
Computing and Informatics, Vol. 32, 2013, 897–923

A NEW LINEAR-TIME DYNAMIC DICTIONARY
MATCHING ALGORITHM

Chouvalit Khancome

Software Systems Engineering Laboratory
Department of Mathematics and Computer Science
Faculty of Science, King Monkut’s Institute of Technology at Ladkrabang (KMITL)
Ladkrabang, Bangkok 10520, Thailand
e-mail: chouvalit@hotmail.com, chouvalit.kha@csit.rru.ac.th

V. Boonjing

Software Systems Engineering Laboratory
Department of Mathematics and Computer Science
Faculty of Science, King Monkut’s Institute of Technology at Ladkrabang (KMITL)
Ladkrabang, Bangkok 10520, Thailand
&
National Centre of Excellence in Mathematics, PERDO
Bangkok, Thailand 10400
e-mail: kbveera@kmitl.ac.th

Communicated by Jacek Kitowski

Abstract. This research presents inverted lists as a new data structure for the
dynamic dictionary matching algorithm. The inverted lists structure, which derives
from the inverted index, is implemented by the perfect hashing table. The dictio-
nary is constructed in optimal time and the individual patterns can be updated
in minimal time. The searching phase scans the given text in a single pass, even
in a worst case scenario. In experimental results, the inverted lists used less time
and space than the traditional structures; the searches were processed and showed
an efficient linear time.

Keywords: Dynamic dictionary matching, static dictionary matching, multiple
pattern string matching, inverted index, inverted lists, trie, bit-parallel, hashing
table

898 Ch. Khancome, V. Boonjing

1 INTRODUCTION

Dictionary matching is one of the main priciples in classical string processing. This
principle deals with a large number of string patterns P = {p1, p2, . . . , pr} that can
be searched simultaneously in a given text T = {t1t2t3 . . . tn}. There are plenty
of new applications in computer science that apply this principle to solve their
problems (e.g., [32, 33, 34, 39]) including the operating system commands (Unix grep
command using Commentz-Walter [9] and agrep using Wu-Manber[25]), intrusion
detection systems (e.g., SNORT using Aho-Corasick [1], Commentz-Walter [9], and
Wu-Manber [25]), and so on. Traditionally, the target patterns are generated to
a suitable data structure (called dictionary) in the pre-processing phase. Then the
searching phase scans and compares the given text with data in the dictionary for
finding all pattern occurrences. Typically, if the dictionary can not support the
updating of individual patterns, it is called static dictionary. In contrast, if the
dictionary has the ability to delete or insert individual patterns over time, it is
called dynamic dictionary.

Since dictionary matching is a fundamental problem, trie and bit-parallel data
structures have been used to accommodate the static dictionary. Trie-based al-
gorithms (Aho-Corasick [1], Commentz-Walter [9], and SetHorspool (mentioned
in [18])) take the linear time or sub-linear time to solve problems. On the other
hand, the suffix tree has also traditionally been used for creating the dynamic dictio-
nary. Naturally, suffix tree-based algorithms work in logarithmic time (O(n log |P |))
where |P | is the sum of pattern lengths from p1 to pr and n is the length of T .

Although suffix tree-based algorithms are able to handle the mechanism of dy-
namic dictionary matching, all of them need some flexible structures such as Mc-
Creight [14], DS-List [22], or Weiner [23]. Unfortunately, these structures are also
embedded with a logarithmic time (log |P |) which often drives the searching phase
to O(n log |P |). It can therefore be said that all suffix tree-based algorithms are
limited by the log |P | time trap. The key to solving the dynamic dictionary prob-
lem can be found in reducing the space and resolving the log |P | time complex-
ity.

Considered by efficiency, the algorithms using static dictionary are more efficient
than the algorithms implementing the dynamic dictionary, but the dynamic dictio-
nary can be updated by the individual patterns in an optimal time while the static
dictionary takes an exhausive time (regenerates all patterns). Although there were
several static dictionary matching solutions [35, 36, 37, 38, 40, 41] shown recently,
they still tried to improve the classic data structures for accommodating the dictio-
nary. For example, solutions [36, 37, 38] improved trie structure, solution [35] used
tree, solution [40] employed bit-parallel; as well as the solution [41] used the hash-
ing of Wu-Manber[25] and a quick sort principle. Therefore, a new superior data
structure and a new faster algorithm will always need to incorporate both efficiency
and flexibility.

Until now, the inverted index and the perfect hashing table have been popular
data structures used for solving a variety of problems. The inverted index has been

A New Linear-Time Dynamic Dictionary Matching Algorithm 899

viewed as an excellent data structure in solving information retrieval problems such
as [16, 28, 29, 15]. The principle of the inverted index found in [17, 27, 26] focused
on the keywords and their positions. This principle can be applied to several data
structures for offering a faster search. Also, the perfect hashing table is used to
accommodate the data in minimal space O(n) and to provide the search method
in minimal time as O(1). It must be asked then if there is a way to combine
both these excellent data structures to create a new dynamic dictionary matching
algorithm.

The first solution [12] presented a new method of dynamic dictionary matching
using the inverted lists. This solution combined an inverted index idea and a normal
hashing table to create the inverted lists structure. This algorithm takes O(n+ locc)
time in an average case where locc is the number of characters to be matched while
comparing characters in the given text. Unfortunately, this solution leads to back-
tracking which takes an exhausive time in O(n|P |). The next solution [30] showed
a new static dictionary matching algorithm. This solution concentrated on the per-
fect hashing table to implement the inverted lists structure. Importantly, it takes the
linear time (O(n)) to search the given text even in a worst case scenario. Surprisingly,
when the inverted lists were adapted to accommdate the dynamic dictionary; the
searching algorithm still works in a linear time. Furthermore, deriving the inverted
lists structure to the other field of computer science, the solution [31] illustrated two
algorithms of single string matching that were more efficient in the case of small
alphabet sizes, especially when searching on binary digits.

This paper proposes to adapt a linear time static dictionary matching [30] to
create a new solution of linear time dynamic dictionary matching, which avoids the
backtracking of text scaning of [12]. This new approach concentrates on the inverted
lists structure which is implemented by the perfect hashing table and explores dif-
ferent ways to utilize flexible updating and efficient linear-time usage. In theoretical
results, the inverted lists structure is constructed in O(|P |) time and space, and
the insertion or the deletion of the individual pattern take O(|p|) time where |p|
is the length of pattern to be inserted or deleted. The searching phase takes only
O(n) time even in a worst case scenario. In experimental results, the inverted lists
structure consumes less time and space than the traditional data stuctures. The
new algorithm takes a linear-time to process the searching phase. Compared to pre-
viously well known static dictionary algorithms – Aho-Corasick[1] and SetHorspool
(mentioned in [18]), the inverted lists algorithm searches faster than SetHorspool
but slower than Aho-Corasick.

Section 2 summarizes the related algorithms and shows the derivations from the
inverted index and the perfect hashing principle. Section 3 explains the details of
the inverted lists structure and the dynamic mechanism. Section 4 illustrates the
searching algorithm and its example. Section 5 details the implementations, and the
experimental results are reported. Section 6 is the discussion and the suggestions
for improving the algorithm and the data structure. Section 7 is the conclusion and
planned future works.

900 Ch. Khancome, V. Boonjing

2 RELATED WORKS AND DERIVING PRINCIPLES

This section presents a history on related works of static and dynamic dictionary
matching algorithms. Furthermore, the ideas that derived the inverted index and
the perfect hashing table are described.

2.1 Related Works

2.1.1 Static Dictionary Matching Algorithms

Basically, trie, bit-parallel and hashing table have been employed for storing the
dictionary. The static dictionary algorithms always work best in linear or sub-linear
time, but in a worst case scenario they often take an exhausive time in O(n|P |).
An overview of this principle is described below.

Trie has been used for accommodating patterns for a long time. The first linear
time (Aho-Corasick [1] – extended from [13] using O(n + nocc)), the sub-linear
time (Commentz-Walter [9]) and SetHorspool(mentioned in [18] taking O(n|P |) in
a worst case scenario) are the solutions using trie where nocc is the number of
pattern occurences. Although the existing solution [10] tries to improve the static
dictionary, the patterns still need to regenerate when the dictionary is updated. The
main disadvantage is that when implementing trie to applications a large amount
of memory is cosumed.

Alternatively, bit-parallel is also popular in accommodating the static dictionary.
Bit-parallel-based algorithms employ the sequences of bits to store the patterns.
Navarro and Raffinot [18] showed how to apply the single string Shift-Or and Shift-
And to Multiple Shift-And[3] and Multiple-BNDM[18]. This principle is restricted
by the word length of computer architecture; moreover, it requires special methods
which are more complex in converting the patterns to the bit form.

On the other hand, the first hashing algorithm was presented by Karp and
Rabin [22] in single string matching. This algorithm takes the worst case scenario in
O(mn) time where m is the pattern length. Unfortunately, the dictionary matching
algorithms which directly extend from [22] take O(n|P |) time (comparable to the
exhaustive solution). A more efficient algorithm presented by Wu and Manber [25]
creates the shift table and implements the hashing table for storing the block of
patterns to solve the problem. The new solution [11] improves Wu and Manber [25]
and provides a faster solution to this principle.

Recently developed solutions [36, 37, 38] improved trie structure to accommodate
the patterns; especially [37] showed minimal space of solution. Other solutions,
which employed those classic data structures (e.g., trie, bit-parallel, and hashing),
can be found in [35, 40, 41].

A New Linear-Time Dynamic Dictionary Matching Algorithm 901

2.1.2 Dynamic Dictionary Matching Algorithms

Dynamic dictionary matching algorithms are scalable in terms of the flexibility of
their patterns, but they are disadvantaged in time and memory consumption. Suffix
tree-based algorithms are able to handle the mechanism of dynamical patterns.
This structure has led the dynamic dictionary research community to explore new
solutions. The first adaptive suffix tree base algorithm was introduced by Amir
and Farach [2]. However, it is very slow and can be categorized as an exhausive
algorithm(O(n|P |)). Subsequently, [3, 4, 5, 8] showed the logarithmic algorithms of
suffix tree generalization. All of them required one of the dynamic data structures
such as McCreight [14], DS-List [22], and Weiner [23] for managing the dictionary.

This principle was straight away challenged by how to escape from the factor
of logarithmic time (n log |P |). Although AFGGP [3] was the first algorithm with
almost linear time efficiency, the log |P | factor still remained problematic. It can
be said that all suffix tree approaches fall into the log |P | time trap. Furthermore,
when implementing the suffix tree to applications it takes more space than trie.
Nevertheless, [20] tried to improve DS-List [22] for storing patterns, but the time
complexity is still affected by logarithmic time. For a clearer understanding, there
are many sources [6, 8, 21] which provide good information on this principle.

2.2 Deriving the Inverted Index

The inverted index is the method for creating the index of keywords which ap-
pear in D = {D1 . . . Dn} where Di is any individual document which contains var-
ious keywords over

∑
, and 1 ≤ i ≤ n. Then, the keywords are represented by

〈documentID ,word : pos〉 where documentID is the indicated number referring to
the number of documents, word is the keywords in the document, and pos is the
occurrence position of word in the documentID .

For example, assume that there are the documents D1: sun of sun, D2: moon of
moon, and D3: star of star. Then, each document is analyzed for keeping keywords
and their positions. Thus the keywords in the documents are sun, of, moon and
star. Then, all keywords can be rewritten by the form of word: (posting lists) where
posting list is (documentID: position of words in that document). In this case, all
keywords in these documents are re-written as sun: (D1 : 1), (D1 : 3); of : (D1 : 2),
(D2 : 2), (D3 : 2); moon: (D2 : 1), (D2 : 3), and star : (D3 : 1), (D3 : 3). Afterwards,
the keywords and posting lists are converted into the suitable data structures such
as B+tree, suffix tree, and suffix array.

Motivated by the positions of keywords, this research focuses on the position
of characters instead of the keywords. For deriving the principle, the document D
is first replaced by the pattern P , and each Di is replaced by pi. For instance, if
there are the patterns P = {ram, run, running} then the patterns are assigned as
D1 = ram, D2 = run, and D3 = running . In the next step, they are re-written by
the form of character: 〈the occurrence position of character in pattern: the indicated
status of the last character of pattern: the number of pattern in P 〉; e.g., r : 〈1 : 0 : 1〉,

902 Ch. Khancome, V. Boonjing

〈1 : 0 : 2〉, 〈1 : 0 : 3〉, . . . Each item of this form is called the individual posting list.
Then, the context is determined using the individual posting lists that accommodate
the dictionary (shown in Section 3).

2.3 Deriving the Perfect Hashing

The perfect hashing principle is the most powerful hashing table because it is com-
pletely devoid of collision. Importantly, this priciple takes O(1) time in worst-case
performances (shown in [7, 19, 24]). Moreover, it takes O(n) space where n is the
size of data. This structure is suitable for the set of static keys such as the reserved
words in the programming language. Similary, the alphabets (

∑
), which are used

in all languages, are as limited as the static keys. This is the reason why perfect
hashing should be chosen for implementing the inverted lists.

Fundamentally, the perfect hashing table consists of 2 levels. The first level is
the universal key U to accommodate all keys for accessing all data in the table. This
level has the n keys for hashing to access the second level by the function f(n). The
second level contains the data items associated with the corresponding key of n.
This level splits into 2 buckets which avoid collision when accessing data. By using
this method, accessing data may need re-hashing 2 times.

This research assigns
∑

as the universal key U and f(λ) as f(n) for the first
level of the perfect hashing table and represents the groups of posting lists as the
data items in the second level where λ ⊆ ∑

.
The first level has the hashing function h(key)→ (data in level 2). If there are

collisions then they need to re-hash by h(key of level 2). However, the time com-
plexity still takes O(1). For implementing,

∑
and λ are unnecessary to store in the

memory because they can be calculated using the special function f(character , pos)
(shown in definition 3.6) when accessing the inverted lists in the second level. This
method decreases the space in the first level of hashing table while the accessing of
the items takes a constant time.

3 INVERTED LISTS DATA STRUCTURE

The main ideas to accommodating dictionary are highlighted in this section. Ini-
tially, all characters of each pattern are analyzed and given their positions. Then
the positions are grouped to a new form and are arranged into the perfect hashing
table. The following sub-sections present all basic definitions for the next sections,
the pre-processing algorithm, pattern insertion, and pattern deletion.

3.1 Basic Definitions

As mentioned earlier, this paper adapts the inverted lists structure and the searching
algorithm presented in [30] to improve the approach outlined in [12] and thus some
definitions and notations are the same in both [30, 12]. In representing the characters

A New Linear-Time Dynamic Dictionary Matching Algorithm 903

by position, Definitions 3.1 and 3.2 illustrate the individual lists and their form.
Definition 3.3 represents the inverted lists in new context. Definition 3.4 to 3.7
are for creating the table, keeping the inverted lists by temporary variables, the
functions for accessing the table, and a theorem called intersection for analyzing the
continuity of patterns.

Definition 1. Given P is a set of patterns {p1, p2, . . . , pr} where pi denotes a pat-
tern ith which 1 ≤ i ≤ r. The length of pi is m and pi is formed by the character
sequence {c1c2c3 . . . cm}. A single individual posting list of a character ck is defined
as ck : 〈k : 0 : i〉 if k〈m or ck : 〈k : 1 : i〉, if k = m where 1 ≤ k≤ m. The individual
posting list of ck : 〈k : 0 : i〉 is denoted by ϕki0 , and ck : 〈k : 1 : i〉 is denoted by ϕki1 .

Example 1. If there is the set of {ram, run, running} then each pattern can be
assigned as p1 = r1a2m3, p

2 = r1u2n3 and p3 = r1u2n3n4i5n6g7. All individual
posting lists are represented below.

p1 = r : 〈1 : 0 : 1〉, a : 〈2 : 0 : 1〉,m : 〈3 : 1 : 1〉,
p2 = r : 〈1 : 0 : 2〉, u : 〈2 : 0 : 2〉, n : 〈3 : 1 : 2〉,
p3 = r : 〈1 : 0 : 3〉, u : 〈2 : 0 : 3〉, n : 〈3 : 0 : 3〉,

n : 〈4 : 0 : 3〉, i : 〈5 : 0 : 3〉, n : 〈6 : 0 : 3〉, g : 〈7 : 1 : 3〉.

The next step is that all individual posting lists are grouped to a new form as
character : 〈position : terminate status : {set of patterns which occur in the same
position}〉. Then, the groups of all characters can be shown as r : 〈1 : 0 : {1, 2, 3}〉,
n : 〈3 : 0 : {2, 3}〉, 〈3 : 1 : {2}〉, 〈4 : 0 : {3}〉, 〈6 : 0 : {3}〉, and so on. Definition 3.2
shows how to group the posting lists to the new form.

Definition 2. Let lmax be the maximum length of patterns in {p1, p2, p3, . . . , pr},
and let ε be the position of any character λ which appears in the various patterns
at the same position where 1 ≤ ε ≤ lmax and λ ⊆ Σ. Then the posting lists
are {ϕεi0 , ϕεl0 , . . . , ϕ

εp
0 , ϕ

εq
0 } or {ϕεi1 , ϕεl1 , . . . , ϕ

εp
1 , ϕ

εq
1 } where 1 ≤ {i, l, . . . , p, q} ≤ r.

A group of posting lists of λ can be defined as follows.

1. If the posting lists of λ are {ϕεi0 , ϕεl0 , . . . , ϕ
εp
0 , ϕ

εq
0 } then a group of posting lists

is defined by λε,0.

2. If the posting lists of λ are {ϕεi1 , ϕεl1 , . . . , ϕ
εp
1 , ϕ

εq
1 } then a group of posting lists

is definded by λε,1.

904 Ch. Khancome, V. Boonjing

Example 2. The posting lists of P = {ram, run, running}.

Posting lists λε,0/λε,1
a : 〈2 : 0 : {3}〉, a2,0,
g : 〈7 : 1 : {3}〉, g7,1,
i : 〈5 : 0 : {3}〉, i5,0,
m : 〈3 : 1 : {1}〉, m3,1,
n : 〈3 : 0 : {3}〉, 〈3 : 1 : {2}〉, n3,0, n3,1,

〈4 : 0 : {3}〉, 〈6 : 0 : {3}〉, n4,0, n6,0,
r : 〈1 : 0 : {1, 2, 3}〉, r1,0,
u : 〈2 : 0 : {2, 3}〉. u2,0.

Definition 3. Let I be the inverted list structure of any group of the posting lists.
For any inverted lists structure of alphabet λ if the posting lists group is λε,0 then
the inverted lists structure is defined as Iλε,0. Similarly, if the posting lists group is
λε,1 then the inverted lists structure is denoted as Iλε,1.

Example 3. The groups of posting lists shown in Example 2 can be re-written as
Ia2,0, Ig7,1, Ii5,0, Im3,1, In3,0, In3,1, In4,0, In6,0, Ir1,0, and Iu2,0.

Definition 4. The perfect hashing table which provides for all alphabets over
∑

and their corresponding inverted lists is called the inverted lists table and denoted
by τ .

Example 4. The groups of posting lists shown in Example 3 can be stored in the
table τ as shown in Table 1. It is unnecessary to store the first column in the
real table because it can be calculated by the code of ASCII or Unicode when
implemented, but the second column is stored in the memory which is split into two
parts. These are described in the third and the fourth columns.

f(λ) (first level) second level set of positions set of pattern numbers

a Ia2,0 2 : 0 {3}
g Ig7,1 7 : 1 {3}
i Ii5,0 5 : 0 {3}
m Im3,1 3 : 1 {1}
n In3,0, In3,1 3 : 0, 3 : 1 {3}, {2},

In4,0, In6,0 4 : 0, 6 : 0 {3}, {3}
r Ir1,0 1 : 0 {1, 2, 3}
u Iu2,0 2 : 0 {2, 3}

Table 1. Table of the inverted lists of P

Definition 5. Two hashing sets which are provided for storing any inverted lists
Iλε,0 and/or Iλε,1 are called SET1 and SET2.

A New Linear-Time Dynamic Dictionary Matching Algorithm 905

Definition 6. A hashing function which takes Iλpos,0 and/or Iλpos,1 from τ is called
inverted lists hashing function, denoted by IV L(λ, pos) where λ ⊆ ∑

and pos is the
required position of posting lists which are stored in the second level of τ .

Definition 7. If SET1 and SET2 contain the inverted lists groups, then the conti-
nuity of patterns is operated by the intersecting function which is denoted by SET1
∩ SET2.

Example 5. Supposing that SET1 = {〈1 : 0 : {1, 2}〉} and SET2 = {〈2 : 0 :
{1, 3}〉} then SET1∩SET2 is ordered by the position 1 to 2. The first consideration
is that the sequence of inverted lists in SET1 is described by SET2. In this case,
the pattern number {1} of SET1 is described by the position of {1} in SET2 while
the required position is ‘2’ in {〈2 : 0 : {1, 3}〉} (prior to the positions in SET11).
Therefore, the result is SET1 = {〈2 : 0 : {1}〉}.

3.2 Pre-Processing Phase

This section shows the algorithm for generating the table τ . Lemma 1 shows how
to get the inverted lists in constant time. Theorem 1, Theorem 2, and Theorem 3
define the correctness, time, and space of Algorithm 1, respectively.

Pre-processing represents the steps for creating the inverted lists which take
O(|P |) time. The first step is creating the empty table τ . The second step is
reading p1 to pr. Whenever each pattern is read, the character is converted to the
inverted lists. Then if an inverted list of the considering character exists in the table,
the number of pattern is added into the part of {set of patterns which occur in the
same position}. Otherwise, a new inverted list is created and added into the table.

Algoirthm 1: Pre-processing phase
Input: P = {p1, p2, . . . , pr}
Output: table τ of P
1. Create table τ
2. for i = 1 to r do
3. for j = 1 to m of pi do
4. if ϕji0 or ϕji1 does not exist in τ then
5. τ ← ϕji0 if j〈m or τ ← ϕji1 if j = m
6. else
7. Ichar(j)j,0 ← i if j〈m or Ichar(j)j,1 ← i if j = m
8. end if
9. end for
10. end for
11. return table τ

Lemma 1. If there are the groups of inverted lists λε,0 or λε,1 in τ then accessing
all inverted lists of λε,0 or λε,1 uses O(1) time.

906 Ch. Khancome, V. Boonjing

Proof. Since λ ⊆ ∑
then each alphabet is a unique character, and λ is implemented

as the first level of the perfect hashing table taking O(1) time. The inverted lists λε,0
or λε,1 are implemented as the second level of the perfect hashing table; therefore,
each data item takes O(1) time, and all items in the second level of table are taken
in O(1) as well as the individual item. 2

Theorem 1. Algorithm 1 can generate all patterns {p1, p2, p3, . . . pr} to the inverted
lists and store them into τ correctly.

Proof. The correctness is proved when p1 to pr are generated to the inverted lists,
and all inverted lists are added to the table τ . The proofs are organized by

1. proving the initial step,

2. proving for of inner loop, and

3. proving for of outer loop.

For the initial step, line 1 needs to be true, and the table must be created for running
the other steps of proof.

Regarding the inner loop, the proof is made by the induction on j for j = 1 to
j = m. The invariants are still at the end of each jth iteration on 1 ≤ j ≤ m and
1 ≤ i ≤ r for j = 1 to j = m. The pre-condition is that pi does not exist in the
table, and the length of each pi is m. Also, the variable of m can be changed when
each pi is changed. The post-condition is that each pi is formed by the sequence
of {c1c2c3 . . . cm}. All characters c1c2c3 . . . cm are generated to inverted lists and are
added to the table. Since the for loop is executed by a fixed number, this therefore
guarantees the termination of the loop. In the base case, c1 of pi is converted to ϕ11

0

and added to the table as a new inverted list. This result is true, and the invariants
remain. Assuming the proposed invariants are true after m− 1 iteration, proof can
be demonstrated using the two following cases.

In the first case, if there are no inverted lists of pij, then a new inverted list ϕji0 if

j〈m or ϕji1 if j = m is generated and the table at the Ichar(j)j,0 ← i or Ichar(j)j,1 ← i

is created. Then ϕji0 or ϕji1 is stored in the table, and the invariants are unchanged.
In the second case, if there are the inverted lists of pij, the number of m−1 is stored
in τ . This then implies that the variable j and 1 ≤ j ≤ m−1 ≤ m and 1 ≤ i ≤ r for
j = 1 to j = m− 1. Also by induction, the variable j and 1 ≤ j ≤ m− 1 ≤ m and
1 ≤ i ≤ r for j = 1 to j = m−1. Then after adding ϕji0 or ϕji1 to the table it implies
an iteration of j = m as the hypothesis induction, and the post-condition is shown
when cm is added to the inverted list. In either case the proposed invariants remain
and the termination is guaranteed by a fixed number of j; therefore, the inner loop
is correct.

The outer loop is proved by induction on i. The pre-condition is that there
are P and τ , the post-condition is all patterns in P are generated to the inverted
lists and are added to τ . The proposed invariant is 1 ≤ i ≤ r. For the base case,
if i = 1 then it is true by the inner loop and the proposed invariant 1 ≤ i ≤ r
remains. The inverted lists from c1 to cm are followed by the inner loop, and the

A New Linear-Time Dynamic Dictionary Matching Algorithm 907

loop is run on the fixed number of i; this also guarantees its termination. In the
induction step, the iteration of i = r− 1 must be proved; the pattern pr−1 is formed
by {c1c2c3 . . . cm}, and all of the characters are sent to the inner loop which are
then true after running the inner loop. The termination is guaranteed by the fixed
number of m, and when all inverted lists are stored in τ . The invariant still remains
while τ stores the inverted lists from pattern p1 to pr−1 after running the inner loop.
By induction, the hypothesis is reached, and the correctness is proved. 2

Theorem 2. Generating the patterns {p1, p2, p3, . . . pr} to the inverted lists and
adding them into τ takes O(|P |) time where |P | is the sum of all pattern lengths.

Proof. The hypothesis is that all characters of {p1, p2, p3, . . . pr} are generated to
inverted lists, and they are added into τ . Referring to Algorithm 1, all pattern
lengths are denoted by |p1|, |p2|, |p3|, . . . , |pr|. For the initial step, the table τ is built
in O(1) time. Each round processes the inner loop to execute line 3 or line 8 until
they equal the length of each pattern. The summation is |p1|+ |p2|+ |p3|+ . . .+ |pr|
which equals |P |, and it reaches to the hypothesis step by the last character of pr.
Therefore the inverted lists are constructed in |P | time; this is called O(|P |) time
complexity. Meanwhile, lines 4, 5, and 7 access the table in O(1) by Lemma 1.
Hence, the preprocessing time is proved in O(|P |) time. 2

Theorem 3. Table τ requires O(|P |) space for accommodating whole inverted lists
of {p1, p2, p3, . . . pr} where |P | is the sum of pattern lengths.

Proof. The space is proved when all characters of P are generated to inverted lists
and are added into the table τ taking |P | space. The pattern lengths in P are |p1|,
|p2|, |p3|, . . . , |pr|, and each pi contains the sequence string {c1c2c3 . . . cm} which
has the length m. The length m is denoted by |pi|. For the initial step, the first
column of table τ is created for all patterns. Each inverted list is created by the
pre-processing phase for all patterns of P ; therefore, each inverted list of string
{c1c2c3 . . . cm} in each pi only takes one space per one list. Thus, the space is equal
to |p1|+ |p2|+ |p3|+ . . .+ |pr| = |P | for the second level of the perfect hashing table.
As mentioned earlier, the perfect hashing table required O(n) space to accommodate
the data items; hence, the space of τ is O(|P |). 2

3.3 Pattern Insertion

The method of pattern insertion is similar to that of the inner loop of Algorithm 1.
Let pφ be a new pattern which does not appear in τ , and contains the sequence
string {c1c2c3 . . . cm}. Then all inverted lists of pφ are generated and added into
the table as the pre-processing phase. This method is illustrated by Algorithm 2.
Theorem 4 shows the correctness of Algorithm 2, and Theorem 5 proves the time of
the individual pattern insertion.

Example 6. Assume there is the new pattern p4 = rap to be inserted into the
table τ of P = {ram, run, running}. In this case, all characters are formed to

908 Ch. Khancome, V. Boonjing

Algorithm 2: Pattern Insertion
Input: pφ = {c1c2, c3, . . . , cm}
Output: τ after insertion the inverted lists of c1c2, c3, . . . , cm
1. for j = 1 to m do
2. if ϕ

jφ
0 or ϕ

jφ
1 of pφ does not exist in τ then

3. τ ← ϕ
jφ
0 if j < m or τ ← ϕ

jφ
1 if j = m

4. else
5. Ichar(j)j,0 ← φ if j < m or Ichar(j)j,1 ← φ if j = m
6. end if
7. end for
8. return table τ

inverted lists as r : 〈1 : 0 : 4〉, a : 〈2 : 0 : 4〉, and p : 〈3 : 1 : 4〉. Then, the result is
r : 〈1 : 0 : {1, 2, 3,4}〉. Similarly, the character ′a′ can be generated and added in
a : 〈2 : 0 : {3,4}〉; but then the character ′p′ is a new character that does not exist
in the table. The inverted list of ′p′ is generated as p : 〈3 : 1 : {4}〉 by line 3.

Theorem 4. Let pφ = {c1c2, c3, . . . , cm} be the new pattern which is not contained
in the table τ . Algorithm 2 inserts the inverted lists of pattern pφ into the table τ
correctly.

Proof. Correctness of Algorithm 2 is proved when all inverted lists of pφ are added
into the existing table τ . Let τold be the table before adding the new pattern, and
let τnew be the table after adding the new pattern.

The pre-condition is that τold contains the inverted lists |P |, and the post-
condition is |P | + |pφ|(τnew). The invariants are 1 ≤ j ≤ m, and 1 ≤ i ≤ r for
j = 1 to j = m where m is the length of {c1c2, . . . , cm}. The proof is by induction
on j as the inner loop of Algorithm 1.

Obviously then, the pattern pφ is similar to the pattern pi in P . Algorithm 2 is
run as the inner loop of Algorithm 1. Therefore, the proof in the loop of Algorithm
2 is claimed as well. Also, the invariants remain because there is nothing to change
them. Hence, the post-condition is shown at cm, and τnew is shown. 2

Theorem 5. Inserting pφ = {c1c2, c3, . . . , cm}, which does not appear in the table
τ , takes O(|p|) where |p| is the length of pφ.

Proof. Algorithm 2 is referred to for straightforward proof. The length of pφ is m
and is denoted by |p|. The loop for reads all characters and converts them to the
inverted lists. Then each individual inverted list is added into τ one by one. This
loop creates the inverted lists from c1 to cm, and it takes m operations. Thus, O(|p|)
time is shown and then the hypothesis is also proved. The other lines (2,3,5) access
the table taking O(1) by Lemma 1. Therefore, to insert all characters of pφ into the
existing dictionary takes O(|p|) time. 2

A New Linear-Time Dynamic Dictionary Matching Algorithm 909

3.4 Pattern Deletion

Assume that pσ is the existing pattern in τ , and pσ is formed by the sequence
string {c1c2c3 . . . cm}. Then, all characters from pσ are read one by one, and each
inverted list is removed from the dictionary. For the mechanism of deletion, if
the corresponding inverted list exists in only one posting list, it will be deleted
immediately. Otherwise, only the inverted lists which the pattern number equals
to σ are deleted. The method is described by Algorithm 3.

Algorithm 3: Pattern Deletion
Input: pσ = {c1c2c3 . . . cm}
Output: τ after deletion the inverted lists of c1c2c3 . . . cm.
1. for j = 1 to m do
2. if the posting lists in Ichar(j)j,0 or Ichar(j)j,1 > 1 then

3. Delete ϕjσ0 if j < m or ϕjσ1 if j = m
4. else
5. Delete Ichar(j)j,0 if j < m or Ichar(j)j,1 if j = m
6. end if
7. end for
8. return table τ

An illustrative example is shown below, followed by the proof of correctness and
time complexity.

Example 7. Taking p = ram off P = {ram, run, running}. In this case, the target
pattern is 1, and all characters of ram are formed to r : 〈1 : 0 : {1}〉, a : 〈2 : 0 : {1}〉,
and m : 〈3 : 1 : {1}〉. Line 3 takes the inverted list of r : 〈1 : 0 : {2}〉 from
r : 〈1 : 0 : {1, 2, 3}〉; then the result is r : 〈1 : 0 : {2, 3}〉; but the inverted lists of
a : 〈2 : 0 : {1}〉 and m : 〈3 : 1 : {1}〉 are removed from the table by line 5.

Theorem 6. Deleting the existing pattern pσ = {c1c2, c3, . . . , cm} from the table τ
by Algorithm 3 is correct.

Proof. τ contains the inverted lists of P with the size |P |. Let τaft be the inverted
lists table after deleting the pattern pσ = {c1c2, c3, . . . , cm}, and the size of τaft be
|P | − |pσ| where σ is the pattern number which appears in the table. The proof
needs to show all inverted lists of {c1c2, c3, . . . , cm} that are removed from the table.
The pre-condition is that the pσ exists in table τ , and the post-condition is τaft . The
proposed invariant is 1 ≤ j ≤ m for j = 1 to j = m.

The proof is by induction on j. The base case is in j = 1 and the character c1 is
converted to the inverted list. Then, the inverted list ϕjσ0 is formed by line 3. The
proof needs to show both conditions of if . In the first case, if the number of posting
list c1 in the table is more than 1 then the number of ϕjσ0 is removed from τ . In the
second case, if there is only one inverted list in τ then Ichar(j)j,0 is removed by line 5.

910 Ch. Khancome, V. Boonjing

Thus, ϕjσ0 is removed from the table after the first iteration, and the size of the table
is decreased by 1. In both cases, the invariant 1 ≤ j ≤ m remains. According to
the fixed number of loops, the termination of loop is guaranteed by the value of m.

In the inductive step, the invariant needs to be true after the iteration of j =
m− 1. The character of cm−1 is created as ϕ

σm−1

0 . If the number of inverted lists of
cm−1 is more than 1 then the number of ϕ

σm−1

0 is removed from τ , and if there is only
one inverted list then Ichar(m−1)m−1,0 is removed. The invariant still remains. The
number of inverted lists in the table equals |P | − |pσ − 1| while 1 ≤ j ≤ m− 1 ≤ m
for j = 1 to j = m, and τaft is shown. By induction, the hypothesis is implied.
Therefore, Algorithm 3 is correct. 2

Theorem 7. Deleting the existing pattern pi from the dictionary P takes O(|p|)
time where pi is the target pattern to be deleted and |p| is the length of pattern pi.

Proof. Assume that pi is the existing pattern to be deleted, and pi is formed by the
sequence string {c1c2c3 . . . cm}. The length of pi is m and is denoted by |p|, and i is
the number of the pattern ith in P . The hypothesis is that all inverted lists of pi are
removed from the dictionary of P .

The process of deleting repeats to remove the inverted lists from c1 to cm. Each
operation for accessing the inverted list uses O(1) by Lemma 1. The operations
remove the matched inverted lists from the table one by one. All operations take
|p| time while line 3 or line 5 takes the constant time by Lemma 1. Thus, to delete
all characters of pattern pi from the dictionary P takes |p| which is O(|p|) time. 2

4 SEARCHING PHASE

Before describing the searching methodology in depth, this section refers back to the
basic definitions which are used for running the searching algorithm. Let N be the
target position in the given text to be compared; pos is the required position of the
inverted lists to be matched; and n is the length of the text T . In addition, SET1
and SET2 are the variables that are operated for continuity during the search.

Initially, the variables N pos , SET1, and SET2 are set to enforce the searching
window, and the variable pos is used to control the required position in the text T .
This search is based on reading from left to right along the text T . While reading,
the inverted lists that equal pos in the row of text[N] are taken to SET1 or SET2.
When considering continuity, the intersection (∩) is used for checking patterns in
SET1 and SET2.

The intersection between SET1 and SET2 finds a set of numbers in SET2 that
continue from SET1. Importantly, it reports the matched position whenever the
terminate status equals 1. The continuity is concentrated on the posting lists in
SET1 that are described by SET2. If the numbers of positing lists in SET2 are
superior to SET1, these are kept in SET1 for the next operation. For reporting the
occurrences, the indicated number ‘0’ or ‘1’ of SET1 is considered; if the indicated
number in SET1 is ‘1’ then the matched position is reported.

A New Linear-Time Dynamic Dictionary Matching Algorithm 911

In the case of the overlapping patterns, the inverted lists which are equal to
〈1 : 0 : {. . .}〉 must be attached to SET2 when accessing the inverted lists of any
positions. For instance, if the patterns are ‘ram’ and ‘amazing’, the inverted lists of
‘a’ are 〈2 : 0 : {1}〉 and 〈1 : 0 : {2}〉. In this case they are taken together when the
character ′a′ in the given text is scanned.

The algorithm, an illustrative example, the proofs of the correctness and the
time complexity are shown below.

Algorithm 4: Searching Algorithm
Input: P and T
Output: all occurrences are reported, and T is scanned.
1. N = 1pos = 1, SET1 = SET2 = null,RESULTS = {}
2. SET1← (IVL(text [N]), pos), N + +
3. while (N ≤ n) do
4. Store the matched position into RESULTS set if SET1 contains ϕpos

1

5. if SET1 <> null then
6. pos + +
7. SET2← (IVL(text [N]), pos or 1)
8. SET1← SET1 ∩ SET2
9. else
10. pos = 1
11. SET1← (IVL(text [N]), pos)
12. end if
13. N + +
14. end while
15. report all occurrences in RESULTS

Example 8. Searching P = {ram, run, running} in the given text T = run as run-
ning on ram by searching algorithm.

1. Initiate the variables N = 1, SET1 = SET2 = {}.
2. Skip to line 2 and SET1 = {〈1 : 0 : {1, 2, 3}〉}, and N = 2.

r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

3. Take the first loop of while, pos = 2, and SET2 = {〈2 : 0 : {1, 2, 3}〉}.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1← SET1 ∩ SET2 thus SET1 = {〈2 : 0 : {1, 2, 3}〉} and N = 3.

4. Skip to the next loop of while, pos = 3, SET2 = {〈3 : 1 : {1}〉, 〈3 : 0 : {2}〉}
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1 ← SET1 ∩ SET2 thus SET1 = {〈3 : 1 : {2}〉, 〈3 : 0 : {3}〉} and n is

912 Ch. Khancome, V. Boonjing

matched at 〈3 : 1 : {2}〉 in pattern 2. After matching report, set N = 4 and
SET1 = {〈3 : 0 : {3}〉}.

5. Skip to the next loop of while, pos = 4, and SET2 = {}
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

6. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 5.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

7. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 6.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

8. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 7.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

9. Skip to the next loop of while, and set pos = 2, SET2 = {〈1 : 0 : {1, 2, 3}〉}, and
N = 8.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

10. Skip to the next loop of while, and set pos = 2, SET2 = {〈2 : 0 : {1, 2, 3}〉}, and
N = 9.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1← SET1 ∩ SET2 thus SET1 = {〈2 : 0 : {1, 2, 3}〉} and N = 10.

11. Skip to the next loop of while, and set pos = 3, SET2 = {〈3 : 1 : {2}〉,
〈3 : 0 : {3}〉}, and N = 10.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1 ← SET1 ∩ SET2 thus SET1 = {〈3 : 1 : {2}〉, 〈3 : 0 : {3}〉} and n is
matched at 〈3 : 1 : {2}〉 in pattern 2. After matching report, set N = 11 and
SET1 = {〈3 : 0 : {3}〉}.

12. Skip to the next loop of while, and pos = 4, SET2 = {〈4 : 0 : {3}〉}, and N = 11.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1← SET1 ∩ SET2 thus SET1 = {〈4 : 0 : {3}〉} and set N = 12.

13. Skip to the next loop of while, and pos = 5, SET2 = {〈5 : 0 : {3}〉}, and N = 12.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1← SET1 ∩ SET2 thus SET1 = {〈5 : 0 : {3}〉} and set N = 13.

A New Linear-Time Dynamic Dictionary Matching Algorithm 913

14. Skip to the next loop of while, and pos = 6, SET2 = {〈6 : 0 : {3}〉}, and N = 13.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1← SET1 ∩ SET2 thus SET1 = {〈6 : 0 : {3}〉} and set N = 14.

15. Skip to the next loop of while, and pos = 7, SET2 = {〈7 : 1 : {3}〉}, and N = 14.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1 ← SET1 ∩ SET2 thus SET1 = {〈7 : 1 : {3}〉} and g is matched at
〈7 : 1 : {3}〉 in pattern 3. After matching report, set N = 15 and SET1 = {}.

16. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 15.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

17. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 16.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

18. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 17.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

19. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {}, and N = 18.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

20. Skip to the next loop of while, and it takes the condition of else that pos = 1,
SET1 = {〈1 : 0 : {1, 2, 3}〉}, and N = 19.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21. Take the first loop of while, pos = 2, and SET2 = {〈2 : 0 : {1}〉}, N = 20.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1← SET1 ∩ SET2 thus SET1 = {〈2 : 0 : {1}〉} and N = 21.

22. Take the first loop of while, pos = 2, and SET2 = {〈3 : 1 : {1}〉}, N = 22.
r u n a s r u n n i n g o n r a m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SET1 ← SET1 ∩ SET2 thus SET1 = {〈3 : 1 : {1}〉} and the matched position
is reported. Therefore, N = 22 and N > n, and the searching is finished.

Lemma 2. If SET1 and SET2 contain the inverted lists; then SET1 ← SET1 ∩
SET2 is correct.

914 Ch. Khancome, V. Boonjing

Proof. The correctness is that all inverted lists in ϕpos
0 or ϕpos

1 of SET2 which
continue from SET1 are returned and put into SET1. The pre-conditions are N ≥ 2,
and the inverted lists stored in SET1 and SET2. The post-condition is that all
inverted lists of ϕpos

0 or ϕpos
1 in SET2 which continue from SET1 are returned and

put into SET1.
The required position is pos , and the continuity is that all inverted lists ϕpos−1

0

or ϕpos−1
1 of SET1 are described by ϕpos

0 or ϕpos
1 in SET2. SET1 and SET2 contain

any Iλε,0 and/or Iλε,1 of the hashing set in Definition 3, and they are the second
level of the perfect hashing table. It can be said that every inverted list of SET2
must be inspected and compared with the inverted lists in SET1 by the properties
of intersection. Thus, the results are ϕpos

0 and/or ϕpos
1 and ϕ1

0. The post-condition
is then reached. 2

Theorem 8. Algorithm 4 is correct for searching P in the given text T .

Proof. The correctness is proved by the induction on n for t1 to tn. The proposed
invariants are 1 ≤ N ≤ n and 1 ≤ pos ≤ lmax.

Assume that line 1 and line 2 are true; then in the base case the variable N is
increased by 1 before getting to the while loop. This step needs to be proved in the
case of SET1 <> null and SET1 = null. Then if SET1 <> null the inverted lists
of text [N] are taken to SET2 and 1 ≤ pos ≤ lmax , the correctness is proved by the
intersection in Lemma 4.1. If SET1 = null, then the text [N] is taken to SET1 and
then after the end of this iteration 1 ≤ N ≤ n and 1 ≤ pos ≤ lmax . In both cases,
the invariants remain unchanged and thus this step is true. In the inductive step,
the iteration n− 1 needs to prove when the case of SET1 <> null. This algorithm
runs the variable n by the fixed number and then the iteration n − 1 is reached
and all iterations from t3 to tn−1 are true (by reporting the matched patterns in
line 4 which prove both the correctness and the pattern continuity). It can then be
claimed the iteration tn is true by induction and the algorithm is correct. 2

Lemma 3. The time complexity for taking any Iλε,0 and/or Iλε,1 from SET is O(1).

Proof. From Definition 5, SET1 or SET2 contains only one row of inverted lists;
also, both of them are the perfect hashing set. Thus, it implies O(1) time by their
hashing properties. 2

Lemma 4. If SET1 and SET2 contain the inverted lists then SET1 ∩ SET2 takes
O(1) time.

Proof. Let SET1 contain the inverted list groups Iλε1,0 and/or Iλε1,1. Let SET2
contain the inverted list groups Iλε2,0 and/or Iλε2,1. SET1 and SET2 are the per-
fect hashing set; then every operation can be solved in O(1) time using Lemma 3.
Therefore, every operation to access Iλε1,0, Iλε1,1,Iλε2,0, and Iλε2,1 also takes O(1)
time by Lemma 1. 2

Theorem 9. Searching the occurrences of P = {p1, p2, . . . , pr} which appear in the
given text T = {t1t2t3 . . . tn} takes O(n) time where n is the length of T .

A New Linear-Time Dynamic Dictionary Matching Algorithm 915

Proof. The proof is that all characters of t1t2t3 . . . tn are scanned, and all occur-
rences are reported in n time. Referring back to the searching algorithm, the time
complexity is dominated by the variables N , SET1, and SET2. The while loop
(line 3) is repeated to inspect the inverted lists of t2 to tn. Each iteration of the loop
definitely reports all occurrences in line 4 with O(1) by Lemma 4. It can be said
that the loops of line 3 take O(n) time because this step is processed from the initial
step to n time, and lines 5, 6, and 8 take a constant time by Lemma 3 and Lemma 4.
Therefore, the time complexity takes only O(n) time. Also, this algorithm is able
to perform in both an average case and a worst case scenario. 2

5 EXPERIMENTAL METHODS AND THEIR RESULTS

The sub-sections below begin to explain the implementation details, then the first
set of experiments shows the time and the space requirements of the inverted lists
structure. Furthermore, the searching times in several patterns and several given
text sizes are also presented.

5.1 Implementation

The experiments were performed on a Dell Vostro 3400 notebook with Intel(R)
CORE(TM) i5 CPU, M 560 @2.67 GHz, 4 GB of RAM, and running on Windows 7
Professional (32-bits) as an application machine.

Implementing data structures for pre-processing phase, Aho-Corasick Trie [1]
(named AC-Trie), Reverted Trie of SetHorspool(mentioned in [18]), and dynamic
Suffix tree [14] were implemented for comparing with the inverted lists structure.
In the searching phase, the searching algorithms of Aho-Corasick [1], SetHorspool
(mentioned in [18]), and inverted lists algorithm were implemented. Additionally,
the programs for randomize the pattern and the text were also implemented.

All of them were implemented in Java with JavaTM 2 SDK, Standard Edi-
tion Version 1.6.22 built in the Netbeans 6.9.1. The abstract data type (ADT) of
java.util.Vector was employed for accommodating all structures which were com-
pared. AC-Trie and Reverted-Trie structures were created by the special classes
to represent the nodes of Trie and Reverted-Trie, and then they were put into the
instances of java.util.Vector. Table τ was created by the java.util.Vector as well,
but each instance in the second level of the perfect hasing table (set of positions
and set of pattern numbers) was implemented by the java.util.HashTable and the
java.util.HashSet structure respectively. For the new proposed algorithm, the vari-
ables SET1 and SET2 were also implemented by java.util.HashTable; as well as,
all results were kept in the instances of java.util.ArrayLists.

The data tests of |∑ | were the 52 letters of the English alphabet; ‘A’ to ‘Z’
and ‘a’ to ‘z’. The pattern lengths were randomized from 3 to 20 characters, and
the average length was 12 characters. The proposed numbers of patterns were
10; 100; 1 000; 10 000; 50 000; and 100 000 and 300 000 (only for the inverted lists

916 Ch. Khancome, V. Boonjing

algorithm). Each of the pattern numbers was randomly built in 10 files. The texts
were randomized from the size of 1 KB, 10 KB, 100 KB, 1 MB, 5 MB, and 10 MB.
Also, each of the text sizes was performed in 10 files as well.

For pre-processing tests, each file in each group was read and generated to the
data structures one by one. Then the processing time of each file was captured in
nano-seconds. Afterwards, each file was built again and both the data structure
and the memory usage was captured in Kilo-Bytes. Performing the searching ex-
periments, every pattern file was paired with each text file. For instance, the first
file of 10 patterns was paired by the first file of 1 KB, the second file of 10 patterns
was paired by the second file of 1 KB, and the other cases were performed in the
same way. When the search in each pair of pattern and text size completed, the
processing time in nano-seconds was captured. Then, when the 10 pairs of each
group of text finished processing, the average time was given.

5.2 Pre-Processing Results

The inverted lists structure was constructed faster and used smaller space than
the earlier structures (Aho-Corasick [1] called AC-Trie, SetHorspool in [18] called
Reverted-Trie, and the suffix tree[14]).

The inverted lists structure takes the shorter average time than AC-Trie 3.75
folds, the Reverted-Trie 2.33 folds, and the suffix tree 15.69 folds. The resulting
details are shown in Table 2, which converts the nano-time to the seconds where ‘–’
means the data structure could not construct (out of the Java heap memory).

Then, the inverted lists structure used less average space than the AC-Trie
18.42%, the Reverted-Trie 20.05 %, and the sufffix tree 92.38 %. In the case of
pattern numbers above 1 000, the suffix tree could not create the structure because
our computer was out of heap memory in Java while generating the structure. The
results are shown in Table 3.

patterns AC-Trie Reverted-Trie Suffix Tree Inverted Lists

10 0.161 0.095 0.154 0.030
50 0.152 0.201 0.235 0.113

100 0.401 0.466 0.467 0.278
500 0.566 0.710 19.276 0.351

1 000 1.023 1.905 708.274 0.767
5 000 10.791 8.001 – 5.519

10 000 45.431 20.728 – 6.918
50 000 532.518 110.561 – 43.623

100 000 3 598.131 5 745.879 – 851.156
300 000 – – – 1 132.651

Table 2. Processing time (seconds)

A New Linear-Time Dynamic Dictionary Matching Algorithm 917

patterns AC-Trie Reverted-Trie Suffix Tree Inverted Lists

10 4.71 4.93 24.88 4.56
50 4.82 4.96 48.35 4.81

100 4.90 5.10 896.11 4.890
500 5.59 5.67 2 512.46 5.12

1 000 6.21 6.29 – 5.33
5 000 11.10 11.22 – 7.56

10 000 15.83 16.13 – 9.84
50 000 54.57 55.11 – 23.36

100 000 155.84 131.14 – 47.631
300 000 – – – 169.584

Table 3. Memory usages (KB)

5.3 Searching Results

The searching times of the inverted lists algorithm (represented by IVL) were more
efficient than the SetHorspool algorithm (represented by HP) in average, but took
a longer time than the Aho-Corasick (represented by AC). In the case of small
pattern numbers and small text sizes, the inverted lists algorithm took an almost
equal searching time to that of Aho-Corasick.

In the case of the large pattern numbers and the large text sizes, the proposed
algorithm took an almost similar time to SetHorspool in some cases. It should also
be noticed that the bottleneck of our algorithm occurs if there are a large number of
patterns, in which case then the inverted lists break into serveral groups. Although
the intersection can be operated one time per each intersection, it needs the time
to analyze the sequence of continuity and the time to check the matching positions.
These two points need the time to process and then the searching times are longer
than the static algorithms such Aho-Corasick [1] which compares only once per
character.

The following tables (4 to 9) show the experimental results which are crossed
by the text sizes 1 KB, 10 KB, 100 KB, 1 MB, 5 MB and 10 MB; and the pattern
numbers 10; 50; 100; 500; 1 000; 5 000; 10 000; 50 000; 100 000 and 300 000 (only the
inverted lists algorithm).

6 DISCUSSIONS AND SUGGESTIONS

This section describes the advantages of the inverted lists structure, opening the
research how to improve the inverted lists structure, and suggestions on how to
apply this structure to other matching principles.

The primary advantage of the inverted lists structure is that the expected pattern
to be matched can be reported over time because this structure keeps the positions
and the numbers of patterns. Then the searching results are based not only on yes
or no answers, but can also report all numbers and patterns to be matched over

918 Ch. Khancome, V. Boonjing

patterns AC HP IVL

10 0.011 0.045 0.040
50 0.018 0.102 0.042

100 0.020 0.134 0.045
500 0.017 0.201 0.147

1 000 0.039 0.212 0.165
5 000 0.042 0.186 0.167

10 000 0.033 0.165 0.159
50 000 0.029 0.734 0.393

100 000 0.038 0.817 0.498
300 000 – – 0.987

Table 4. Searching time (seconds) in the given 1 KB text

patterns AC HP IVL

10 0.066 0.200 0.098
50 0.102 0.755 0.168

100 0.104 1.574 0.141
500 0.112 1.698 0.365

1 000 0.120 1.733 1.001
5 000 0.161 1.695 1.576

10 000 0.210 1.889 1.301
50 000 0.705 2.034 1.696

100 000 1.667 2.701 2.019
300 000 – – 3.089

Table 5. Searching time (seconds) in the given 10 KB text

time. In contrast, the traditional data structures mentioned in Sections 1 and 2 are
not able to handle this aspect because they need to access by sequencing the root
of structures.

Considered by the type of each window search, Navarro and Raffinot [16] di-
vide the searching approach to prefix approach (comparing from left to right), suffix
approach (comparing from right to left), and factor approach (comparing by cal-
culating the special positions). Then the inverted lists structure is unsequenced to
access and compare the characters in the target text. Thus, the target text can be
scanned by all mentioned approaches. Moreover, a parallel approach (simultaneous
access) could be applied on this structure.

For suggestions, the inverted lists structure could improve the space by grouping
or compressing the lists of the pattern sets. For instance, if the pattern numbers
are connected in the sequence such as 〈1 : 0 : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}〉, they can be
grouped as 〈1 : 0 : 1−10〉. Furthermore, this structure could be applied to solve other
problems such as approximate matching, regular search, two-dimensional matching,
pattern recognition, text indexing and so on.

A New Linear-Time Dynamic Dictionary Matching Algorithm 919

patterns AC HP IVL

10 0.301 1.272 1.004
50 0.554 8.012 1.621

100 0.588 13.101 1.589
500 0.634 17.892 4.984

1 000 0.579 15.605 7.312
5 000 1.405 18.243 6.988

10 000 1.464 19.454 9.002
50 000 2.185 20.798 10.102

100 000 4.387 25.391 15.235
300 000 – – 20.680

Table 6. Searching time (seconds) in the given 100 KB text

patterns AC HP IVL

10 3.143 24.231 23.623
50 6.286 108.732 30.380

100 5.012 131.076 29.766
500 7.501 155.205 45.291

1 000 7.003 190.532 46.665
5 000 26.784 175.989 49.571

10 000 58.860 179.859 51.651
50 000 90.725 249.101 94.290

100 000 102.198 321.761 134.872
300 000 – – 356.712

Table 7. Searching time (seconds) in the given 1 MB text

7 CONCLUSION AND PLANNED FUTURE WORKS

A linear time dynamic dictionary matching algorithm, which improves the approach
presented in [12], is proposed. This solution adapts the linear time static dictionary
matching [30], and especially the inverted lists structure for accommodating the
dynamic dictionary. The inverted lists structure is implemented by the perfect
hashing table, and it is constructed in optimal time. Furthermore, it is able to
insert or delete an individual pattern in minimal time. In theoretical results, this
solution takes (1) O(|P |) time for pre-processing where |P | is the sum of all pattern
lengths, (2) O(|p|) time for inserting or deleting the pattern where |p| is the length
of pattern to be inserted or deleted, and (3) O(n) time for searching in an average
and a worst case scenario where n is the length of the given text. In experimental
results, the inverted lists structure takes less time and space than the traditional
structures; and, the searching time is processed in a linear time. In near future, we
will reduce the table space and create the dynamic dictionary matching algorithm
using the suffix approach and the factor approach for improving the time complexity.

920 Ch. Khancome, V. Boonjing

patterns AC HP IVL

10 15.118 103.881 98.612
50 30.889 400.266 126.493

100 31.997 766.786 136.431
500 35.150 804.195 139.498

1 000 42.807 869.241 153.521
5 000 129.047 900.480 161.541

10 000 156.598 905.586 213.094
50 000 201.003 1 521.231 300.691

100 000 302.677 1 941.345 341.861
300 000 – – 399.765

Table 8. Searching time (seconds) in the given 5 MB text

patterns AC HP IVL

10 40.907 250.583 189.778
50 69.397 882.667 287.018

100 72.976 1 534.896 291.781
500 85.781 1 688.574 320.745

1 000 89.481 2 457.665 331.905
5 000 290.882 2 561.901 348.921

10 000 316.175 2 551.012 449.005
50 000 452.236 2 631.422 631.448

100 000 649.133 2 752.843 739.094
300 000 – – 876.339

Table 9. Searching time (seconds) in the given 10 MB text

Also, the approximate matching algorithm is being developed by the inverted lists
structure.

REFERENCES

[1] Aho, A. V.—Corasick, M. J.: Efficient String Matching: An Aid to Bibliographic
Search. Comm. ACM, 1975, pp. 333–340.

[2] Amir, A.—Farach, M.: Adaptive Dictionary Matching. In Proc. of the 32nd IEEE
Annual Symp. on Foundations of Computer Science, 1991, pp. 760–766.

[3] Amir, A.—Farach, M.—Idury, R. M.—La Poutré, J. A.—Schaffer, A. A.:
Improved Dynamic Dictionary-Matching. In Proc. 4nd ACM-SIAM Symp. on Discrete
Algorithms 1993, pp. 392–401.

[4] Amir, A.—Farach, M.—Galil, Z.—Giancarlo, R.—Park, K.: Dynamic Dic-
tionary Matching. Journal of Computer and System Science, Vol. 49, 1994, No. 2,
pp. 208–222.

A New Linear-Time Dynamic Dictionary Matching Algorithm 921

[5] Amir, A.—Farach, M.—Idury, R. M.—La Poutré, J. A.—Schffer, A. A.:
Improved Dynamic Dictionary Matching. Information and Computation, Vol. 199,
1995, No. 2, pp. 258–282.

[6] Amir, A.—Landau, G. M.—Lewenstein, M.—Sokol, D.: Dynamic Text and
Static Pattern Matching. ACM Transactions on Algorithms, Vol. 3, 2007, No. 2,
Article 19, pp. 1–24.

[7] Botelho, F. C.: Near-Optimal Space Perfect Hashing Algorithms. Ph. D. thesis,
Federal University of Minas Gerais, Brazil.

[8] Chan, H.-L.—Hon, W.-K.—Lam, T.-W.—Sadakane, K.: Dynamic Dictionary
Matching and Compressed Suffix Trees. SODA ’05: Proceedings of the Sixteenth
Annual ACM-SIAM ymposium on Discrete Algorithms 2005, pp. 13–22.

[9] Commentz-Walter, B.: A String Matching Algorithm Fast on the Average. In
Proceedings of the Sixth International Collegium on Automata Languages and Pro-
gramming 1979, pp. 118–132.

[10] Gongshen, L.—Jianhua, L.—Shenghong, L.: New Multi-Pattern Matching
Algorithm. Journal of Systems Engineering and Electronics, Vol. 17, 2006, No. 2,
pp. 437–442.

[11] Hong, Y. D.—Ke, X.—Yong, C.: An Improved wu-Manber Multiple Patterns
Matching Algorithm. 25th IEEE International Conference on Performance Computing
and Communications (IPCCC) 2006, pp. 675–680.

[12] Khancome, C.—Boonjing, V.: Dynamic Dictionary Matching Using Inverted
Lists. Proceeding of the Third IASTED International Conference Advances in Com-
puter Science and Technology (ACST 2007), pp. 397–401.

[13] Knuth, D. E.—Morris, J. H.—Pratt, V. R.: Fast Pattern Matching in Strings.
SIAM Journal on Computing, Vol. 6, 1997, No. 1, pp. 323–350.

[14] McCreight, E. M.: A Space-Economical Suffix Tree Construction Algorithm. Jour-
nal of Algorithms, Vol. 23, 1976, No. 2, pp. 262–272.

[15] Melnik, S.—Raghavan, S.—Yang, B.—Garcia-Molina, H.: Building a Dis-
tributed Full-Text Index for the Web. ACM Transactions on Information Systems,
Vol. 19, 2001, No. 3, pp. 217–241.

[16] Moffat, A.—Zobel, J.: Self-Indexing Inverted Files for Fast Text Retrieval. ACM
Transactions on Information Systems, Vol. 14, 1996, No. 4, pp. 349–379.

[17] Monz, C.—de Rijke, M.: Inverted Index Construction (2002), Availaible
on: http://staff.science.uva.nl/~christof/courses/ir/transparencies/

clean-w-05.pdf.

[18] Navarro, G.—Raffinot, M.: Flexible Pattern Matching in Strings. The Press
Syndicate of The University of Cambridge 2002.

[19] Pagh, R.: Hash and Displace: Efficient Evaluation of Minimal Perfect Hash Func-
tions. 2009, availaible on: www.it-c.dk/people/pagh/papers/hash.pdf.

[20] Sahinalp, S.—Vishkin, U.: Efficient Approximate and Dynamic Matching of Pat-
terns Using a Labeling Paradigm (Extended Abstract). In 37th Annual Symposium
on Foundations of Computer Science 1996, pp. 320–328.

922 Ch. Khancome, V. Boonjing

[21] Salmela, L.—Tarhio, J.—Kytöjoki, J.: Multipattern String Matching with
Q-Grams. ACM Journal of Experimental Algorithmics (JEA), Vol. 11, 2006, Article
No. 1.1, pp. 1–19.

[22] Sleator, D. D.—Tarjan, R. E.: A Data Structure for Dynamic Trees. Journal of
Computer and System Sciences, Vol. 26, 1983, No. 3, pp. 362–391.

[23] Weiner, P.: Linear Pattern Matching Algorithms. In Proceedings of Symposium on
Switching and Automata Theory 1973, pp. 1–11.

[24] Knuth, D. E.: The Art of Computer Programming, Volume 3. Addison-Wesley
Publishing Company 1973, pp. 506–549.

[25] Wu, S.—Manber, U.: A Fast Algorithm for Multi-Pattern Searching. Report tr-
94-17, Department of Computer Science, University of Arizona, Tucon, AZ 1994.

[26] Yates,R. B.—Neto, B. R.: Modern Information Retrieval. The ACM Press – A Di-
vision of the Association for Computing Machinery, Inc., 1999, pp. 191–227.

[27] Zäıane, O. R.: CMPUT 391: Inverted Index for Information Retrieval. University
of Alberta 2001.

[28] Zobel, J.—Moffat, A.: Inverted Files Versus Signature Files for Text Indexing.
ACM Transaction on Database Systems, Vol. 23, 1998, No. 4, pp. 453–490.

[29] Zobel, J.—Moffat, A.: Inverted Files for Text Search Engines. ACM Computing
Surveys, Vol. 38, 2006, No. 2, pp. 1–56.

[30] Khancome, C.—Boonjing, V.: Optimal Linear-Time Multi-String Pattern Match-
ing Algorithm. International Journal of Computational Science, Vol. 3, 2009, No. 6,
pp. 629–641.

[31] Khancome, C.—Boonjing, V.: Inverted Lists String Matching Algorithms. In-
ternational Journal of Computer Theory and Engineering, Vol. 2, 2010, No. 3,
pp. 1793–8201.

[32] Ćisar, P.—Bošnjak, S.—Maravić Ćisar, S.: EWMA Based Threshold Algo-
rithm for Intrusion Detection. Computing and Informatics, Vol. 29, 2010, No. 6+,
pp. 1089–1101.

[33] Lu, P.—Che, YWang, Z.: UMDA/S: An Effective Iterative Compilation Algo-
rithm for Parameter Search. Computing and Informatics, Vol. 29, 2010, No. 6+,
pp. 1159–1179.

[34] Makula, M.—Beňušková, L.: Interactive Visualisation of Oligomer Frequency in
DNA. Computing and Informatics, Vol. 28, 2009, No. 5, pp. 695–710.

[35] Hu, Y.—Wang, P.-F.—Hwang, K.: A Fast Algorithm for Multi-String Matching
Based on Automata Optimization. C2010 2nd International Conference on Future
Computer and Communication, Vol. 2, 2010, pp. 379–383.

[36] Askitis, N.—Zobel, J.: Redesigning the String Hash Table, Burst Trie, and BST
to Exploit Cache. ACM Journal of Experimental Algorithmics, Vol. 15, 2011, No. 1,
Article 1.7, pp. 1–61.

[37] Belazzougui, D.: Worst Case Efficient Single and Multiple String Matching in the
RAM Model. 21st International Workshop on Combinatorial Algorithms (IWOCA
2010), LNCS 6460, pp. 90–102.

A New Linear-Time Dynamic Dictionary Matching Algorithm 923

[38] Haapasalo, T.—Silvasti, P.—Sippu, S.—Soisalon-Soininen, E.: Online Dic-
tionary Matching with Variable-Length Gaps. 10th International Symposium on Ex-
perimental Algorithms (SEA 2011), LNCS 6630, pp. 76–87.

[39] Kuruppu, S.—Beresford-Smith, B.—Conway, T.Zobel, J.: Iterative Dictio-
nary Construction for Compression of Large DNA Data Sets. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, Vol. 9, 2012, No. 1, pp. 137–149.

[40] Jin Kim, H.—Kim, H.-S.—Kang, S.: A Memory-Efficient Bit-Split Parallel String
Matching Using Pattern Dividing for Intrusion Detection Systems. IEEE Transactions
on Parallel and Distributed Systems, Vol. 22, 2011, No. 11, 2011, pp. 1904–1911.

[41] Dai, L.—Xia, Y.: A Lightweight Multiple String Matching Algorithm. Interna-
tional Conference on Computer Science and Information Technology (ICC-SIT’08),
Singapore 2008, pp. 611–615.

Chouvalit Khancome is a lecturer in Department of Computer Science, Faculty of
Science and Technology, Rajanagarindra Rajabhat University. Also, he is the researcher
in Computer Science and Informatics Laboratory of this department. His research ar-
eas include text compression, string matching, multiple string matching, and dictionary
matching. He received the B. Sc. degree in computer education from Mahasarakam Ra-
jabhat University, Thailand, the M. Sc. degree in computer science from King Mongkut’s
Institute of Technology, Ladkrabang, Thailand, and the Ph. D. degree in computer science
from King Mongkut’s Institute of Technology, Ladkrabang, Thailand.

Veera Boonjing is a Professor of Computer Science at the Department of Computer
Science, Faculty of Science, KMITL, Thailand. He received the B. Sc. degree in mathe-
matics from Ramkhamhaeng University, Thailand, the M. Sc. degree in computer science
from Chulalongkorn University, Thailand, and the Ph. D. degree in decision sciences and
engineering systems from Rensselaer Polytechnic Institute, USA.

