
Computing and Informatics, Vol. 32, 2013, 679–696

QMBRI: INVERSE QUANTIZATION
OF MINIMUM BOUNDING RECTANGLES
FOR SPATIAL DATA COMPRESSION

Jongwan Kim, Dukshin Oh

Department of Management Information Systems
Sahmyook University, Seoul, Korea
e-mail: wany@korea.ac.kr, ohds@syu.ac.kr

Keecheon Kim∗

Department of Computer Science and Engineering
Konkuk University
Seoul, Korea
e-mail: ckkim@konkuk.ac.kr

Abstract. In this paper, we propose QMBRi, the inverse representation of the
quantized minimum bounding rectangles (MBRs) scheme, which compresses a mini-
mum bounding rectangle key into one byte for spatial-data compression. QMBRi is
a novel spatial-data compression scheme that is based on inverse quantization and
overcomes the shortcomings of conventional relative coordination or quantization
schemes. If a spatial data is far from the starting point of the search region, the
relative coordination scheme does not guarantee compression. In a quantization
scheme, since the MBRs are expanded, the overlapping of MBRs is increased and the
search performance is reduced. The proposed scheme overcomes these shortcomings,
and simulation results suggest that it performs better than other schemes.

Keywords: Spatial data, spatial-data compression, MBR, RMBR, HMBR, QMBR

∗ corresponding author

680 J. Kim, D. Oh, K. Kim

1 INTRODUCTION

The R-tree [1] approximates spatial objects as minimum bounding rectangles(MBRs)
such as R2 in Figure 1. Since an R-tree is a disk-based index, the size of the coordi-
nates, x and y, greatly affects the search performance. Therefore, much research has
been undertaken on spatial data compression schemes that reduce the sizes of co-
ordinates in order to improve the performance of geographical information systems
(GISs) or location-based services (LBSs) [2, 3, 4, 11].

Existing spatial data compression schemes can be categorized into relative coor-
dinate and quantization schemes. The former comprises the relative MBR (RMBR)
and hybrid MBR (HMBR) schemes [5]. The disadvantage of these schemes is that
compression is not possible if the spatial object is far from the starting-point of the
search region because the relative coordinates are then too large. This disadvantage
is inherent in all relative-coordinate-based compression schemes. The compressed
sizes of RMBR and HMBR are eight and six bytes, respectively. Another scheme
is the quantized MBR (QMBR), which compresses spatial data into four bytes [5].
In the quantization-based compression scheme, the size of real MBRs increases and
they overlap. This increases the number of node accesses during the search of spatial
data and slows processing performance.

In this paper, we propose a new compression scheme, QMBRi, which overcomes
the disadvantages of the existing compression schemes described above. QMBRi

compresses MBR coordinates in two-dimensional space into one byte, as in the
conventional QMBR scheme. Although the division of the search space through
quantization is the same as in the QMBR scheme, since the quantization value is
not used as a coordinate, the MBRs neither expand nor overlap. QMBRi is an
inverse quantization scheme that creates new coordinates from the quantization
value. It is believed that the proposed scheme may be the first attempt to compress
spatial data into one byte through inverse quantization.

The main contributions of this paper are as follows.

• If the relative coordinates exceed two bytes, the spatial data are not compressed.
This is resolved using the virtual search region in QMBRi. That is, the coordi-
nates, which are far from the start point of the search region, are compressed.

• QMBRi expands only two sides of MBR. Therefore, the overlap, a shortcoming
of the QMBR scheme, is decreased in QMBRi and performance improves over
that of QMBR.

This paper is organized as follows. In Section 2, we examine the issues that
affect existing MBR compression schemes. In Section 3, we explain the details of
inverse quantization, which is the basis of the new compression scheme. Section 4
analyzes the structure of indices with the QMBRi scheme. Section 5 describes the
performance evaluation of the QMBRi scheme and Section 6 presents the conclu-
sions.

QMBRi: Inverse Quantization of MBR 681

Figure 1. RMBR and HMBR

2 MBR COMPRESSION AND PROBLEMS

In this section, using the following terminology, we discuss the issues that affect
existing compression schemes. For the search region, R0, we select two points,
a and b (see Figure 1). The internal MBRs contained in the search region are
numbered R1, R2, . . . , Rn. The starting- and end-points are generically denoted by
rs and re(s : start ; e : end), respectively. According to the number of internal
MBRs (viz., n), these points are designated as r1s, r1e, . . . , rns, and rne. The
two compressed points are α and β, and each point comprises the coordinates,
(x, y). Generally, one MBR stores four coordinates in two points and has the size of
16 bytes.

As shown in Figure 1, the RMBR calculates the relative coordinates of R1 from
a. The coordinates are compressed from 16 to 8 bytes. However, when the relative
coordinates are greater than two bytes due to widening of the search region, there
is no compression effect. For example, if the search region is wider and r1e is
(87 000, 72 900), the relative coordinate of β in the x axis is 67 000. Consequently,
there is no compression effect because the relative coordinates exceed two bytes. This
also applies to α in the same way. In the HMBR scheme, as in the RMBR scheme,
the starting-point, r1s, is compressed in terms of relative coordinates. However, if
R1 remains far from the vertex, a, of R0, the coordinates of r1s are not compressed
into two bytes. The end-point, β, evaluates the height (h) and the width (w) in
relation to α rather than the starting-point of R0. Therefore, the coordinates of
the end-point are compressed into one byte and stored in fewer bytes than in the
RMBR scheme [5]. The purpose of this paper is to improve the search performance
by compressing spatial data. Spatial data compression schemes that are based on
relative coordinates have the following drawback (Observation 1), which we attempt
to overcome.

682 J. Kim, D. Oh, K. Kim

Observation 1. The relative-coordinate schemes achieve compression only if the
offsets between the coordinates of R0 and the MBRs are contained in either one or
two bytes.

Let R1 and R2 be the MBRs contained in the search region, R0, and let them
have two sets of points r1s& r2s and r1e& r2e, respectively. We assume that R1x

and R2x are adjacent to vertices, a and b, respectively, of R0. Then R2, which is far
from vertex a of R0, will have larger relative coordinates than R1. If the size of the
relative coordinates, (rsx − ax), exceeds two bytes, the RMBR is not compressed.
This also applies to the compression of rs in the HMBR scheme. In the RMBR
scheme, the two compressed points, α and β, of R1 are as follows,

αx(R1) = |ax − rsx| , αy(R1) = |ay − rsy|
βx(R1) = |ax − rex| , βy(R1) = |ay − rey| .

(1)

QMBR quantizes the search region, as shown in Figure 2. It substitutes the
quantization value for the coordinates of an MBR and stores the MBR in four bytes.
Compared to the eight- or six-byte compression of existing schemes, the compression
ratio of QMBR is relatively high. However, QMBR has the disadvantage described
in Observation 2.

Observation 2. MBRs that are compressed by the quantization scheme extend
into four directions, and the overlap ratio increases.

Let l be the quantization level and q1, q2, . . . , qn be the values of quantization
that divide the search region R0 into a grid. In Figure 2, the two points of R1, (r1s
and r1e) are substituted by the quantization value and become α(2, 1) and β(10, 8).
At that point, R1 overlaps R3 while it extends. This overlap reduces the search
performance in the spatial index.

The following is an example of Observation 2. Assume that R3 contains a data
object from Figure 2, and that R1 and R3 reside on nodes A and B, respectively. In
the R-tree, the search query approaches node B to find the data object. However, in
the QMBR, backtracking occurs because R1 contains a data object with expanded
regions. That is, the query approaches node A, moves to the upper node again,
and then approaches node B to find the data object. Consequently, the increased
number of node accesses reduces the search performance.

3 MBR COMPRESSION USING INVERSE QUANTIZATION

Spatial data compression affects the index size and search performance. In this
paper, compression is made on the basis of the QMBR. However, this does not extend
to the quantization value on each side. The new coordinates that are compressed
into one byte are created on the basis of the nearest quantization value. In other
words, QMBRi compresses the spatial data by using inverse quantization. Since
QMBRi transforms the offsets between the coordinates of the search region and the
MBRs into 1 byte, Observation 1 is resolved.

QMBRi: Inverse Quantization of MBR 683

Figure 2. Expansion of MBRs in QMBR

Definition 1 (The virtual search region). Let ds be the dataset, which is com-
prised of MBRs and let R0 be the search region. R0 is the widest MBR in ds
and is defined by Equation (2). The two points of R0 are a and b. To compress the
MBR into one byte, the virtual search region (VSR), which is converted so searching
can commence from the coordinates of (0, 0), is defined by Equation (3). The virtual
search region is vR0 and the size of the region is the same as that of R0.

∀MBR ⊂ R0,
MBR(R0) = {(a, b)|a = MIN(ds.rs), b = MAX(ds.re)}

rs(R0) = {(x1, y1)|x1 = MIN(ds.x1), y1 = MIN(ds.y1)}
re(R0) = {(x2, y2)|x2 = MAX(ds.x2), y2 = MAX(ds.y2)}.

(2)

a(vR0) = (rsx1 − rsx1, rsy1 − rsy1)
b(vR0) = (rex2 − rsx1, rey2 − rsy1).

(3)

Definition 1 converts the starting-point, a, of the search region into the coordi-
nates, (0, 0), of a virtual region, and converts b as well to compress each coordinate
into one byte. The reason for converting to a virtual region is to avoid negative
numbers when calculating the compressed coordinates based on the quantization
value. The MBRs in the dataset are converted into vMBRs (virtual MBRs) and
then included in the VSR.

Definition 2 (MBR quantization value). Let vR0 be the VSR and vR1 be the MBR
contained in vR0. The quantization levels of the x- and y-axes are lx and ly, respec-
tively. Then, vR0 has two points, a and b, and vR1 has rs and re. The quantization
values, qrs, and qre, are substituted for the two points of vR1 as follows. The quan-
tization values are applied to inverse quantization.

684 J. Kim, D. Oh, K. Kim

qxrs = d(rsx − ax)/(bx − ax) ∗ lxe , qyrs = d(rsy − ay)/(by − ay) ∗ lye
qxre = d(rex − ax)/(bx − ax) ∗ lxe , qyre = d(rey − ay)/(by − ay) ∗ lye .

(4)

Definition 3 (Inverse quantization). Let vR1 be the MBR contained in the VSR
and qsize be the size between qn and qn+1 of quantization value. As shown in (5),
the coordinates of the two points of vR1 (r1s and r1e) are inversely quantized as
shown in (5) on the basis of the nearest quantization value. The two compressed
points are α and β.

αx = qxrs × qsizex − rsx, αy = qyrs × qsizey − rsy
βx = qxre × qsizex − rex, βy = qyre × qsizey − rey.

(5)

Inverse quantization in the search region is performed as shown in Figure 3.
First, quantization occurs after the conversion of R0 in Figure 2 into vR0 that starts
at (0, 0). On the basis of each coordinate of vR1 and the nearest quantization values,
viz., qx3 , q

x
10, q

y
2 , and qy8 , new coordinates are calculated via Equation (5). Then,

vR1 is compressed into one byte from (11 950, 11 750)–(39 800, 47 900) to (50, 250)–
(200, 100); this is referred to as inverse quantization.

QMBR has two characteristics. One is that QMBR compresses the spatial data
into 4 bytes from 16 bytes and space is saved. The other is that MBR is expanded
and overlaps other MBRs in QMBR. The main contribution of QMBRi is to pre-
vent MBR expansion and overlap. QMBR is expanded on four sides. However,
since QMBRi is expanded on two sides, such as in Figure 3, the overlap with MBRs
decreases. Therefore, inverse quantization minimizes MBR overlap, thereby over-
coming the disadvantage of the QMBR scheme. If the overlap decreases, search
performance is superior to that of QMBR. This is analyzed in Section 4 and shown
by simulation. As we know, it is important to decrease overlap to improve perfor-
mance.

Figure 4 is a spatial-data compression algorithm that uses inverse quantization
and a MATLAB-based [10] pseudo code. In this paper, only the compression algo-
rithm for the x-axis coordinates is shown. The calculation of the y-axis is straightfor-
ward. In the algorithm, the search region is vR0 and represents two points, a and b;
rs and re represent the lower-left and upper-right corners of the MBR that is con-
tained in the search region. These two points are converted to the coordinates of
vR1, namely, rsx new and rex new , and compressed to αx and βx, respectively.

Line 7 shows that the dataset is stored in the array from a data file. To create
the VSR, the smallest coordinate, ax, and the largest coordinate, bx, in the dataset
are found (lines 8–10). The x-axis of a and b of the VSR is created by using the
maximum and minimum coordinates (line 12). To quantize the VSR, we define the
quantization level of the x-axis as ranging from 1 to the maximum value, and then
calculate the quantization size (lines 13–14). We convert each coordinate of the
MBRs that are to be included in vR0 and calculate the quantization value of the
two points, rs and re (lines 15–19). Then, we obtain αx and βx through inverse

QMBRi: Inverse Quantization of MBR 685

Figure 3. Inverse quantization MBR in VSR

quantization by compressing the coordinates of the x-axis (lines 21–22). Finally,
lines 24–28 check to see whether the x-coordinates of α and β are within the range
of one byte. The algorithm terminates when all the coordinates of the MBRs are
compressed into one byte each.

4 INDEX STRUCTURAL ANALYSIS

4.1 The Index Size

The MBR, RMBR, HMBR, and QMBR compression schemes have stored-key sizes
of 16, 8, 6, and 4 bytes, respectively. The proposed QMBRi also has a four-byte key
size. When each scheme is stored on disk, the index size is as shown in Equation (6).
In Equation (6), we assume that the size of an MBR is 16 bytes and that the pointers
for sub-nodes are four bytes in size. We also assume that the number of data objects,
n, is 1 000 000, the node size, N , is 4 096 bytes, and the node usability, u, is 90 %.
The value of m is the maximum fan-out of the nodes. According to Equation (6), the
index size of the R-tree is 22.43 MB and that of QMBRi is 19.33 MB. Since the index
space that is calculated by the equation represents only a simple structural analysis,
QMBR and QMBRi are identical in the size of the compressed data. However, the
search performance of the QMBR scheme is inferior to that of the QMBRi scheme
due to the overlapping MBRs.

IndexSize =

{
nN
um
, if leaf node
nN

um(um−1)
, otherwise.

(6)

686 J. Kim, D. Oh, K. Kim

1. Algorithm: Inverse quantization for the x-axis of MBRs

2. Procedure CompressSpatialData (Dataset)

3. Input: Dataset, a set of spatial coordinates

4. Output: Compressed coordinates in one byte

5. Begin

6. min_ax, max_bx ßinitialize to zero;

7. [rsx, rex, rsy, rey] ßset Dataset to MBR array;

8. for (i = 1 : NumOfDataset) // search area R0

9. Get minimum ax (min_ax) from MBR array;

10. Get maximum bx (max_bx) from MBR array;

11. // conversion from R0 to virtual search region vR0

12. ax ßmin_ax - min_ax; bx ßmax_bx - min_ax;

13. for (qlevel_x=1 : max_bx)

14. qsizex ßCeiling((bx - ax) / qlevel_x) for the size of a unit;

15. for (i = 1 : SizeOfDatasets)

16. rsx_new ßthe vMBR’s start x-coordinate;

17. rex_new ßthe vMBR’s end x-coordinate;

18. qrs
x ßthe quantization unit of the starting-point, rsx;

19. qre
x ßthe quantization unit of the end-point, rex;

20. // compressed coordinate of vMBR’s x-axis

21. αx[i] ßqrs
x x qsizex – rsx_new;

22. βx[i] ßqre
x x qsizex – rex_new;

23. // confirm αx and βx in 1 byte compression

24. if (((αx[i] >= 0) & (αx[i] <= 255))

25. & ((βx[i] >= 0) & ((βx[i] <= 255)))

26. then

27. intOneByteCount++;

28. if (intOneByteCount == SizeOfDatasets)

29. then return 0;

30. End

Figure 4. Inverse quantization algorithm

QMBRi: Inverse Quantization of MBR 687

4.2 The Number of Node Accesses

We measured the number of node accesses by using the equation summarized in [6].
The search performance is associated with the tree height, which depends on the
number of entries in a node. If more entries are stored in one node, fewer disk access
operations are required to access them. We assume a node size of 4 096 KB, which
is the disk allocation unit. In the R-tree, the number of nodes in a height, h, nodeh,
is dn/fanouthe and n is the total number of data objects. The number of node
accesses at a height, h, can be determined on the basis of the probability of meeting
the average region and the query region that is occupied by a node of the relevant
height. We assume areah to be the average size of one node of height, h. The region
is overlapped by areah and the query size, qs, is (

√
qs+

√
areah)2, according to the

Minkowski sum [7]. Figure 5 shows the probability of the Minkowski sum, which is
the average size of the node that the query object encounters. Finally, qs, which is
overlapped by the nodes at a height, h, is the same as the expression in parentheses
in Equation (7). The total number of node accesses from the leaf node to the root
node of the R-tree becomes equal to the accumulated number of node accesses at
each height, as shown in Equation (7).

Figure 5. The average area of a node with the Minkowski sum

NodeAccess(R-tree) = 1 +

dlogf Ne+1∑
h=1

1 +

√√√√⌈
N

fh

⌉
· s

2

. (7)

The number of node accesses in the QMBR becomes greater than that of the
real MBR. This is because the MBR extends to the quantization value. The prob-
ability of the number of node accesses in the QMBR is described below. When the
quantization level is q, then each node at a height, h, is divided into q2 cells. One
side of each cell is

√
areah/q in length. The number of node accesses depends on

how much the query MBR at the upper node and the average region of the node

688 J. Kim, D. Oh, K. Kim

overlap when a node is approached. The number of node accesses of query MBR at
height, h, should add the probability of node overlapped with quantization cell at
upper node to the probability of node accesses. Therefore, the node accesses in the
quantized region are as shown in Equation (8). The query MBR should be quantized
when the data are searched.

NodeAccess(QMBR) = 1 +

dlogf Ne+1∑
h=1

1 +

√√√√⌈
N

fh

⌉
· s+

√√√√⌈
N

fh+1

⌉
· s/q

2

. (8)

Figure 6 shows the mathematical results for the number of node accesses of
each scheme. Those of the MBR, RMBR, and HBMR schemes are calculated by
Equation (7), whereas that of the QMBR is as shown in Equation (8). Figure 6
also shows the decrease in the number of node accesses as the node size increases.
When the node size is large, the number of entries in a single node increases and
the probability of finding an entry in a node also increases. The number of node
accesses decreases almost linearly; a similar pattern appears in the synthetic dataset.
Another case where there are a large number of entries in a node is when the stored
key is small. This is the compressed case. When the key is small, the number
of node accesses decreases as more entries can be stored in the same node. The
QMBR and QMBRi schemes appear almost identical in this respect due to the
simple calculation via the equation. However, the results from the simulation are
different. This is explained in Section 5.

5 PERFORMANCE EVALUATION

We evaluated the performance of the RMBR, HMBR, QMBR, and QMBRi schemes
in two parts. The first was to implement an index and the second was to convert
the dataset to compressed coordinates. The index for each compression scheme was
programmed in C++ as a modification of the R-tree, and coordinate compression
was performed in MATLAB. The experiment was performed on a PC with 1 GB of
memory and running on Windows XP.

We simulated two datasets, one synthetic and the other real. The synthetic
dataset of 100 000 MBRs was generated by DaVisualCode [8] (Figure 7). For the
synthetic dataset, the MBRs were generated randomly from 100 000 × 100 000 re-
gions. The distribution of the sample is skewed as in a real dataset. With regard to
the real dataset, 62 556 real Sequoia-in-California MBRs [9] were used to evaluate
the compression schemes (Figure 8). The dataset details are shown in Table 1.

The key of performance is the number of node accesses in the index. The search
performance becomes faster than before compression when the number of entries in
a node increases and the height of the tree decreases. This is a common characteristic
of each compression scheme. However, the performance depends on the particular
characteristics of each scheme.

The simulation involved accumulating the results of 30 query workloads for
a point query in both the synthetic and real datasets. The extensive results for the

QMBRi: Inverse Quantization of MBR 689

512 1024 2048 4096
0

100

200

300

400

500

600

700

800

900

1000
N

um
be

r o
f n

od
e

ac
ce

ss
es

Node size

 MBR
 RMBR
 HMBR
 QMBR
 QMBRi

Figure 6. The number of node accesses as per mathematical analysis

Category Synthetic dataset Real dataset

of MBRs 100 000 62 556

Distribution Skewed Skewed

Region 100 K× 100 K pixel 1 400 K× 2 100 K

Type Synthetic Sequoia groove

Compression size MBR(16B), RMBR(8B), HMBR(6B),
(Bytes) QMBR(4B), QMBRi(4B)

Node size 512, 1 024, 2 048, 4 096 bytes

Table 1. Summary of datasets and compression schemes

synthetic dataset are shown in Figure 9. Visit represents the current entry and the
node visited to search for the query data. Leaf node is an MBR that is found at
the final level of the index via intermediate nodes. Ent, NodeAcc, and BTrack are
the entry number that is visited; the number of node accesses; and the number of
backtracks, respectively. In Figure 9, the MBR search starts with a visit to the first
entry of the root node. At that point, the size of each node is 4 096 bytes and the
levels from the leaf nodes to the root node are 0, 1, and 2. As shown in line 17, there
are 201 entries in the leaf node. In Figure 9, the number of node accesses is 124 and
the number of backtracks is 17. Figures 10 and 11 show the results. Backtracking
in line 14 is the result of moving to the upper node again to search target data at
other nodes. We do not consider the cache.

690 J. Kim, D. Oh, K. Kim

Figure 7. A synthetic dataset

Figure 8. A real dataset (California Sequoia)

Figure 10 shows the number of node accesses when the compression scheme
is applied to the randomly-created synthetic dataset. Since the number of node
entries is increased by compression, the compression schemes have fewer node ac-
cesses than uncompressed MBRs of the same node-size. The 4 096-byte node shows
fewer accesses than the 512-byte node because of the increased node-size and the
improved node-usability. However, even though the node usability improves with
QMBR compression, there are more node accesses as node-backtracking increases
because the MBRs extend and overlap. Therefore, the QMBR scheme does not

QMBRi: Inverse Quantization of MBR 691

--

Query data(no. 1): (437, 47)-(437, 47)

--

Visit> Inode: Ad:00ABBDD0, Level:2, Ent/entries(0/4), MBR(1,1)-(10,16)...(NodeAcc:1)

 :

Leaf node >> Add:00AC15D0, Level:0, Ent/entries(108/181), MBR(437,47)-(437,47)...(NodeAcc:3)

 :

--

Query data(no. 30): (5, 538)-(5, 538)

--

Visit> Inode: Ad:00ABBDD0, Level:2, Ent/entries(0/4), MBR(1,1)-(10,16)...(NodeAcc:1)

 :

Visit> Inode: Ad:00ABE9D0, Level:1, Ent/entries(148/149), MBR(7,152)-(20,164)...(NodeAcc:4)

Backtracking...

...Inode: Ad:00ABBDD0, Level:2, Ent/entries(1/4), MBR(1,1)-(20,699)..(NodeAcc:5, BTrack:2)

 :

Leaf node >> Add:00AC3BD0, Level:0, Ent/entries(114/201), MBR(5,538)-(5,538)...(NodeAcc:7)

=== Report of CURRENT query line ===

 *node access: 7

 *backtracking: 2

 This R-Tree contains 5 internal node, 628 data nodes and 100000 data

 *Total node accesses of (1+...+30) query line: 124

 *Total backtracking: 17

--

Figure 9. Results of the point query

guarantee compression performance. On the contrary, since the QMBRi scheme
minimizes the overlap of MBRs and compresses the MBRs into one byte, it results
in far fewer node accesses while maintaining the same node-usability as the QMBR
scheme.

Figure 11 shows that node backtracking occurs most often in the QMBR scheme.
In other words, the search of the data requires moving to upper nodes because of
the overlap of MBRs. The RMBR and HMBR schemes entail more backtracking
than the MBR scheme. The reason is that the offsets are big from the starting-
point of the search region and the overlapping increases. In Figure 11, backtracking
increases in all schemes at a node size of 1 024. We also observe an increase in
the RMBR and HMBR schemes to 2 048. This means that even though the node
size increases, the uncompressed MBR is stored in other nodes. However, when the
node size increases to 4 096 and the uncompressed key is stored in the same node,
backtracking decreases.

692 J. Kim, D. Oh, K. Kim

512 1024 2048 4096
0

20

40

60

80

100

120

140

160

180
N

um
be

r o
f n

od
e

ac
ce

ss
es

Node size

 MBR
 RMBR
 HMBR
 QMBR
 QMBRi

Figure 10. The number of node accesses with the synthetic dataset

512 1024 2048 4096

10

12

14

16

18

20

22

24

26

28

30

N
um

be
r o

f n
od

e
ac

ce
ss

es

Node size

 MBR
 RMBR
 HMBR
 QMBR
 QMBRi

Figure 11. The number of backtracks with the synthetic dataset

QMBRi: Inverse Quantization of MBR 693

In Figure 12, for the real dataset, the number of node accesses decreases as the
node size increases in all schemes. The QMBR scheme entails the most node accesses
and the QMBRi scheme requires the least. As shown in Figure 13, the QMBRi

scheme also has the least backtracking. Since many entries are stored in one node
in the QMBRi scheme, the performance is better than that of other schemes. When
the node size is 4 096, the backtracking of the RMBR scheme is zero, the same as
for the QMBRi scheme.

The simulation results with the synthetic and real datasets differ slightly accord-
ing to differences in the data distribution. All of the graphs show that the QMBRi

scheme requires fewer node accesses than the QMBR scheme, despite differences
in data distribution. Node backtracking, which is the major cause of performance
deterioration in two-dimensional spatial indexes, is lowest in the QMBRi scheme.
This is due to a significant decrease in MBR overlap in comparison with the QMBR
scheme, as each axis is compressed into one byte during spatial-data compression.

512 1024 2048 4096
0

20

40

60

80

100

120

140

N
um

be
r o

f n
od

e
ac

ce
ss

es

Node size

 MBR
 RMBR
 HMBR
 QMBR
 QMBRi

Figure 12. The number of node accesses with the real dataset

6 CONCLUSIONS

We have proposed the QMBRi scheme, a new spatial-data compression scheme that
overcomes the problems related to the size of relative coordinates and MBR overlap
that are caused by quantization. Even though the QMBRi scheme quantizes the
search region in the same manner as the QMBR scheme, it minimizes the overlaps

694 J. Kim, D. Oh, K. Kim

512 1024 2048 4096

0

2

4

6

8

10

12
N

um
be

r o
f n

od
e

ac
ce

ss
es

Node size

 MBR
 RMBR
 HMBR
 QMBR
 QMBRi

Figure 13. The number of backtracks with the real dataset

between MBRs that occur in the QMBR scheme. The QMBRi scheme creates new
coordinates that are compressed into one byte on the basis of the quantization value
of each axis. Since the offsets are decreased into one byte, the shortcomings of RMBR
and HMBR are resolved. We refer to this as an inverse quantization scheme. Since
the QMBRi scheme maximizes the compression ratio and the node-usability, it has
better performance in terms of the number of node accesses and node backtracking.
The simulation results show that the QMBRi scheme has a smaller index and faster
search performance than the existing schemes. We will continue our research to
provide faster location-based services by applying the QMBRi scheme to wireless
data broadcasting services that rely on spatial data.

Acknowledgement

This work was supported by the National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2009-351-D00075) and IT R & D program
of MKE/KEIT (10041910, Development of global cloud delivery platform that can
reduce video traffic up to 50 %).

QMBRi: Inverse Quantization of MBR 695

REFERENCES

[1] Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In Pro-
ceedings of the 1984 ACM SIGMOD international conference on Management of data
SIGMOD, Vol. 14, 1984, pp. 47–57.

[2] Qian, Y.—Zhang, K.—Huynh, D.T.: PatZip: Pattern-Preserved Spatial Data
Compression. In Proceedings of the 9th Pacic-Asia Conference on Knowledge Discove-
ry and Data Mining (PAKDD), Lecture Notes in Artificial Intelligence (LNAI) 3518,
2005, pp. 726–736.

[3] Berchtold, S.—Bäohm, C.—Jagadish, H.V.—Kriegel, H. P.—Sander, J.:
Independent Quantization: An Index Compression Technique for High-Dimensional
Data Spaces. In Proceedings of the 16th International Conference on Data Engineering
(ICDE), 2000, pp. 577–588.

[4] Kim, J.—Im, S. J.—Kang, S.W.—Hwang, C. S.—Lee, S.K.: SQR-Tree:
A Spatial Index Using Semi-Quantized mbr Compression Scheme in R-Tree. Journal
of Information Science and Engineering (JISE), Vol. 23, 2007, No. 5, pp. 1541–1563.

[5] Kim, J.D.—Moon, S.H.—Choi, J.O.: A Spatial Index Using MBR Compres-
sion and Hashing Technique for Mobile map Service. In Proceedings of International
Conference on Database Systems for Advanced Applications (DASFFA), LNCS3453,
2005, pp. 625–636.

[6] Kim, K.H.—Cha, S.K.—Kwon, K. J.: Optimizing Multidimensional Index Trees
for Main Memory Access. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data SIGMOD, Vol. 30, 2001, pp. 139–150.

[7] Berg, M.—Kreveld, M.—Overmars, M.: Computational Geometry – Algo-
rithm and Applications. 2nd Ed. Springer, 2000, pp. 267–290.

[8] Spatial Data Generator, DaVisual Code1.0. Available on: http://isl.cs.unipi.gr.

[9] Sequoia Dataset. Available on: http://www.rtreeportal.org/spatial.htm.

[10] MATLAB. Available on: http://www.mathworks.com.

[11] Lin, H.Y.: High Index Compression without the Dependencies of Data Orders and
Data Skewness for Spatial Databases. Journal of Information Science and Engineer-
ing, Vol. 27, 2011, No. 2, pp. 561–576.

Jongwan Kim received the Ph. D. degree in Computer Science
and Engineering from Korea University, South Korea, in 2007,
B. Sc. degree in Business Administration, and M. Sc. in Com-
puter Science and Engineering from Sahmyook University,
Soongsil University, respectively. He has led a project for spa-
tial data compression and involved in RFID project, which are
supported by the National Research Foundation of Korea Grant
funded by Korean Government. He worked at Konkuk Univer-
sity and Sahmyook University as a research professor and he
researched at University New South Wales in Australia as a vi-

siting fellow from 2011 to 2013. His research interests include Mobile & Streaming Data
Management, Location-based Services, Sensor/RFID data management and Skyline query.

696 J. Kim, D. Oh, K. Kim

Dukshin Oh received the Ph. D. degree in Management Infor-
mation Systems from Sangm-yung University in Korea. He is
a professor of Management Information Systems at Sahmyook
University in Korea. He has published many papers in several
journals such as International Journal of Computer Science and
Network Security, The KIPS Transactions. His research inter-
ests include Management/Computer Information Systems, Sys-
tem Analysis and Design, e-Business and e-Learning systems.

Keecheon Kim received the B. S. degree from Seoul National
University, Korea in 1988, the Ph. D. degree in Computer Science
from Northwestern University, Illinois, USA. He has been a se-
nior researcher in Korea Telecom from 1992 to 1996. He joined
the current SKT in 1996 as a deputy director for the research
center. He has been served as a professor of computer science
department since 1998. He also served as a director of the NEX-
TEL (currently SPRINT Nextel) Communications in US from
2004 to early 2006 in the area of Core network Development. He
was a member of US NSTAC Presidential advisory committee.

His research interests include Wireless Data Communication, Mobile Computing, Ad-hoc
Network, Mobile Computing Security.

