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Abstract. Data uncertainty inherently exists in a large number of applications
due to factors such as limitations of measuring equipments, update delay, and net-
work bandwidth. Recently, modeling and querying uncertain data have attracted
considerable attention from the database community. However, how to perform
advanced analysis on uncertain data remains an interesting question. In this paper,
we focus on the execution of skyline computation over uncertain moving objects.
We propose a novel probabilistic skyline model where an uncertain object may take
a probability to be in the skyline at a certain time point, therefore a p-t-skyline
contains those moving objects whose skyline probabilities are at least p at time
point t. Computing probabilistic skyline over a large number of uncertain moving
objects is a daunting task in practice. In order to efficiently compute the prob-
abilistic skyline query, we propose a discrete-and-conquer strategy, which follows
the sampling-bounding-pruning-refining procedure. To further reduce the skyline
computation cost, we propose an enhanced framework that is based on a multi-
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dimensional indexing structure combined with the discrete-and-conquer strategy.
Through extensive experiments with synthetic datasets, we show that the frame-
work can efficiently support skyline queries over uncertain moving object and is
scalable on large data sets.
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1 INTRODUCTION

In many applications data values are inherently uncertain. Consider a scientific
data application system where measurements taken from sensors or other devices are
analyzed for particular usage. In such a system, data with known degrees of errors
are often exhibited due to limitations of bandwidth and the battery power of devices.
In the case of a moving object database, it is infeasible for the database to track
the movement of object and store the exact locations of object at all times. Due to
the importance of those applications and the rapidly increasing amount of uncertain
data collected, analyzing large collections of uncertain data has become an important
research topic. In particular, how to perform advanced analysis on uncertain data in
moving object environments, especially the skyline analysis, remains an interesting
and challenging problem [1, 2].

Since the introduction of skyline operator in the database community by Bör-
zsönyi et al. [3], several efficient algorithms have been proposed for general skyline
processing, and most of these studies have showed that skyline analysis is very im-
portant in applications such as multi-criteria decision making system. In particular,
these algorithms utilize techniques such as divide-and-conquer [3], nearest neighbor
search [4], sorting [5], and indexing structures [8, 9] to answer the general skyline
queries. Furthermore, several studies have also focused on the skyline query pro-
cessing in a variety of environmental settings such as data streams [1], data residing
on mobile devices [10], uncertain data [2], spatial data [7], and moving object [6].
However, to the best of our knowledge, no work has studied the probabilistic skyline
queries over uncertain moving object. The most relevant work are the continuous
skyline queries methods for moving object [6] and the bottom-up algorithm pro-
posed by Pei et al. [2], which can be utilized to address probabilistic skyline queries
by considering it as a special case of dynamic skyline queries. Since [2] is addressing
the static problem, it overlooks the mobile properties of moving object, thus its
performance is not optimal in moving environments. On the other hand, [6] cannot
deal with the data with uncertainty.

In the current moving object environments, due to the inherent uncertainty in
data values, providing meaningful answer seems impossible. However, one can state
with probability that object o is in the skyline at a certain time point t. That is to
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say, the uncertainty of the moving object may not allow us to determine an object
as a “precise” skyline. Instead, more object could have the opportunities of being
in the “possible” skyline result. Consider the situations in real-time applications
such as e-games and digital battle systems; due to the imprecise positions of moving
players, the probabilistic skyline query is needed when one fighting player wants to
keep track of those enemies who are close and most dangerous in terms of multiple
aspects like energy, weapon, strategy, etc.

The conception of probabilistic answers for skyline queries over uncertain data
was first introduced in [2]. Motivated by this, we answer p-t-skyline queries over
uncertain moving object using a set which contains those moving object whose
skyline probabilities are at least p at a user specified time t. That is to say, in
addition to identifying these moving object, the probability of each object being in
the skyline is also calculated and returned. The probabilities allow the users to have
an appropriate confidence in the answer set instead of having an incorrect answer
or no answer at all. Furthermore, it is an easy task for users who want to choose
those object whose skyline probabilities are greater than a threshold at a certain
time point. Note that, since the domination relationship can be determined with
respective to both spatial (dynamic) and non-spatial (static) attributes of object P ,
we are focusing on the spatial one and the proposed method can be easily extended
to the non-spatial one.

In this paper, we present a novel technique for providing probabilistic guarantees
to answers of skyline queries. Our objective is to minimize the total calculation costs.
As an overview, the algorithm first eliminates all those objects that have no chance
of being in the skyline. Then, for every object that may be the skyline point, its
probability is evaluated. As mentioned above, there is lack of any detailed study on
probabilistic skyline over uncertain moving object.

The rest of this paper is organized as follows. First, we define the problem
of Probabilistic Skyline Query (PSQ) and list the notations used throughout the
paper in Section 2. Then, in Section 3 we establish the theoretical foundation of our
proposed algorithm and discuss the optimal solutions for PSQ. The performance of
our proposed algorithm is evaluated in Section 4. The related work to skyline queries
and probabilistic skyline queries is presented in Section 5. Finally, we conclude the
paper and discuss our future work in Section 6.

2 FORMAL PROBLEM DEFINITION

In the following sections, we first define the general skyline query using notations
given in Table 1. Then, we introduce the probabilistic skyline query based on the
definition of a general skyline query.

2.1 General Skyline Query

Given a set of d-dimensional points P , a point p dominates another p′, donated
by p ≺ p′, if the coordinate of p on each dimension is not larger than that of p′,
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Notations Meaning

P set of static database points

MO set of uncertain moving object

M,N uncertain moving object

|MO| cardinality of MO

pdf probability density function

x, x′ instances (positions) of uncertain moving object

x ≺ x′ instance x dominates x′

Pr(x ≺ x′, t) the probability that x dominates x′

Table 1. The summary of notations

and is strictly smaller on at least one dimension. Generally, a skyline set consists
of those points which are not dominated by others. For example, Figure 1 shows
a scenario where each point in the 2-dimensional space (x, y) corresponds to a hotel
record. The x-dimension represents the price of the hotel room, and the y-dimension
captures its distance from the beach. Obviously, hotel p1 dominates p2 because the
former is cheaper in price and closer to the beach, so that p1 is more preferable
according to any preference function that is monotone on the two axes [3]. The
skyline of all the points shown in Figure 1 contains 3 points p1, p3, and p5, which
offers different tradeoffs between price and distance: p5 is the nearest to the beach,
p3 is the cheapest, and p1 may be a good compromise of the two factors. Notice that
every point in the skyline does not need to dominate a point of P . For instance,
the point p1 dominates five other points and p5 dominates two other points, but the
point p3 dominates no point.
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Figure 1. A general skyline example
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2.2 Probabilistic Skyline Query

According to the definitions given before [15, 16, 17, 18, 22], an uncertain moving
object M is conceptually associated with

1. a d-dimensional uncertain region U(M, t),

2. a moving velocity V (M, t), and

3. a probability density function pdf(x, t),

where x is an arbitrary d-dimensional point.

Definition 1. The uncertain region of M at time t, denoted by U(M, t), is a closed
region where M is located at time t.

Definition 2. The moving velocity of M at time t, denoted by V (M, t), is a d-di-
mensional vector which determines the moving direction.

Definition 3. The uncertain probability density function (pdf) of object M , de-
noted by pdf(x, t), is a pdf of s location x at time t, that has a value of 0 outside
U(M, t).

Since pdfi(x, t) is a probability density function, it has the property∫
x∈U(M,t)

pdf (x, t)dx = 1.

Based on these new conditions, the data in the database is only an estimate of
the actual location at most points in time – an object can be anywhere within its
uncertain region (the grey area in Figure 2). Without loss of generality, for a large
set of moving object, we assume each object is independent. That is, an instance of
an object does not depend on the instances of any other object. Moreover, we assume
that, for an uncertain moving object, each instance takes the same probability to
happen, that is, the pdf follows a uniform distribution. However, our model can be
easily extended to cases where dependencies (e.g., correlations) exist among object
and another kind of distribution about pdf exists such as normal distribution.

Figure 2. An uncertain moving object example
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Given a set MO of uncertain moving object defined above, let M and N be two
moving object contained in MO, pdf (x, t) and pdf ′(x′, t) be the corresponding un-
certain probability density functions of M and N , respectively. Then, the definition
of dominant relationship over two uncertain moving object can be generalized as
follows:

Definition 4. The probability that M dominates N at time t is:

Pr(M ≺ N, t) =

∫
x′∈U(N,t)

pdf ′(x′, t)
∑

∀x∈U(M,t),x≺x′

p(M,x)dx′

=

∫
x′∈U(N,t)

pdf ′(x′, t)

(∫
SR(M,t)

pdf (x, t)dx

)
dx′ (1)

where x and x′ are the possible positions of M and N , P (M,x) is the probability of
M within position x, SR(M, t) is the sub-region of U(M, t) and for any position x
within SR(M, t), x dominates x′ holds.

Based on the probabilistic dominance relationship defined above, it is straight-
forward to deduce the probability that an uncertain moving object M is in the
skyline at a certain time point:

Definition 5. The probability that M is in the skyline at time t is:

Pr(M, t) =

∫
m∈U(M,t)

pdf (m, t)

 ∏
∀N∈MO\{M}

(1− Pr(N ≺ m, t))

 dm (2)

=

∫
m∈U(M,t)

pdf (m, t)

 ∏
∀N∈MO\{M}

(
1−

∫
SR(N,t)

pdf ′(x′, t)dx′
) dm

where SR(N, t) is the sub-region of U(N, t) and for any position x′ within SR(N, t),
x′ dominates m holds.

Intuitively, consider an uncertain moving object M with uncertain probabilistic
density function pdf (x, t). The probability that M appears at position m within
uncertain region U(M, t) is given by P (M,m) = pdf (m, t). For any other object N
with probability density function pdf ′(x′, t), the probability that N dominates m is
the integral of the pdf function over region SR(N, t) within where each position x′

dominates m always holds, that is Pr(N ≺ m, t) =
∫
SR(N,t)

pdf ′(x′, t)dx′,∀x′ ∈
SR(N, t), x′ ≺ m. Thus, for each possible dominating object of m, we calculate
the probability that m is not dominated by multiplying the probabilities that each
dominating object is not in the position with dominant power.

As a result, an uncertain moving object may take a probability to be in the
skyline. Based on the above definitions it is easy to extend the notion of skyline to
probabilistic skyline:



Probabilistic Skyline Queries over Uncertain Moving Objects 993

Definition 6. For a set of uncertain moving objects MO and a probability thres-
hold p(0 ≤ p ≤ 1), a p-t-skyline returns those objects of which the skyline probabi-
lities are at least p at time t. That is,

Skyline(p, t) = {M ∈MO,Pr(M, t) ≥ p}.

A naive brute-force search algorithm for finding the p-t-skyline of a set MO
requires examining all moving object in MO against each other. In other words,
for each moving object M , its skyline probability at time t is computed according
to Equation (2). The time complexity of this naive algorithm is O(|MO|2) as it
exhaustively examines all the moving object against others.

Therefore, computing p-t-skyline through the naive method incurs expensive
costs, especially when the dimensionality and cardinality of datasets are high. On
the other hand, an optimal PSQ algorithm must examine each moving object M
against only those object which are inside the possible dominating region of M .
In the next section, we establish the theoretical foundation of our efficient PSQ
algorithm which allows us to eliminate a majority of the non-qualifying moving
object without calculating their skyline probabilities.

3 THE DISCRETE-AND-CONQUER METHOD

In this section, we describe the discrete-and-conquer strategy for probabilistic skyline
queries with the objective to reduce the total computing cost. The main idea is to
follow the sampling-bounding-pruning-refining procedure. The first three steps form
an iteration to filter out these moving object in the database that have no chance
of being in the p-t-skyline, and this iteration goes on until every uncertain moving
object can be determined in the p-t-skyline set or not. The last step, namely the
refining step, is an important part of our solution: it computes the probability of
being the p-t-skyline for each moving object that remains after the first three steps.

In particular, in the execution of discrete-and-conquer framework for answering
PSQ, we compute and refine the bounds of instances of uncertain moving object by
selectively computing the skyline probabilities of a small subset of instances. An
uncertain moving object may be pruned or validated using the skyline probabilities
of its instances, or those of some other object.

3.1 Sampling Instances

For an uncertain moving object M , its instances may have the same dominating
object or may vary dramatically from one instance to another. Whether M is in the
p-t-skyline or not should be determined by computing the skyline probabilities of as
few instances of M as possible. However, selecting an optimal subset of instances to
compute is not an easy task since, without computing the exact probabilities of each
instance, it is difficult to know their distribution. Motivated by this, we propose
a layer-by-layer heuristic sampling method.
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According to the equation in Section 2, among all instances of the uncertain
moving object M , it is important to find the instances that are not dominated by
any other instances, i.e., those instances listed in layer-1 as illustrated in Figure 3,
and then compute their corresponding skyline probabilities.

y
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Mmax

Mmin

MBR of M

Layer-1

Layer-2

Layer-3

Layer-4

Layer-5

Layer-k

Layer-(k-1)

Figure 3. Layer and MBR of object M at time t

Formally, for an uncertain moving object M , an instance m ∈M is assigned to
layer-1 ifm is not dominated by any other instances inM . Accordingly, an instance v
is assigned to layer-k (k > 1) if v is not at the 1st, . . . , (k − 1)th layers, and v is not
dominated by any instances except for those at the 1st, . . . , (k − 1)th layers.

Obviously, the higher the number of layers where instances are located, the
higher probability of the corresponding instances being dominated. That is to say,
the skyline probabilities of the instances at layer-1 can serve as the upper bounds
of the skyline probabilities of other instances, and can be used to generate an upper
bound of the skyline probability of M .

Given a number n of points, which are generated according to the probability
density function of M at time t. The way that these instances are assigned into layers
within U(M, t) will affect the efficiency of the query procedure. In the following,
a quick assigning method will be introduced to speed up the query efficiency.

First, we define a key for each instance m, and the key of the instance is defined
as its Euclidean distance from the original point. Then, we sort all the instances in
their key ascending order. This is motivated by the SFS Algorithm [2, 5]. Based on
this rationale, the sorted list of instances has a good property: for any instances x
and m such that x ≺ m, x precedes m in the final list.

After the sorted list is constructed, it is sequentially scanned to get the instances
on each layer. That is to say, the first returned instance with the minimum key value
is assigned to layer-1. The second returned instance is compared with the first one.
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If the second one is dominated, then it is assigned to layer-2; otherwise it is assigned
to layer-1.

However, as the list size increases, it is inefficient to compare the current instance
with all the previously assigned instances in every layer. Certain layers should be
chosen to help determine the status of the current processed instance. That is, for
processing an instance m, suppose there are already h layers. We compare m with
the instances assigned to layer-dh/2e, and then one of the following two cases may
happen. If m is dominated by an instance at that layer, then m must be assigned to
some layer higher than dh/2e. On the other hand, m is neither dominated by, nor
dominates, any instance at that layer. Then, m must be at that layer or at some
lower layer. This “binary search” like method is conducted recursively until m is
assigned to a layer.

3.2 Bounding Skyline Probabilities

After all the instances of moving object M are selected and assigned, we can make
a minimum bounding rectangle (MBR for short) of M , which includes all its in-
stances at time t. In particular, let Mmin(the lower-left corner) and Mmax(the upper-
right corner) be the minimum and maximum corner of the MBR of M at time t,
respectively, as illustrated in Figure 3. Note that Mmin and Mmax may not be two
actual instances of M . In this case, we treat them as virtual instances and define
their skyline probabilities for special usage:

Pr(Mmin, t) =
∏
N 6=M

(
1−

∫
x′≺Mmin

pdf ′(x′, t)dx′
)

(3)

And

Pr(Mmax, t) =
∏
N 6=M

(
1−

∫
x′≺Mmax

pdf ′(x′, t)dx′
)
. (4)

Based on the skyline probabilities of some particular instances, we define the
following lemma:

Lemma 1 (Bounding Skyline Probabilities [2]). Let M be an uncertain moving ob-
ject and mi(1 ≤ i ≤ n) be the instances of M at time t:

1. if mi ≺ mj(1 ≤ i, j ≤ n), then Pr(mi, t) ≥ Pr(mj, t).

2. Pr(Mmin, t) ≥ Pr(M, t) ≥ Pr(Mmax, t).

The proof of this lemma is obvious, since the instance, which dominates the
other instances, has a larger skyline probability. Furthermore, Lemma 1 provides
an approach to compute the upper and lower bounds of instances or uncertain
moving object by using the skyline probabilities of other instances.

According to the first inequality in the lemma, the skyline probability of an in-
stance can be bounded by those instances dominating or dominated by it. In other
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words, when the skyline probability of an instance is calculated, the bounds of the
skyline probabilities of some other instances of the same object may be refined ac-
cordingly.

The second inequality indicates that the minimum and maximum corners of the
MBR can determine the upper and lower bounds of the skyline probability for an un-
certain moving object M , and thus can be used for pruning or validating purpose.
In the next section, the pruning and validating techniques will be presented.

3.3 Pruning and Validating Techniques

Based on the dominant relationship between object or instances, if the skyline prob-
ability of an uncertain moving object or an instance is computed, we can use this
information to prune the other uncertain instances or object. Generally, it is possi-
ble to use this information to prune a non-qualifying moving object, or to validate
an object that indeed satisfies the probabilistic skyline query, without computing its
accurate skyline probabilities. According to Lemma 1, we immediately have the fol-
lowing observation to determine the p-t-skyline membership of an uncertain moving
object using the minimum or maximum corner of its MBR.

Observation 1. For an uncertain moving object M and a probabilistic skyline
query with threshold p at time t:

1. If Pr(Mmin, t) < p, then M can be pruned for there is no chance of M being in
the skyline;

2. If Pr(Mmax, t) ≥ p, then M is guaranteed to satisfy the query and is in the
p-t-skyline.

It is also possible to use the information about one uncertain object to prune
other uncertain instances or object. First, if an instance m of an uncertain moving
object M is dominated by the maximum corner of another uncertain moving ob-
ject N at time t, then m cannot be in the p-t-skyline. Second, if the minimum corner
of an uncertain moving object N is dominated by an instance m of other uncertain
moving object M at time t and Pr(m, t) < p, then N cannot be in the p-t-skyline.
Furthermore, we can also use the information about skyline probabilities of some in-
stances of an uncertain moving object to prune some other uncertain moving object.
The following observation will specify the detailed pruning techniques:

Observation 2. For two uncertain moving objects M , N and a probabilistic skyline
query with threshold p at time t, let mi(1 ≤ i ≤ n) be all the instances of M , M ′ be
a subset instances of M at time t such that M ′

max dominates the minimum corner
of MBR of N , and m be the number of instances of M that dominate M ′

max:

1. If m
n
> 1 − p, then N can be pruned for there is no chance of N being in the

p-t-skyline;

2. If m
n
≤ 1− p, then N can be neither pruned nor validated for the p-t-skyline;
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Proof. Formally, since Nmin is dominated by M ′
max, each instance of N is dominated

by the instances within M ′. Thus, only when M appears outside of M ′, Nmin is not
dominated, that is to say, the probability that N is not dominated by M at most
equals to (1−m/n), if (m/n) > 1−p, then (1−m/n) < p, so the skyline probability
of N is smaller than p, then N can be pruned. For the situation (1−m/n) ≥ p, the
other object except M may dominate N , so the dominant relationship is pending;
thus the observation holds. 2

In many cases, an uncertain moving object can be asserted to violate or satisfy
a query using the above rules directly, thus avoiding the expensive skyline probability
computation, which is necessary only if these observations can neither prune nor
validate the object. The precise skyline computation method will be introduced in
the following refinement step.

3.4 Refinement Strategies

Since the execution time for the probabilistic skyline query is significantly affected
by the number of uncertain moving object that need to be considered. We use the
above iteration to filter out a majority of the moving objects that are not in the p-
t-skyline. For the remaining object that may take a chance of being in the skyline,
the skyline probabilities should be calculated precisely. In this section, we study
how Equation (2) presented in Section 2 can be efficiently applied to calculate the
skyline probabilities of the remaining object.

According to Equation (2), for an uncertain moving object M , we have to find
all other moving object that may contain some instances dominating M at query
time. Those object are called possible dominating object (pdo) of M and are stored
in a queue called pdo(M, t). The skyline membership of M depends only on those
possible dominating object. All other object that do not contain any instances
dominating M need not be considered.

To speed up the search of possible dominating object, we organize the minimum
corners of MBRs of all uncertain moving object into a global VCI-tree [11]. Then
we issue a window query with the origin and Mmax as the opposite corners on the
global VCI-tree. The possible dominating object for M are selected only when the
minimum corner of the object is located within the query window, and is assigned
to its queue pdo(M, t).

In order to calculate the skyline probability ofM , we have to compute the skyline
probability for each instance m of M first. We compare m with all the possible
dominating object of M in pdo(M, t) one by one. To facilitate the comparison and
speed up the computing time, we incrementally maintain a local VCI-tree contains
every object in pdo(M, t). When an instance m ∈ M is compared with object in
pdo(M, t), only those object with instances that have a key value less than m may
dominate m. Then, we issue a window query with the origin and m as the opposite
corners on the local VCI-tree to compute possible dominating object of m at time
t, which are also stored in a queue called pdo(m, t).
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Since the probability that an object N dominates m is
∫
x′≺m pdf ′(x′, t)dx′ and

pdf ′(x′, t) is a uniform probability density function, we can deduce that:

Pr(N ≺ m, t) =

∫
x′≺m

pdf ′(x′, t)dx′

=

∫
SR(N,t)

pdf ′(x′, t)dx′

=
dominating area of m SR(N, t)

⋂
U(N, t)

uncertain region of N at time t (U(N, t))

Thus, the problem of calculating the probability that N dominates m is reduced to
the problem of finding the overlapping area of dominating region of m (a rectangle
composed by m and the original point) and uncertain region of N at time t. Here, we
present the calculation of Pr(N ≺ m, t) by assuming m is located outside U(N, t).

Figure 4 shows the overlapping area of dominating region of m and uncertain
region of N at time t when m is outside of U(N, t). We can get:

cos θ =
my −Ny

Rn

, then θ = arccos
my −Ny

Rn

.

The grey area above my (the red line) can then be evaluated as follows:

1

2
R2

n(2θ)− 1

2
R2

n sin(2θ).

Since the area of U(N, t) is πR2
n, we have:

Pr(N ≺ m, t) =

∫
x′≺m

pdf ′(x′, t)dx′

=

[
πR2

n −
(

1

2
R2

n(2θ)− 1

2
R2

n sin(2θ)

)]
/πR2

n

= 1−
(

1

2π
(2θ)− 1

2π
sin(2θ)

)
.

3.5 Implementation Framework

In order to speed up the procedure of answering PSQ, we are going to use an index
structure for storing all the uncertain moving object. As our problem definitions
assume that the uncertain moving object follows the linear movement, which is
the most popular movement model in the literature. This model assumes that the
moving object hold their current velocities and uncertain radius for a period of time,
which is also considered as the system parameters in typical indexing structure such
as VCI-tree [11]. So we assume that all the moving object are indexed by a global
VCI-tree.
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θ

U(N, t)
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Figure 4. An example of intersection

Figure 5 shows the framework for answering PSQ using the VCI-tree combined
with discrete-and-conquer strategy. In particular, the framework consists of five
phases, indexing, sampling, bounding, pruning, and refinement. A global VCI-tree
is constructed over the entire database first, and then the internal nodes and leaf
nodes are uniformly sampled and bounded for pruning purpose. These unqualified
nodes will be pruned according to the pruning observations given in Section 3.3, and
the left object consist the candidate set. Finally, those object in the candidate set
are refined according to the rules given in Section 3.4 to produce the final skyline
result.

As shown in the following experimental results, many instances and object can
be pruned sharply according to the proposed observations. The final refinement step
only has to compute a small portion of instances. Thus, our discrete-and-conquer
method has a good scalability on large data sets.

4 PERFORMANCE STUDY

In this section, we conduct several experiments to verify the efficiency and scalability
of our proposed approaches. All experiments were conducted on a PC with Intel
Pentium Dual-Core 2.5 GHz CPU and 2 GB main memory running Window XP
operating system. The programming language used to implement all algorithms is
C++.

Without loss of generality, we use the synthetic data sets in independent, cor-
related and anti-correlated distributions for our experiments. The data sets are
obtained from a special data generating framework developed by Brinkhoff [12]. For
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Input: The set MO; probability threshold p;
Output: the p-t-skyline in MO;
1: SKY 6= ∅;
2: build a global VCI-tree GV T for store all M ∈MO;
3: for each internal node N ∈ GV T do
4: select n points uniformly distributed in U(N, t);
5: assign points into layers, compute Nmin and Nmax;
6: end for
7: prune these unqualified internal nodes;
8: extend the remaining nodes into leaf nodes;
9: for each leaf node M ∈ GV T do

10: select n points uniformly distributed in U(M, t);
11: assign points into layers, compute Mmin and Mmax;
12: end for
13: prune these unqualified objects within leaf nodes;
14: build a local VCI-tree LV T for all the candidate set;
15: refine the candidate set;
16: return SKY;

Figure 5. The framework for PSQ

the synthetic data sets, the domain of each dimension is [0, 1]. The dimension-
ality d is 4 by default. The number of uncertain moving object n is 100 000 by
default. We first generate the centers of all uncertain moving object using the data
generator. Then, for each uncertain moving object, we use the center to generate
an uncertain region where the instances of the object are appear. The radius of the
uncertain region follows a normal distribution in range [0, 0.2] with expectation 0.1
and standard deviation 0.05. The instances of the object are distributed uniformly
in the region. The maximum velocities of the object follow a uniform distribution
with an overall maximum value 0.00005. The instances sampling number of an un-
certain moving object s follows a uniform distribution in range [1, 500]. Thus, in
expectation, each object has 250 instances, and the total number of instances in
a data set is 25 000 000 by default. The probability threshold p is 0.3 unless oth-
erwise specified. The skyline query time t is 15 by default after the data sets are
generated.

Moreover, to the best of our knowledge, this is the first work to study prob-
abilistic skyline query processing in uncertain moving object databases. The only
available method is the exhaustive scan, which sequentially scans the entire database
to find out the answers to the query. However, this is very costly. For example, one
exhaustive scan of a 50 K 2-D data set with 1KB page size requires about (a floating
number takes up four bytes):

10 ms

1 000 ms/s
× 50 k× 2× 4

1 k
× 50 k× 2× 4

1 k
= 1 600 seconds
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This is much greater than in our method. The detailed query time will be
evaluated afterwards.

In the first group of experiments, we show the size of probabilistic skylines at
query time t (i.e., the number of object in a probabilistic skyline) with respect
to three important factors: the probability threshold, the dimensionality and the
cardinality. In general, anti-correlated data sets always have the largest skyline size,
while correlated data sets have the smallest skyline size. Note that this phenomenon
is similar to the situations of skylines on static object.

In particular, the experimental results in Figure 6 a) indicate that the higher
the probability threshold, the smaller the skyline size. This is reasonable, since
a p’-t-skyline is a subset of a p-t-skyline when p < p′. Figures 6 b) and 6 c) show
that the skyline size increases with higher dimensionality and larger cardinality,
which are also similar to the situations of skylines on precise data sets. Generally
speaking, the data set becomes sparser as the dimensionality increases, thus the
point has a better chance of not being dominated in all dimensions. On the other
hand, as the cardinality increases, more boundary locating object have opportu-
nities not to be dominated. Figure 6 d) shows the skyline size across time, which
remains almost constant under little updates. Specially, at each time point, the
query algorithm is invoked to re-compute the skyline according to the new positions
of object.

The next group of experiments investigates the runtime of the algorithms with
respect to the probability threshold and sampling number. The numbers on the
bars as shown in Figure 7 give the exact runtime of algorithms on the data sets.
In addition to the discrete-and-conquer (DAC) method described in the paper, for
comparison we also made up an exhaustive algorithm (EX) (see above). To compute
the p-t-skyline over a data set, without any pruning or validating techniques, EX
has to compute the skyline probability for each uncertain moving object. Therefore,
it is insensitive to the probability threshold variation and object distribution.

DAC algorithm is much faster than EX for answering skyline query on various
data sets. The results in Figure 7 clearly indicate that the pruning techniques in
our discrete-and-conquer methods significantly save the cost of computing the exact
skyline probabilities of many instances and object. In particular, Figure 7 d) shows
the runtime of both algorithms with respect to the instance sampling numbers. EX
is insensitive to the variation of s, while DAC initially improves as s increases, but
deteriorates as s grows beyond a certain threshold. Note that computing skylines
on anti-correlated data set is much more challenging. In the last part of this section,
we are focusing on the performance of DAC on anti-correlated data sets.

Figure 8 shows the performance of DAC with respect to dimensionality and
cardinality. In particular, we examine the performance of data sets consisted of 100 k
uncertain moving object by varying the dimensionality from 2 to 10. Note that the
runtime of DAC showed in Figure 8 a) increases when the dimensionality d increases
from 2 to 6 but decreases afterwards. The reasons that caused this phenomenon can
be concluded into two aspects: On the one hand, the computation cost of dominance
checking operation between two instances or object, which is fundamental operation
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Figure 6. The size of p-t-skyline with respect to probability threshold p, dimensionality
d, cardinality m, time t; a) Effect of p, b) Effect of d (p = 0.5), c) Effect of m
(p = 0.3), d) Effect of t (p = 0.3, d = 4)
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in DAC algorithm, increases as the dimensionality increases; On the other hand,
the data set becomes sparser when the dimensionality increases, thus the average
numbers of possible dominating object for an uncertain object decreases, which
leads to less dominant checking operations. Notice that the trend of runtime reflects
a balance of the two factors.
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Figure 8. Efficiency with respect to dimensionality d and cardinality m on anti-correlated
data sets; a) effect of d (anti-correlated), b) effect of m (anti-correlated)



Probabilistic Skyline Queries over Uncertain Moving Objects 1007

In order to examine the impact of the cardinality m on DAC algorithm, we
examine the performance of data sets with dimensionality equal to 4 and cardi-
nality m varying from 20 k to 100 k. Note that the runtime of DAC showed in
Figure 8 b) increases when the cardinality m increases from 20 k to 60 k but de-
creases afterwards. This is similar to the trend in Figure 8 a). This is reasonable,
since the DAC performs better when the data set is sparser. When the cardinality
is getting larger, the data set is becoming denser, which leads to more dominant
checking operations. On the other hand, in dense data sets, the skyline probability
of an instance may improve the probability bounds of more other instances or ob-
ject, which may lead to less dominant checking operations, thus the DAC performs
better too.

In the end, it could be confirmed that our DAC algorithm is scalable according
to the dimensionality and the size of the data sets.

5 RELATED WORK

Skyline query has been studied extensively in recent years. Kung et al. [13] proposed
the first Skyline algorithm, which is also known as the maximum vector problem.
The algorithm is based on the divide-and-conquer strategy (DC), which divides
the database into several sub-regions, calculates the skyline in each sub-region, and
produces the final skyline from the points in the regional skylines. Börzsönyi et al. [3]
introduced the first skyline operator to the database community and proposed the
block-nested-loop algorithm (BNL) together with the extended DC algorithm. Both
BNL and DC compare each point within the entire database with the others, and
report it as a skyline point only if there is no other object which can dominate it. In
order to progressively report the skyline points, based on the rationale of BNL, sort-
filter-skyline algorithm (SFS) [5] improves the performance by first sorting the data
according to a monotone function. A bitmap-based method [9] converts each point p
to a bit vector, which encodes the number of points having a smaller coordinate
than p on every dimension. The skyline is then obtained using only bit operations.
However, bitmaps can be extremely large for large values, and it cannot guarantee
a quick response.

As opposed to the above algorithms that must read the whole database at least
once, index-based methods need to visit only a fraction of the dataset. An exten-
sion of B-trees algorithm [9] organizes the high dimensional data in the form of
single dimensional space where object are clustered according to their coordinates
within each dimension. Thus, the skyline points can be determined without check-
ing those points not accessed yet. However, the B-tree algorithm cannot return the
skyline points according to the preference. Kossmann et al. [4] proposed an index
based progressive processing algorithm NN (nearest-neighbor), which is based on the
depth-first nearest search via R*-tree. The performance of NN deteriorates as the
dimensionality increases. For further improvement, Papadias et al. [8] proposed the
branch-and-bound skyline (BBS), based on the best-first nearest neighbor search.
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It has been proved that BBS is I/O optimal as it accesses fewer disk pages than any
algorithm based on R-tree.

Yuan et al. [14] propose the sky-cube, which consists of the skylines in all pos-
sible sub-spaces. Lin et al. [1] investigate continuous skyline monitoring on data
streams. Recently, Lian et al. [19] have studied efficient and accurate query pro-
cessing of reverse skyline query over uncertain data, considering both monochro-
matic and bichromatic situations. Ding et al. [20] consider distributed probabilistic
skyline over uncertain data. Pei et al. [2] tackle the problem of skyline analysis
on uncertain data and Huang et al. [6] introduce the continuous skyline over pre-
cise moving data. However, the above algorithms are not applicable in a mobile
environment in which properties like distance are functions that take the current
position as a parameter. The topic of this paper differs from [2] and [6] in that
we aim at computing the skyline of uncertain moving object, as opposed to static
uncertain object and precise moving object. Most recently, based on the past un-
certain location and velocity information, Zhang et al. [21] present techniques that
enable inference of the current and future uncertain locations efficiently. Further-
more, an adapted BX-tree structure is invented to index the uncertain moving ob-
ject.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we extended the well-known skyline analysis to uncertain moving
object, and introduced a novel concept of probabilistic skyline queries. We studied
the probabilistic properties of the solution to these queries. We analytically proved
that a set of probabilistic skyline object exists. We also proved that the instances
of the object can be used to prune or validate the other uncertain moving object
at a certain time. Based on several proposed observations, we developed efficacious
algorithm to tackle the problem of computing probabilistic skylines on uncertain
moving data. Using synthetic data sets, we illustrated the efficiency and scalability
of our proposed algorithm.

Instead of re-computing the skyline when any of the object change their posi-
tions, we are planning to investigate the connection between the spatial positions
of moving object and their dominance relationship, which may find changes in the
skyline result and reduce much computation cost in the result maintenance. We also
plan to use the continuous nearest neighbor techniques to solve skyline queries over
uncertain moving object in the future. It is also interesting to investigate how the
NN algorithm can be combined with discrete-and-conquer strategy for further per-
formance improvement. For instance, it would be possible to use nearest neighbor
algorithm partition the data space and then use the DAC algorithm to process each
region. Such a hybrid approach would give a possible result quickly and continue to
output the skyline efficiently.
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