based
query

• keyword-based
query

• ontology queries

• compute SAG
lazily on demand

• provide best-
effort services in
a PAYG fashion

Semantics
Addition

• add semantics
to query
processing by
iTrails

• gradually
enhance
semantic query
with little
up-front cost

• utilize ontologies
to represent
artifacts and
background
knowledge

• powerful
semantic query
with high
up-front cost

add semantics
to query processing
gradually

Table 3. Comparison between our work and traditional work

7.1 Software Artifacts Descriptions and Retrieval

The different data models have been proposed to represent software artifacts for
managing software artifacts effectively. XML-based source code representation has
received considerable attention. In [15], a XML-based representation, JavaML, was
presented to represent Java source code. A program representation approach which
is based on language domain models and the XML markup language was proposed
in [20]. srcML, an XML application, was provided to add structural information to
unstructured source code text files, and srcML documents could be easily searched
and queried with standard XML tools [21]. Utilizing an XML representation, the au-
thors of [1] provided a tool platform to manage the fine-grained information about
Java source code. In [2] a tool was described to support the transformation of
software programs from ASCII plain text format to XML. Some people also repre-
sented software artifacts by graph model. In [3] conceptual graphs were provided
to represent the code, and then a retrieval model was designed on these graphs.

840 Y. Pan, Y. Tang

In [22] Abstract Semantic Graph was presented to represent source code text. The
model was composed of nodes and edges, where nodes represented source code en-
tities, and edges represented relations. Both the nodes and the edges were typed
and had their own annotations that denoted semantic properties. Some other peo-
ple proposed the ontological model of software artifacts. In [4] authors provided
ontological representations for both source code and document artifacts, ontology
queries and Description Logic reasoning can be applied on these representations.
In order to assist the communication between software developers for bug resolu-
tion, the authors of [23] presented an ontology to describe software, developers,
and bugs. This ontology can be semi-automatically populated from existing arti-
facts.

All of these previous data models are based on a schema-first modeling strategy
that needs mapping data to a schema or a domain model (e.g., ontology) before
supporting query on software artifacts. The schema-first approaches make it hard
to integrate information in a PAYG fashion. In our work, SAG is a loosely structured
data model, thus it is more easy to describe software artifacts. In contrast to the
traditional approaches which are usually tied to having a physical representation
of the whole data before querying may be carried out, we do not require SAG
materialized beforehand. That is, all nodes and edges in SAG may be computed
lazily on demand. Moreover, the traditional approaches have been associated with
high-cost, high-quality functionalities. However, we provide gradually enhanced
services according to the amount of effort investment.

Note that incremental maintenance of software artifacts is somewhat similar in
spirit to our work. In [24, 25] authors presented efficient incremental validation
techniques for XML documents. In [26, 27] the ways were proposed to maintain the
consistency among software artifacts during development. In [28] authors presented
a formal model of incremental consistency checking for pervasive contexts. These
approaches aim to maintain the database incrementally, as well as update and check
the set of constraints incrementally. Both these approaches and our work focus on
integrating or managing data gradually. In addition, these approaches are helpful
for us to detect changes on software artifacts. However, the ways to update data in
these approaches are still based on the schema-first modeling strategy.

7.2 Semantics Addition

Extensive efforts have been devoted to applying Semantic Web technologies in soft-
ware engineering. Some researchers provided ontological representations for soft-
ware artifacts (see Section 7.1), while others enhanced semantic software artifacts
descriptions to support specific task by utilizing ontologies to represent software
background knowledge (e.g., domain knowledge and design knowledge) [5, 29, 30].
Unlike the previous semantics-based approaches which require significant efforts to
declare data semantics through complex ontologies to enrich query processing, we
add semantics by iTrail. Our approach is much more lightweight, allowing users to
add semantics over time in a PAYG fashion. In other words, our work gradually en-

Pay-As-You-Go Software Artifacts Management 841

hances semantic query with little up-front cost, while the traditional work supports
the powerful semantic query with hard up-front cost.

8 CONCLUSIONS AND FUTURE WORK

Dataspace system provides an environment which could combine other techniques
(such as ontology and IR techniques) for software artifacts management in a PAYG
fashion. However, to the best of our knowledge, dataspace techniques have not
gained any attention among researchers in the field of software engineering until
now. In this paper, we present a strategy based on dataspace techniques to manage
software artifacts in a PAYG fashion, and show how to extend and adapt the existing
dataspace techniques to meet this goal. In the future, we plan to focus on the
question of how to create traceability among software artifacts, and to realize the
recovery of traceability links in a PAYG fashion.

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 609-
70044, No. 60970044, No. 61272067 and No. 61363074), Natural Science Foundation
of Guangdong Province of China (No. 7003721), and Guangxi Natural Science Foun-
dation (No. 2013GXNSFAA019346).

REFERENCES

[1] Maruyama, K.—Yamamoto, S.: A CASE Tool Platform Using an xml Represen-
tation of Java Source Code. In Proceedings of the 4th IEEE International Workshop
on Source Code Analysis and Manipulation 2004, pp. 158–167.

[2] McArthur, G.—Mylopoulos, J.—Ng, S. K. K: An Extensible Tool for Source
Code Representation Using XML. In Proceedings of the 9th Working Conference on
Reverse Engineering, IEEE Computer Society 2002, pp. 199–208.

[3] Mishne, G.—de Rijke, M.—Marx, M.: Source Code Retrieval Using Conceptual
Graphs. Proceedings of RIAO, Citeseer 2004.

[4] Witte, R.—Zhang, Y.—Rilling, J.: Empowering Software Maintainers with
Semantic Web Technologies. Proceedings of the 4th European Conference on the Se-
mantic Web: Research and Applications, Vol. 4519, 2007, pp. 37–52.

[5] Wongthongtham, P.—Chang, E.—Dillon T.—Sommerville, I.: Develop-
ment of a Software Engineering Ontology for Multisite Software Development. IEEE
Transactions on Knowledge and Data Engineering, Vol. 21, 2009, pp. 1205–1217.

[6] Franklin, M.—Halevy, A.—Maier, D.: From Databases to Dataspaces: A New
Abstraction for Information Management. ACM SIGMOD Record, Vol. 34, 2005,
pp. 27–33.

842 Y. Pan, Y. Tang

[7] Ying, P.—Yong, T.—Xiaoping, Y.: Software Artifacts Management Based on
Dataspace. Proceedings of the WASE International Conference on Information Engi-
neering, IEEE 2009, pp. 214p–217.

[8] Halevy, A.—Franklin, M.—Maier, D.: Principles of Dataspace Systems. Pro-
ceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, ACM 2006, pp. 1–9.

[9] Halevy, A. Y.: User-Focused Database Management. Proceedings of the 13th In-
ternational Conference on Intelligent User Interfaces, ACM 2009, pp. 5–6.

[10] Dittrich, J. P.: iMeMex: A Platform for Personal Dataspace Management. Pro-
ceedings of SIGIR PIM Workshop, ACM 2006, pp. 40–43.

[11] Dittrich, J. P.—Salles, M. A. V.: iDM: A Unified and Versatile Data Model for
Personal Dataspace Management. Proceedings of the 32nd International Conference
on Very Large Data Bases, VLDB Endowment 2006, pp. 367–378.

[12] Salles, V.—Antonio, M.—Dittrich, J. P.—Karakashian, S. K.—Gi-
rard, R.—Blunschi, L.: iTrails: Pay-As-You-Go Information Integration in Data-
spaces. Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB Endowment 2007, pp. 663–674.

[13] Salles, M. A. V.—Dittrich, J.—Blunschi, L.: Intensional Associations in
Dataspaces. Proceedings of the 26th International Conference on Data Engineering,
IEEE Computer Society 2010, pp. 984–987.

[14] Fletcher, G. H. L.—van den Bussche, J.—van Gucht, D.—Vansum-
meren, S.: Towards a Theory of Search Queries. Proceedings of the 12th International
Conference on Database Theory, ACM 2009, pp. 201–211.

[15] Badros, G. J.: JavaML: A Markup Language for Java Source Code. Computer
Networks, Vol. 33, 2000, pp. 159–177.

[16] Trotman, A.—Sigurbjörnsson, B.: Narrowed Extended Xpath I (NEXI). Ad-
vances in XML Information Retrieval 2005, pp. 16–40.

[17] Kacholia, V.—Pandit, S.—Chakrabarti, S.—Sudarshan, S.—Desai, R.—
Karambelkar, H.: Bidirectional Expansion for Keyword Search on Graph
Databases. Proceedings of the 31st International Conference on Very Large Data
Bases, VLDB Endowment 2005, pp. 505–516.

[18] He, H.—Wang, H.—Yang, J.—Yu, P. S.: BLINKS: Ranked Keyword Searches
on Graphs. Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, ACM 2007, pp. 305–316.

[19] Shneiderman, B.: Response Time and Display Rate in Human Performance with
Computers. ACM Computing Surveys (CSUR), Vol. 16, 1984, pp. 265–285.

[20] Mamas, E.—Kontogiannis, K.: Towards Portable Source Code Representations
Using XML. Proceedings of WCRE, Citeseer 2000, pp. 172–182.

[21] Maletic, J. I.—Collard, M. L.—Marcus, A.: Source Code Files as Structured
Documents. Proceedings of the 10th InternationalWorkshop on Program Comprehen-
sion, IEEE Computer Society 2002, pp. 289–292.

[22] Devanbu, P. T.—Rosenblum, D. S.—Wolf, A. L.: Generating Testing and
Analysis Tools with ARIA. ACM Transactions on Software Engineering and Metho-
dology, Vol. 5, 1996, pp. 42–62.

Pay-As-You-Go Software Artifacts Management 843

[23] Ankolekar, A.—Sycara, K.—Herbsleb, J.—Kraut, R.—Welty, C.: Sup-
porting Online Problem-Solving Communities with the Semantic Web. Proceedings
of the 15th International Conference on World Wide Web, ACM 2006, pp. 575–584.

[24] Papakonstantinou, Y.—Vianu, V.: Incremental Validation of XML Documents.
Proceedings of the 9th International Conference on Database Theory, Springer 2003,
pp. 47–63.

[25] Barbosa, D.—Mendelzon, A. O.—Libkin, L.—Mignet, L.—Arenas, M.: Ef-
ficient Incremental Validation of XML Documents. Proceedings of the 20th Interna-
tional Conference on Data Engineering, IEEE Computer Society 2004, pp. 671–682.

[26] Nentwich, C.—Capra, L.—Emmerich, W.—Finkelstein, A.: xlinkit: A Con-
sistency Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology (TOIT), Vol. 2, 2002, pp. 151–185.

[27] Reiss, S. P.: Incremental Maintenance of Software Artifacts. IEEE Transactions on
Software Engineering, Vol. 32, 2006, pp. 682–697.

[28] Xu, C.—Cheung, S. C.—Chan, W. K.: Incremental Consistency Checking for
Pervasive Context. Proceedings of the 28th International Conference on Software En-
gineering, ACM 2006, pp. 292–301.

[29] Zhao, Y.—Dong, J.—Peng, T.: Ontology Classification for Semantic-Web-Based
Software Engineering. IEEE Transactions on Services Computing, 2009, pp. 303–317.

[30] Barla, M.—Tvarožek, M.—Bieliková, M.: Rule-Based User Characteristics
Acquisition from Logs with Semantics for Personalized Web-Based Systems. Com-
puting and Informatics, Vol. 28, 2009, pp. 399–427.

Ying Pan received the M. Sc. degree in computer science from
Huazhong University of Science and Technology in 2006, and
the Ph. D. degree from Department of Computer Science, Sun
Yat-sen University in 2011. She is now an Associate Professor
in College of Computer and Information Engineering, Guangxi
Teachers Education University, China. Her current research in-
terests include dataspace and knowledge engineering.

Yong Tang (corresponding author) received the M. Sc. degree
in computer software from Wuhan University in 1990, and the
Ph. D. degree in computer software and theory from University
of Science and Technology of Beijing (China) in 2001. He is now
a Professor and Ph. D. supervisor in School of Computer Science,
South China Normal University, Guangzhou, China. His main
research interests include database and knowledge engineering.

