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Abstract. This paper presents a study on a rule induction application for ge-
nerating an agent strategy. It is a new approach in multi-agent systems, where
reinforcement learning and evolutionary computation is broadly used for this pur-
pose. Experimental results show that rule induction improves agent performance
very quickly. What is more, rule-based knowledge representation has many advan-
tages. It is comprehensive and clear. It allows for the examination of the learned
knowledge by humans. Because of modularity of the knowledge, it also allows for
the implementation of the knowledge exchange in a natural way – only necessary
set of rules can be sent. Rule induction is tested in two domains: Fish Banks
game, in which agents run fishing companies and learn how to allocate ships, and
Predator-Prey domain, in which predator agents learn how to capture preys. The
proposed learning mechanism should be beneficial in all domains, in which agents
can determine the results of their actions.
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1 INTRODUCTION

Decentralized problem solving is a method to deal with complexity. One of the ar-
chitectures, which can be used for such a purpose is multi-agent system. In complex
or changing environments it is very difficult, sometimes even impossible, to design
all system details a priori. To overcome this problem one can apply a learning
algorithm, which allows for the adoption of the system to the environment.

To use machine learning techniques in a multi-agent system, one should choose
a specific method of learning, which fits well to the problem. There are many
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algorithms developed so far. However, in multi-agent systems most applications use
reinforcement learning or evolutionary computations. The goal of our research is to
check if another method – rule induction – can also be used for strategy generation.

For reinforcement learning feedback from the environment rating the last action
executed is sufficient to learn the strategy. A similar situation is for evolution-
ary computation. In the contrast, rule induction is a supervised learning method;
therefore, it needs training data in a form of labeled examples to generate the knowl-
edge.

Fortunately, the learning agent is able to generate training data using its expe-
rience. The condition is that the agent should be able to determine the impact of
the action chosen for execution in a given state to its goal(s) and determine which
actions are good and which are bad. Actions which have good performance in a given
state are used as positive examples, and actions with poor performance as negative
ones. If the results of actions performed by the agent are visible immediately, and
the agent is able to determine their impact, the situation is clear. In such cases
inductive learning can be applied directly. It may be the case in relatively simple
environments, like ones tested in this research. Also, it may be used by a complex
agent for generating strategy for a part of its responsibility for which it is applicable.
This defines the class of problems in which the agent is able to use rule induction
to directly define its strategy in a way described here.

Agent strategy can be generated in a similar way not only by using rule induc-
tion but also using any supervised learning method. However, rule-based knowledge
representation has several advantages, especially if rules are unordered. Rules seem
to correspond to a human way of thinking very well [16, 14]. Therefore, it is possible
to understand and verify generated knowledge. Modularity of this knowledge repre-
sentation allows for an exchange of the knowledge in a simple way. If an agent has
no idea what to do in a given situation, it may ask another agent for an appropriate
rule, describing the situation if necessary. The rule obtained can be stored in the
agent’s knowledge base for a future use to eliminate communication needs in the
future.

In this research, we make the following contribution: rule induction can be used
for efficient strategy generation instead of reinforcement learning and evolutionary
computation, rules produced are more readable, and learned knowledge can be easily
exchanged between agents.

The following two application domains are used to test this idea: Fish Banks
game, in which agents run fishing companies and have to decide where to fish, and
Predator-Prey domain, in which agents are predators and learn how to catch a prey.
This work is an extension of two conference papers about rule induction in Fish
Banks game [22] in which supervised learning and reinforcement learning methods
are applied to generate strategy in a this game, and [23] describing the results of
rule induction application in Predator-Prey domain.

In the following section, related research is presented. Next, learning agent
architecture is explained. The following section describes Fish Banks and Predator-
Prey domains. Experimental results and their analysis conclude the work.
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2 LEARNING IN MULTI-AGENT SYSTEMS

The most popular learning technique in multi-agent systems is reinforcement learn-
ing, which allows us to learn agent strategy: what action should be executed in
a given situation. Other techniques can be also applied: neural networks, models
coming from game theory as well as optimization techniques (like the evolutionary
approach, tabu search, etc.). However, optimization techniques improve perfor-
mance of the system using many populations of agents instead of a single agent
experience, and should be considered as a separate class of algorithms.

A typical example of domain used in works on learning in multi-agent systems
is Predator-Prey environment. In [27] the solution using reinforcement learning
in this domain is presented. Predator agents use reinforcement learning to learn
a strategy minimizing the time to catch a prey. Additionally, agents can cooperate
by exchanging sensor data, strategies, or episodes. Experimental results show that
cooperation is beneficial. Other researchers working on this domain successfully
apply genetic programming [8] and evolutionary computation [6].

There is a large number of other works using reinforcement and evolutionary
learning strategies. A good survey can be found in [17] and [19].

There is only a small number of works known to the author on supervised learn-
ing in multi-agent systems. They are presented below because they are closely
related to the proposed learning mechanism.

Rule induction is used in multi-agent solutions for vehicle routing problems [5].
However, in this work learning is done off-line. First, rules are generated by the AQ
algorithm (the same as used in this work) from traffic data. Next, agents use these
rules to predict traffic.

Airiau et al. [1, 20] add learning capabilities to the BDI model. Decision tree
learning is used to support plan applicability testing. Each plan has its own decision
tree to test if it may be used in a given context. As a result, plans may be modified
by providing additional conditions limiting its applicability. Knowledge learned has
an indirect impact on the agent strategy because it has influence on probability of
choosing plans for execution.

There are several works in wich Inductive Logic Programming (ILP) is applied.
A good background paper considering machine learning and especially ILP for multi-
agent systems is [9]. Rule induction (the subject of this paper) can be considered
as a special case of ILP, where simple logic program defining one predicate only is
learned. ILP shows its advantage over classical rule induction in complex domains,
whereas most multi-agent applications are relatively simple (see conclusions of [9]).
Therefore, rule induction seems to be enough in most cases.

It is also possible to combine several learning techniques in one agent. In [26]
agents use reinforcement learning in a Vehicle Routing problem. Rule induction
is used to decrease the size of the search space for reinforcement learning. If it is
possible to learn a classifier for several attributes, these attributes can be replaced
by a single value representing the class, which makes the space smaller.
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Comparison of various learning strategies can be found in [24]. The paper
presents a Farmer-Pest domain, which is especially designed for learning agent
benchmarking. Every agent controls a farmer that supervises multiple fields. Seve-
real types of pests can appear on each field, and the farmer should execute an action
which is appropriate for the pest type. Each pest is described by a set of attributes
(e.g. number of legs, color) which are visible to the agent, while the pest type is
hidden. Therefore, agents have to learn how to assign an action to the observed
conditions represented by the attributes. In the paper agents using reinforcement
learning (SARSA) are compared with those using supervised learning algorithms
(Näıve Bayes, C4.5 and RIPPER).

3 LEARNING AGENT ARCHITECTURE

In this section we present learning agent architecture, which is general and fits
various learning strategies. It is presented in Figure 1. Agent consists of four
modules:

Processing Module which is responsible for basic agent activities, storing training
data, executing learning process, and using learned knowledge.

Learning Module which is responsible for the execution of learning algorithms
and giving answers for problems with the use of learned knowledge.

Training Data which is a storage for examples used for learning.

Generated Knowledge which is a storage for learned knowledge.

Figure 1. Learning agent architecture

These components interact in the following way. Processing Module receives
Percepts from the environment. It may process them and execute Actions. If the
learned knowledge is needed during processing, the module formulates a Problem and
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sends it to the Learning Module, which generates an Answer for the Problem using
Generated Knowledge. Processing Module also decides what data should be stored
in the Training Data storage. When necessary (e.g. periodically, or when Training
Data contains many new examples) it executes a learning algorithm in the Learning
Module to generate new knowledge from Training Data. Learned knowledge is stored
in the Generated Knowledge base.

Details of the components are domain-specific. In the context of this paper, the
learning module is most interesting. It may be defined as a four-tuple: (Learning
Algorithm, Training Data, Problem, Answer). Characteristics of the training data,
the problem and the answer depend on the learning strategy used in the learning
module. It makes the choice of the Learning Algorithm the most important.

Two types of learning modules have been developed and tested so far: the
reinforcement learning module and the inductive rule learning module, although
other learning methods can also be used. Below the learning modules for three
types of popular learning strategies are characterized. Basic information about these
learning strategies is reminded to show how they fit to the proposed architecture.

3.1 Reinforcement Learning

The most popular learning method in multi-agent systems is reinforcement learning.
In this method, an agent gets a description of the current state and using its current
strategy chooses an appropriate action from a defined set. The action is executed
and a reward from the system is received. Next, the agent updates its strategy using
a reward from the environment and the next state description. Several methods of
choosing the action and updating the strategy have been developed so far. For
example, in Q-learning developed by Chris Watkins [28] the action with the highest
predicted value (Q) is chosen. Q is a function that estimates the value of the action
in a given state:

Q : A×X → R, (1)

where A is a set of actions, X is a set of possible states, and R is a set of real
numbers. Q function is updated after action execution:

Q(a, x) := Q(a, x) + β∆ (2)

∆ = γQmax + r −Q(a, x) (3)

Qmax = max
a
Q(a, x′) (4)

where x, x′ ∈ X are subsequent states, a ∈ A is an action chosen, r is a reward
obtained from the environment, γ ∈ [0, 1] is a discount rate (importance of the
future rewards), and β ∈ (0, 1) is a learning rate. Various techniques are used to
prevent getting into a local optimum. The idea is to explore the solution space better
by choosing not optimal actions from time to time (e.g. random or not performed
in a given state yet).
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A reinforcement learning module can be responsible for managing all the agent
activities or only a part of it (it can be activated in some type of states or can be
responsible for selected actions only). The Problem definition is a description of the
current state. The Answer is an action chosen using the current strategy (current
Q function). Training data consists of the next state description (after executing
action returned by the module), and of a reward. The reward may be observed by
the agent or may be calculated by the processing module using some performance
measures. Generated Knowledge is a Q function representation. It may be a simple
table or a complex function approximator (e.g. a neural network).

3.2 Supervised Learning

Generally, supervised learning allows us to generate an approximation of a function
f : X → C which assigns labels from the set C to objects from set X. To generate
knowledge a supervised learning algorithm needs labeled examples which consist of
pairs of f arguments and values. Let us assume that elements of X are described
by a set of attributes A = (a1, a2, . . . , an), where ai : X → Di. Therefore xA =
(a1(x), a2(x), . . . , an(x)) is used instead of x. If the size of C is small, like in this
research, the learning is called classification, C is set of classes, and h is called
classifier.

The supervised learning module gets a Training data, which is a set {(xA, f(x))},
and generates hypothesis h, which is stored in the Generated Knowledge. Problem
is a xA, and the Answer is h(xA).

There are several supervised learning methods. They use various hypothesis
representations, and various methods of hypothesis construction. One of the most
popular classification algorithms is C4.5, an inductive decision tree learning algo-
rithm developed by Ross Quinlan [18]. C4.5 uses decision trees to represent h. The
basic idea of learning is as follows. The tree is learned from examples recursively. If
(almost) all examples in the training data belong to one class, the tree consisting of
the leaf labeled by this class is returned. In the other case, the best attribute for the
test in the root is chosen (using an entropy measure), training examples are divided
according to the selected attribute values, and the procedure is called recursively for
every attribute test result with the rest of the attributes and appropriate examples
as parameters.

Another learning algorithm with a broad range of abilities, which was used
in the implemented system is AQ. It was developed by Ryszard Michalski [15].
Its subsequent versions are still being developed. This algorithm also generates
classifier from the training data, but h is represented by a set of rules which have
tests on attribute values in the premise part, and a class in a conclusion. Rules are
generated using sequential covering: the best rule (e.g. giving a good answer for the
most examples) is constructed by a beam search, examples covered by this rule are
eliminated from a training set, and the procedure repeats. In order to learn a rule
for specific class AQ starts with one example of this class which is called a seed.
It generates a star which is a set of maximally general rules covering the seed and



Agent Strategy Generation by Rule Induction 1061

not covering any examples from other classes. This is done by repeating of the seed
description generalization along successive attributes. Results of generalizations
are intersected and the best rules are selected according to specified criteria. In
this research off-the-shelf AQ21 program is used [29] and no modifications to the
learning algorithm are made.

Other methods, using different knowledge representation, such as support vector
machines, Bayesian or instance-based models also fit the above specification. Simi-
larly, learning modules using artificial neural networks for classification or function
approximation have the same input and output.

What is important, in the case of supervised learning, the processing module
should provide a proper function value f(x) for examples in the training data. If
we are not able to provide this, inductive learning can not be used. However,
if an agent has at least some qualitative information about f(x) for given xA (it
can say if it is good or bad), it can use this information as a label and can build
a classifier. Details of this work-around on a specific example can be found in
Section 4.2.

3.3 Unsupervised Learning

In unsupervised learning the task of the learning module is to organize examples into
groups called clusters, whose members are similar in a way. Examples of this strategy
are Kohonen neural networks and clustering. Training data have a form of example
descriptions {xA}, without any label. The Problem is an example description xA,
and the Answer is the example’s cluster identifier. Generated Knowledge stores
neural network data or clusters definitions. This learning strategy is not commonly
used in multi-agent systems.

4 FISH BANKS GAME

The Fish Banks game is originally designed for teaching people of effective cooper-
ation in using natural resources [13]. It also may be applied as an environment for
multi-agent simulations [10, 25].

The game is a dynamic environment providing resources, action execution pro-
cedures, and time flow represented by game rounds. Each round consists of the
following steps: ships and money update, ship auctions, trading session, ship or-
ders, ship allocation, fishing, and fish number update.

Agents represent players that manage fishing companies. Each company aims at
collecting maximum assets expressed by the amount of money deposited at a bank
account and the number of ships. The company earns money by fishing at fish banks.
The environment provides two fishing areas: a coastal and a deep sea ones. Agents
can also keep their ships at the port. The cost of deep sea fishing is the highest. The
cost of staying at the port is the lowest but such ships do not catch fish. Initially,
it is assumed that the number of fish in both banks is close to the bank’s maximum
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capacity. During the game the number of fish in every bank changes according to
the following equation:

ft+1 = ft + bft

(
1− ft

fmax

)
− Ct, (5)

where ft is a fish number at a time t, b is a birth rate (0.05 value was used in
experiments), fmax is a maximum number of fish (equal to 4 000 for the deep sea,
and 2 000 for the coastal area), Ct = nct is a total fish catch: n is a number of ships
of all players sent to the bank, and ct is a fish catch for one ship at the time t:

ct = cmaxwt

√
ft
fmax

, (6)

where cmax is a maximum catch (equal to 25 for the deep sea, and 15 for the coastal
area), and wt is a weather factor at a time t, which is a random number between 0.8
and 1.0.

Initially, f1 = fmax . Therefore, at the beginning of every game, ft is close to
fmax , and fishing in the deep sea is more profitable. During the game, exploration
usually overcomes birth and after several rounds the number of fish can decrease to
zero. It is a standard case of “the tragedy of commons” [7]. It is more reasonable to
keep ships at the harbor then, therefore companies should change theirs strategies.

In the original game, fishing companies may order new ships to be built and
may cross-sell their ships. The ships may also be sold at an auction organized by
the game manager. In the current version of the system ship auctions and trading
sessions are not supported.

All costs (of building a ship, its maintenance and use) and price of fish are
constant for the whole game. At the end of the game the value of the ships owned
by the companies is estimated and added to the money balance.

4.1 Agents

Four agent types are implemented in this domain: reinforcement learning agent, rule
learning agent, predicting agent, and random agent. To allocate ships the first one
uses a strategy generated by Q-learning, the second one uses rules induced from the
experience, the third agent type uses previous fishing results to estimate values of
possible allocation actions, and the last one allocates ships randomly.

All types of agents may observe the following aspects of the environment: arrival
of new ships bought from a shipyard, money earned in the last round, all agents’ ship
allocation actions, and fishing results (ct) for the deep sea and the inshore area. All
types of agents can execute the following two types of actions: order ships, allocate
ships.

Order ships action is currently very simple. It is implemented by all types of
agents in the same way. At the beginning of the game every agent has 10 ships. In
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every round, if there are less than 15 ships, there is a 50 % chance that two new
ships will be ordered.

To allocate ships the agent has to decide how many of them are kept in the
harbor and how many are sent to the fishing areas. Therefore, the allocation action
is represented by a triple (h, d, c), where h is the number of ships left in a harbor,
d and c are the number of ships sent to the deep sea, and to the coastal area,
respectively. Ship allocation is based on the method used in [10]. Agents generate
a list of allocation actions for h = 0 %, 25 %, 50 %, 75 %, and 100 % of the ships
that belong to the agent. The rest of the ships (r) are partitioned; for every h the
following action candidates are generated:

1. All: (h, 0, r), (h, r, 0) – send all the remaining ships either to the deep sea or to
the coastal area,

2. Check: (h, 1, r− 1), (h, r− 1, 1) – send one ship to the deep sea or to the coastal
area and the rest to the other,

3. Three random actions: (h, x, r − x), where 1 ≤ x < r is a random number –
allocate remaining ships in a random way,

4. Equal: (h, r/2, r/2) – send equal number of ships to both areas (one more ship
is sent to a deep sea if r is odd).

The random agent allocates ships using one of the candidates chosen at random.
The predicting agent uses the following formula to estimate the value of the action:

v(a) = income(a) + ηecology(a), (7)

where income(a) represents the prediction of the income under the assumption that
in this round fishing results will be the same as in the previous round, ecology(a)
represents the ecological effects of the action a (the value is low if fishing is performed
in the area with a low fish population, see [10] for details), and η represents the
importance of the ecology factor. The action with the highest v value is chosen
to execute. If there are several actions with the same, largest v value, the action
generated earlier (with the lowest h value) is chosen.

4.2 Learning Agents

In this domain two learning strategies are used: reinforcement learning and rule
induction. Although it is not our goal to compare these learning strategies (learn-
ing agents use different input for learning), results suggest that in some cases rule
induction may improve performance faster than reinforcement learning. It needs
further investigation, though.

For the reinforcement learning agent the Problem consists of the description of
the current state x ∈ X = {(dc, cc) : dc ∈ {1, 2, . . . 25}, cc ∈ {1, 2, . . . , 15}}. It
represents the catch in both areas in the previous round. The Answer is an action
a ∈ Act = {(h, d, c) : h, d, c ∈ {0 %, 25 %, 50 %, 75 %, 100 %}, d + c = 1}. Training
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begin
if it is the first game then

Store Q = 0 in Generated Knowledge
end
a1 := random action;
execute a1;
foreach round r = 2, 3, . . . do

xr := current state;
if random() > the probability of exploration then

ar := random action;
end
else

ar := best action in the current situation calculated using
Generated Knowledge (arg maxaQ(a, xr))

end
execute ar;
observe state after action execution xr+1;
i:= income (money earned by fishing− costs);
learn (update Q) using Training Data (xr, ar, xr+1, i);

end

end
Algorithm 1: Algorithm used by the reinforcement learning agent in the Fish
Banks game

Data consists of the current and the next state description (after executing the
action) and a reward. The reward is equal to the income of the agent after the fishing
decreased by the ship maintenance costs. Generated Knowledge is a Q function
tabular representation. Reinforcement learning agent chooses action at random
in the first round. In the following rounds, the Q-learning strategy is used: the
action with the highest predicted value (Q) is chosen. Details are presented in
Algorithm 1.

At the beginning Q is initialized as a constant function 0. To provide sufficient
exploration, in a game number g a random action is chosen with probability 1/g
(all actions have the same probability). Therefore, the random or the best action
(according to Q function) is chosen and executed.

For the agent using rule induction Training Data is a set {(xA, f(x))}, where
xA ∈ X × Act is a state and ship allocation description, and f(x) ∈ {good, bad}
represents quality of the ship allocation in a given state. In every round the best
ship allocation (among actions executed by all players) together with the current
state description is classified as good and added to the Training Data. The worst
ship allocation is classified as bad and is also added. Here availability of an action
quality is important. It is worth noting that in such an approach no external teacher
is necessary. It is an agent itself which labels examples.
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begin
if it is the first game then

Generated Knowledge := ∅;
Training Data := ∅

end
foreach round r do

if it is the first game or round then
a := random action

end
else

a := action with the highest rating calculated using rules stored in
Generated Knowledge

end
execute a;
observe actions of other agents and results;
add to Training Data examples {(best-action-data, good),
(worst-action-data, bad)};

end
learn from Training Data;
store knowledge in Generated Knowledge;

end
Algorithm 2: Algorithm used by the rule learning agent in the Fish Banks game

To find the best action in the current state, processing module iterates through
all possible actions a ∈ Act, formulates Problem (xA), and gets two numbers from
the Learning module: good(a) and bad(a), which are numbers of rules stored in
Generated Knowledge matching the action and current environment parameters,
with consequence good and bad, respectively. Every action a gets a rating value v
according to the formula:

v(a) = αgood(a)− bad(a), (8)

where α is a weight representing the relative importance of rules with consequence
good.

The rule learning agent not only randomizes actions in the first game, but in the
following games it chooses actions with the highest rating. Behavior of the agent is
presented in Algorithm 2.

If there is more than one action with the same value, the one occurring earlier
in the list is chosen. As a consequence, actions with smaller h are preferred.

At the end of each game the learning agent uses Training Data, which contains
examples generated during all games played so far, to learn a new classifier, which
is used in the next game.

The software used in experiments was written in Prolog, using Prologix com-
piler [12]. Every agent is a separate process. It can be executed on a separate ma-
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chine. Agents communicate with the environment using Linda blackboard. Prologix
is an extension of BinProlog that has many powerful knowledge-based extensions
(e.g. agent language LOT, Conceptual Graphs and KIF support). As mentioned, to
support rule induction the AQ21 program is used. It is executed from Prolog and
the rules generated are added to the code as additional Horn clauses.

5 PREDATOR-PREY DOMAIN

Predator-prey domain is a simulation with two types of agents: predators, and
preys. The aim of a predator is to hunt for a prey. Environment is a grid world
with size n × n with joined opposite edges (it is a torus). Time is discrete, and its
flow is represented by turns. In every turn all agents receive percept data from the
environment and chose their actions, which are executed next. The schema of the
simulation environment is presented in Figure 2.

Percept data is provided for predator agents only. It consists of the closest prey’s
type and relative position. Predators have limited range of sight, and only preys
which are closer than a given threshold are seen.

Agents can either move in the four directions (up, down, left, and right) or not
move at all. If predator occupies a field next to the prey, the prey is captured.

To make the domain more complicated, two types of preys are defined: bird and
mouse. The first one moves up and down with equal probability. Similarly, mouse
moves left and right.

Figure 2. Predator-prey environment

Also, two types of predators are defined: random and learning. The former
moves in four directions or does not move with equal probability. The latter uses
rule induction to improve performance.

Game is defined as a sequence of turns beginning with the initial positions of
agents and ending in a turn when all preys are captured.
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begin
if it is the first game then

Generated Knowledge := ∅; Training Data := ∅
end
foreach round r do

if it is the first game or round then
a := random action

end
else

a := action determined by the first matching rule from Generated
Knowledge or action with the highest rating

end
execute a;
observe the environment;
if distance to the prey decreased then

add example (current-situation, a) to Training Data
end

end
learn from Training Data;
store knowledge in Generated Knowledge;

end
Algorithm 3: Algorithm used in games by the rule learning predator

5.1 Learning Predator

During the simulation Processing Module receives Percepts and transforms them
into a Problem. Currently the Problem has not more information than Percepts,
but generally it may contain more data. Learning Module generates an Answer for
the Problem, which is an action, which should be executed. To choose the action
it uses Generated Knowledge stored in the knowledge base. This knowledge has
a form of rules. The action is then executed. The behavior of the learning predator
is presented in Algorithm 3.

Percepts received by the agent are equal to null if no prey is in the observation
range, or is a triple (t, dx, dy), where t is a type of a prey, and dx, dy are relative
coordinates of the prey along the X and Y axis, respectively.

If, after action execution, the distance to the prey decreases, the new example
is stored in the Training Data memory. Attribute values are created using percept
triple from the previous round and the action executed is used as a class. Here the
important property of the environment is used. It is possible to generate training
data because action results are visible immediately.

During a learning phase Training Data is sent to the Learning Module. In this
domain the AQ rule induction algorithm is also used for learning.
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If there are more examples in the Training Data with the same values of at-
tributes and different classes (actions), learning algorithm assigns the majority class
to the example.

Rules generated during learning and stored in the Generated Knowledge have
the following form:

p1, p2, . . . , pn → a, (9)

where pi are tests on the attributes representing the problem, and a is an action,
which should be executed. In this domain learned rules can be applied in two ways:

1. First match – the first rule matching the Problem is chosen, and its consequence
determines the action.

2. Counting – system selects the action, which is the most frequent in the con-
sequences of rules matching the Problem. In the case of a draw, the winning
action is chosen at random from the most frequent ones.

The agent executes a random action if there is no rule matching the problem,
which is always the case at the beginning, when Generated Knowledge is empty, but
it also happens later.

Because in this multi-agent system more than one entity generates the similar
knowledge, impact of communication can be taken into account, and exchange of
learned knowledge is tested. If there is no rule that matches a current state in the
agent knowledge base, the agent can ask another agent for help. It sends the state
description and receives matching rules if such exist. These rules can be used to
generate an action for the current situation and are stored in the knowledge base
for future use.

The software used in experiments is also written in Prolog, using Prologix com-
piler, and also AQ21 program is used for learning.

6 EXPERIMENTAL RESULTS

To test how learning influences the agent performance, experiments were performed
in both domains. The hypothesis tested is that agents using rule induction achieve
better performance while more experience is accumulated. Simulations have to be
repeated many times because of the stochastic character of these domains. It is also
necessary to check the statistical significance of the results.

6.1 Fish Banks Domain

Four experiments were performed in this domain. Four agents took part in every
experiment. Each experiment consisted of the sequence of ten games and was re-
peated twenty times. The experience of the learning agents was collected during
these sequences of games but, of course, it was cleared between repetitions. For
every graph, the X axis represents the number of game in the sequence. Y axis
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represents agent performance. Performance of an agent in a game is defined as the
amount of money owned by the agent at the end of this game. Performance is mea-
sured in discrete points, after games. The measure points are connected with lines
to improve readability.

In the first experiment there were three random agents and one reinforcement
learning agent (with γ = 1 and β = 0.1). Performance of agents is presented in
Figure 3.

Next, configuration with three random agents and one rule learning agent (with
weight α = 1) was tested. Average performance of agents in the consecutive games
is presented in Figure 4. Learning with α = 2 gives similar results.

In the third experiment there were two random agents, one reinforcement learn-
ing agent (with γ = 1 and β = 0.1) and one rule learning agent. Performance of
agents is presented in Figure 5.

Finally, one learning (α = 1), one predicting and two random agents were used.
Performance of agents is presented in Figure 6.

In all of the experiments the average performance of both types of learning
agents grows with the agent’s experience, while the performance of the predicting
and random agents decreases slightly (because of the learning agents competition).
The reinforcement learning agent is a little bit worse than a rule learning agent,
but tuning of its parameters (β, γ) and taking into account actions of other agents
during learning should increase its performance.

agent performance
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Figure 3. Comparison of performance of reinforcement learning agent (RLA) and agents
using random strategy of ship allocation (RA1, RA2, RA3) in consecutive games
(the higher, the better)

The standard deviation of the learning agents performance during experiments
is relatively small. It is between 5 000 and 6 000 for random agents, about 5 000 or
less for rule learning agents, and between 6 000 and 8 000 for reinforcement learning
agents.
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agent performance
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Figure 4. Comparison of performance of rule induction learning (RIA) and agents using
random strategy of ship allocation (RA1, RA2, RA3) in consecutive games (the
higher, the better)

The figures show clearly that learning improves the performance. However,
statistical significance of performance differences was checked using the t-test. The
first (random) result and also the result of games in which the rule learning agent
has the best performance are selected for comparison. It is game No. 7 for the first
experiment, No. 9 for the second and No. 8 for the remaining two experiments.
Every difference is statistically significant at p < 0.05.

agent performance
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Figure 5. Comparison of performance of rule induction learning (RIA), reinforcement
learning agent (RLA), and agents using random strategy of ship allocation (RA1,
RA2) in consecutive games (the higher, the better)



Agent Strategy Generation by Rule Induction 1071

agent performance
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Figure 6. Comparison of performance of rule induction learning (RIA), prediction agent
(PA), and agents using random strategy of ship allocation (RA1, RA2), the higher,
the better

Experimental results show that the rule learning agent performance increases
rapidly at the beginning of the learning process, when generated rules are used
instead of a random choice. Next it increases slowly, because later examples do not
bring significantly new information. The performance stabilizes at the end of the
process.

As we can see in Figure 5, the rule learning agent performs better than the
reinforcement learning agent, but the predicting agent outperforms the rule learning
agent. Further research is necessary to determine if it is possible to learn such a good
strategy.

Examples of rules learned are presented in Figure 7. They have the form of
Prolog clauses. Capital letters represent variables that can be unified with any
value. Predicate member checks if its first argument belongs to the list that is
a second argument. It is used to represent an internal disjunction (expression of the
form x = v1 ∨ v2 ∨ . . . ∨ vn). These rules can be interpreted in the following way.

Clause (a): It is a bad decision to keep at the harbor 25, 50, or 75 percent of ships
if the previous catch at the deep sea is greater than or equal to 16, and the
previous catch at the coastal area is 10.

Clause (b): It is a good decision to send 100 % ships to the deep sea or 75 % to
the deep sea and 25 % to the coastal area if the previous catch at the deep sea
is greater than or equal to 18, and smaller than or equal to 21, and the previous
catch at the coastal area is smaller than or equal to 10.
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a) b)

rate(bad) :- rate(good) :-

harbor(B), alloc(B),

member(B,[25,50,75]), member(B,[100%-0%,

prevCatchDeep(C), 75%-25%]),

C >= 16, prevCatchDeep(C),

prevCatchCoastal(10). C >= 18,

C =< 21,

prevCatchCoastal(D),

D =< 10.

Figure 7. Examples of rules (in the form of Prolog clauses) learned by the agent

6.2 Predator Prey Domain

Grid world in experiments had dimensions 24 × 24. Initial positions of predators
were (0, 0) and (12, 12). There were two prey agents: bird and mouse. The first
one started in position (16, 16) with probability 0.8 and in (4, 4) with probability
0.2, and the second one – vice versa. The reason for such a starting position was to
simulate the situation, in which for every agent one of the states was more typical
than the other. It made communication more profitable. Predator’s range of sight
was equal to 7.

The following three configurations were tested in experiments:

1. Learning predators using the first matching rule without communication;

2. Learning predators using counting of matching rules without communication;

3. Learning predators using the first matching rule with communication;

In all experiments 100 sequences of games were executed. Every sequence con-
sisted of 16 consecutive games. Training Data and Generated Knowledge of learning
predators were kept between games in a sequence. However, they were cleared be-
tween sequences. Performance of predators (represented in graphs by axis Y ) was
measured by a number of turns in a game needed to capture all preys; the less, the
better. Maximum number of turns was 1500 even if some prey was not captured.
Because of the implementation limitations, predators executed learning algorithm
at the end of every even game. Therefore, performance measures are averaged in
consecutive pairs of games, i.e. the first performance result is for games (1, 2), the
second one is for (3, 4), and so on. In the graphs the X axis represents the number
of the pair of games in the sequence.

In the first experiment predators using the first match rule application were
tested. Average performance measures and its standard deviation in consecutive
games are presented in Figure 8.
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Figure 8. Average performance and its standard deviation for learning agents using first
matching rule application in consecutive games (the lower, the better)

The second experiment tested predators using the counting rule application.
Average performance measures and its standard deviation in consecutive games are
presented in Figure 9.
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Figure 9. Average performance and its standard deviation for learning agents using count-
ing rule application in consecutive games (the lower, the better)

The last experiment shows the influence of communication. Predators using
first matching rule application with communication were tested. Average perfor-
mance measures and its standard deviation in consecutive games are presented in
Figure 10.

The average performance of random predators is equal to 403, and the standard
deviation is 224. As we can see, agents using the first matching rule application
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agent performance
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Figure 10. Average performance and its standard deviation for learning agents using first
matching rule application with communication in consecutive games (the lower,
the better)

improve the performance very slightly. The difference is statistically not significant
because of the relatively high standard deviation. Agents using counting rule ap-
plication and the first matching rule application with communication make much
larger improvements. For these two experiments statistical significance of perfor-
mance differences between the first step and the best one was checked using the
t-test. The best results are achieved in step 7 for counting rule application and in
step 8 for the first matching with communication. Both differences are significant
at p < 0.05.

Like in the previous domain, performance improves rapidly at the beginning and
after several rounds it stabilizes, because of the lack of new knowledge contained in
the following examples.

Examples of rules learned by the predator-agent in a form of Prolog clauses
are presented in Figure 11. Both rules have action left in the conclusion. S is
an identifier of a state for which decision should be made. Rule a) is applicable if
the predator sees a bird, which has the same or smaller by one x coordinate and
relative vertical position is between −3 and 0. The premise of rule b) determines if
the predator sees a mouse, whose relative x coordinate is −2, and y is between −3
and −2.

7 CONCLUSION AND FURTHER RESEARCH

In this paper the idea of using rule induction for generating strategy for agents is
presented. It is tested on two domains: Fish Banks and Predator-Prey. However,
inductive learning can be applied in any domain, in which a learning agent is able
to observe the results of its actions (there is no reward assignment problem).



Agent Strategy Generation by Rule Induction 1075

a) b)

dir(S,left) :- dir(S,left) :-

type(S,bird), type(S,mouse),

dx(S,X), dx(S,-2),

X >= -1, dy(S,Y),

X =< 0, Y >= -3,

dy(S,Y), Y =< -2.

Y >= -3,

Y =< 0.

Figure 11. Examples of rules (in the form of Prolog clauses) learned by the agent

Not only rule induction can be applied here, other supervised learning methods,
like decision trees or Bayesian networks, will work too, although, because rule-based
knowledge representation is modular, the exchange of the knowledge between agents
is easy and has low cost. Only necessary rules can be transmitted.

Another advantage of rule induction is clarity of rule-based knowledge repre-
sentation. It is possible to interpret the knowledge base and check its correctness
manually. It is very important for some domains.

In the future this method of strategy generation should be applied in other do-
mains, like crisis management [3], grid monitoring [2], QoS provisioning for data
intensive applications [21] or better development of knowledge-based grid organiza-
tional memory [11]. It is also important to test applicability in cases with delayed
information about action impact to the goals. Rule induction should be also more
broadly compared to other adaptation strategies, including evolutionary methods
and others (see e.g. [4]).

Other methods of resolving ambiguity in the training data should be tested as
well. Here the majority strategy is used, but other possibilities (including in positives
or negatives and ignoring during learning) should also be examined. Exchange of
training data as another form of communication during learning should be tested
too.

More research should be also performed in mixing several learning methods in
one agent. For different aspects of agent activity, specific learning methods could
be used.

Acknowledgments

The research leading to the results described in the paper has received funding from
the European Community’s Seventh Framework Program (FP7/2007-2013) under
grant agreement No. 218086. The author is grateful to Arun Majumdar, Vivom-
ind Intelligence Inc. for providing the Prologix system (used for implementation),
and for help with using it, to Janusz Wojtusiak, MLI Laboratory, George Mason



1076 B. Śnieżyński
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