
Computing and Informatics, Vol. 32, 2013, 1147–1169

A STATISTICAL APPROACH
FOR THE MAXIMIZATION OF THE FINANCIAL
BENEFITS YIELDED BY A LARGE SET OF MMFS
AND AES

Antonio J. Alencar∗, Carlos A. S. Franco
Eber A. Schmitz
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Abstract. This article introduces a statistical approach for the maximization of
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architectural elements (AEs). As the statistical approach requires a polynomial
computational effort to run and provides approximation solutions with an arbitrarily
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1 INTRODUCTION

Ever since the first commercial electronic computers were introduced into the cor-
porate market in the early 1950s, the total cost of computer-related hardware has
been decreasing at an astonishing pace [1].

For instance, in the second half of the 20th century computers were so expensive
that only government agencies and large corporations had enough investment capital
to acquire or lease them. However, nowadays consumers from various different
social strata can actually buy machines that are much more powerful than those
early commercial computers. In reality, they may select their favorite model in the
displays of department and specialised stores, place them in their shopping carts
and pay for them at the checkout with their personal credit cards [2].

Moreover, when computers are bought these days, it is often the case that, for
a fraction of the selling price, dealers can provide consumers with a product warranty
plan that covers all the services and replacement parts that are necessary to keep
the hardware running for a couple of years [3].

Nevertheless, the total cost of software has followed a completely different path.
Although building software systems was relatively inexpensive at the beginning of
the commercial-computer era, the cost of carrying out this task has increased con-
siderably over time, surpassing by far the cost of hardware [4].

According to Machiraju et al. [5], in complex IT projects the total cost of soft-
ware (which includes design, coding, deployment and maintenance) is already three
times the cost of hardware, and is still going up [6]. Therefore, it is not without
reason that the total cost of software has become an area of great concern to both
management and developers alike [7].

As a result, in the course of time, many concepts, models and techniques have
been suggested by both academics and practitioners alike as a means of keeping the
total cost of software under control [8]. While some of the suggestions put forward
drive practitioners to reduce the cost of building software systems [9], others prompt
managers to make use of tactics and strategies aimed at increasing the perceived
business value of software [10].

Consistent with these ideas, the Incremental Funding Method (IFM) has emer-
ged in recent years as an influential mechanism in the effort to bring financial disci-
pline to the practice of software engineering and, as a result, increase the perceived
value of software in the minds of investors and executives who foot the bill for
software building [11].
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Easy to understand and apply, the IFM’s concepts and techniques have gained
followers among a variety of ranks, including IT researchers, practitioners and ma-
nagers, who have undertaken the task of further developing the method [12, 13, 14]
and making software supporting tools widely available to others [15, 16].

The IFM builds upon the idea that it is frequently the case that software develop-
ment projects can be divided into smaller self-contained software units, embodying
features that are valuable to business. Furthermore, the order in which these units
are built can improve quite substantially the business value of the final product of
software projects.

Central to the ideas put forward by the IFM is a small set of polynomial-time
approximation scheduling algorithms that allow for the maximization of the financial
value yielded by software development projects. Unfortunately these algorithms
provide no dependable estimate of the approximation error they make [11].

This paper introduces a statistically-based approximation scheduling algorithm
that requires a polynomial computational effort to run, being able to deal with
complex software projects efficiently. Moreover, the statistically-based algorithm is
capable of providing reliable estimates concerning how far its final results are from
the optimum scheduling solution.

The rest of this paper is organized as follows. Section 2 presents a review of
the principal concepts and methods used in the subsequent sections. Section 3
introduces a statistical approach to the IFM’s scheduling problem. In Section 4 the
statistical approach is applied step-by-step to an example. Section 5 discusses the
merits of the statistical approach and presents the conclusions of this paper.

2 CONCEPTUAL FRAMEWORK

2.1 The Incremental Funding Method

The Incremental Funding Method (IFM), credited to Denne and Cleland-Huang
[17], is a financially conscious approach to software development that uses the ideas
of Chang et al. on Functional Class Decomposition [18] to partition the software to
be developed into smaller self-contained units that create value for business and can
be deployed in shorter periods of time.

According to Denne and Cleland-Huang [17] such units, called Minimum Mar-
ketable Feature Modules or MMFs for short, create value for business in at least one
of the following areas:

1. competitive differentiation,

2. revenue generation,

3. cost savings,

4. brand projection and

5. enhanced customer loyalty.
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Although an MMF is a self-contained unit, it is often the case that it can only
be developed after other project parts have been completed. These project parts
may be either other MMFs or the architectural infrastructure, i.e. the set of ba-
sic features that offers no direct value to customers, but that are required by the
MMFs.

It is also important to keep in mind that the architectural infrastructure itself
can usually be decomposed into self-contained deliverable units. These units, called
architectural elements, or AEs for short, enable the architecture to be delivered
according to demand, further reducing the initial investment needed to run a project.

Moreover, the total value brought to a business by a software consisting of
several interdependent MMFs and AEs, each one with its own cash-flow stream
and precedence restrictions, is highly dependent on the order in which these units
are developed. Consider the diagram presented in Figure 1, which describes the
dependency relations that hold true among the software units (SU) of a software
building project that have been divided into MMFs and AEs.

Figure 1. A precedence diagram

In the diagram SUX∈{A,B,...,K} are either MMFs or AEs, and Begin and End
are dummy software units that take no time to be developed, require no capital
investment and yield no returns. Also, an arrow going from one software unit to
another, e.g. SUA → SUB, indicates that the development of the former (SUA) must
precede the development of the latter (SUB). In these circumstances, SUA is called
a predecessor of SUB.

It should be noted that predecessor is a transitive relation. Therefore, as SUA →
SUB and SUB → SUC , then necessarily SUA → SUC . Most often transitive relations
are not made explicit in precedence diagrams, so as to keep them simple.

Table 1 shows the undiscounted cash-flow elements of each software unit in the
diagram introduced in Figure 1. See Schniederjans [19] for an introduction to the
basic concepts of software-project financial appraisal.

For example, according to the information presented in Table 1, SUA requires
an initial investment of US$ 200 000, or US$ 200K for short. Once its development
is completed at the end of the first period, it provides a series of positive returns



The Maximization of the Financial Benefits Yielded by a Set of MMFs and AEs 1151

Cash-flow Elements (US$ 1 K)

Unit Period
1 2 3 4 5 6 7 8

SUA −200 98 89 81 72 63 54 45

SUB −250 0 0 0 0 0 0 0

SUC −250 63 90 117 144 171 198 200

SUD −200 0 0 0 0 0 0 0

SUE −350 35 35 70 90 108 126 144

SUF −120 90 90 90 135 135 135 135

SUG −350 60 80 100 60 70 70 70

SUH −100 50 50 50 25 5 5 5

SUI −100 35 25 25 25 5 5 5

SUJ −50 0 0 0 0 0 0 0

SUK −75 25 25 25 25 25 25 20

Unit Period
9 10 11 12 13 14 15 16

SUA 36 27 18 9 5 4 3 2

SUB 0 0 0 0 0 0 0 0

SUC 225 225 225 225 225 225 225 225

SUD 0 0 0 0 0 0 0 0

SUE 162 180 180 180 180 180 180 180

SUF 135 135 135 135 135 135 135 135

SUG 80 120 150 250 450 100 100 100

SUH 100 20 20 20 20 20 20 20

SUI 5 5 5 5 5 5 5 5

SUJ 0 0 0 0 0 0 0 0

SUK 20 20 20 20 10 10 10 10

Table 1. Software unit cash-flow elements

until the sixteenth period, when the software as a whole becomes obsolete and has
to be replaced by a new and more advanced tool. A similar path is followed by units
SUC , SUE, SUF , SUG, SUH , SUI and SUK . Therefore, all these units are indeed
MMFs.

A different path is followed by units UB, UD and UJ . Once they are completed,
they provide no financial returns on their own in respect of the investment required
for their development. Hence, these units are architectural elements.

Because it is improper to perform mathematical operations on monetary values
without taking into account a discount rate, in order to compare the financial value
of different MMFs and the investment required by AEs, one has to resort to their
discounted cash-flow [19].

Table 2 shows the sum of the discounted cash-flow of each software unit in
Figure 1, considering a discount rate of 0.5 % per period. Such a sum is the net
present value (NPV) of all cash-flow elements of a unit.
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In order to make understanding easier, the figures presented in Table 2 have
been rounded to the nearest integer value. The remaining figures presented in this
paper follow the same convention.

Net Present Value (US$ 1 K)

Unit Period
1 2 3 4 5 6 7 8

UA 391 387 382 376 370 360 342 315

UB −249 −248 −246 −245 −244 −243 −241 −240

UC 2 398 2 179 1 962 1 745 1 530 1 316 1 102 890

UD −199 −198 −197 −196 −195 −194 −193 −192

UE 1 578 1 405 1 232 1 061 890 720 552 383

UF 1 684 1 552 1 420 1 289 1 158 1 029 900 771

UG 1 418 1 319 1 220 1 122 703 470 330 218

UH 314 294 274 254 235 215 196 176

UI 61 56 51 46 41 37 32 27

UJ −50 −50 −49 −49 −49 −49 −48 −48

UK 204 194 184 174 164 145 126 107

Unit Period
9 10 11 12 13 14 15 16

UA 280 238 187 128 61 −13 −95 −185

UB −239 −238 −237 −235 −234 −233 −232 −231

UC 679 492 308 149 16 −92 −174 −231

UD −191 −190 −189 −188 −187 −187 −186 −185

UE 233 99 −17 −116 −198 −262 −292 −323

UF 643 516 389 263 138 55 −28 −111

UG 143 78 14 −51 −106 −197 −269 −323

UH 84 79 74 69 45 −1 −47 −92

UI 22 18 13 8 −15 −38 −60 −92

UJ −48 −48 −47 −47 −47 −47 −46 −46

UK 88 69 46 22 −1 −24 −47 −69

Table 2. Software unit net present value

For instance, according to the information presented in Table 2, if UC is deve-
loped in the first period, it yields an NPV of US$ 2 398 K i.e.

−250

(1 + 0.5 %)1
+

63

(1 + 0.5 %)2
+

90

(1 + 0.5 %)3
+ · · ·+ −225

(1 + 0.5 %)16
.

On the other hand, if UC is developed in the second period, it yields an NPV of
US$ 2 179 K, in the third US$ 1 962 K and so on.

Obviously, not every MMF can be developed in the first period. The precedence
diagram presented in Figure 1 indicates that only SUA, SUD, SUH and SUJ can be
developed in that period. Because in this example, at any given time, only one unit
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can be in its development phase, SUC , for example, cannot be developed until the
third period at best.

Furthermore, each particular sequence of software units yields its own NPV. For
instance, the sequence

SUD → SUE → SUF → SUG → SUA → SUB → SUC → SUH → SUJ

→ SUK → SUI

yields US$ 5 187 K, which is the highest NPV among all possible development se-
quences.

It is important to note that the NPV of a software-unit development sequence
is the sum of the NPV of each of its components, considering the period in which
they are expected to be built. Therefore,

NPV(SUD → SUE → SUF → SUG → SUA → SUB → SUC → SUH → SUJ → SUK

→ SUI) = NPV1(SUD) + NPV2(SUE) + NPV3(SUF ) + . . .NPV11(SUI) =

(−199 + 1 405 + 1 420 + . . .+ 13)× US$1K = US$ 5 187 K,

where NPVt(SUX) is the NPV of unit SUX , considering that its development starts
in period t.

Table 3 indicates all possible development sequences for the software units in-
troduced in Figure 1 together with their respective NPV, considering that:

1. the first non-dummy unit must be developed in period one,

2. at any given period only one unit can be in its development stage,

3. once the development of a software unit starts it cannot be stopped or paused,

4. there is no delay between the completion of a software unit and the beginning
of the development of the next, and

5. all software units have to be developed eventually.

These conventions are adopted in the rest of this paper.

Sched. Period NPV
Option 1 2 3 4 . . . 8 9 10 11 (US$ 1K)

1 SUD SUE SUF SUG . . . SUH SUJ SUK SUI 5 187

2 SUD SUE SUF SUG . . . SUH SUI SUJ SUK 5 173

3 SUD SUE SUF SUG . . . SUH SUJ SUI SUK 5 169

4 SUD SUE SUG SUF . . . SUH SUJ SUK SUI 5 154

5 SUD SUE SUG SUF . . . SUH SUI SUJ SUK 5 140
...

...
...

...
...

...
...

...
...

...
...

207 900 SUD SUJ SUA SUB . . . SUG SUE SUF SUC 1 561

Table 3. Scheduling options
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2.2 The IFM’s Scheduling Algorithms

Because, in general, the number of possible implementation sequences grows expo-
nentially with the number of software units to be built, it is often the case that the
sequence that maximizes the financial return of a software project cannot be found
in polynomial time [17].

Therefore, for software development projects that have been divided into MMFs
and AEs, the IFM provides managers and developers with three distinct approxi-
mation algorithms to find the implementation sequence that maximizes a project’s
NPV, i.e. the greedy, the simple look-ahead and the weighted look-ahead approaches.

2.3 The Greedy Approach

The greedy approach is based upon a shortsighted heuristics that selects the next
software unit to be built among those whose predecessors have already been fully
developed. According to the greedy approach, the unit to be developed next is
always the one with the highest NPV, considering the development period that the
software project is currently in.

Consider the example introduced in Section 2.1. According to the information
presented in Figure 1, the only units that can be developed in the first period are
SUA, SUD, SUH and SUJ .

As stated in Table 2, if developed at this point in time, these units yield NPVs
of US$ 391 K, US$−199 K, US$ 314 K and US$−50 K, respectively. As SUA is the
unit that yields the highest NPV, this is the unit that is selected for development
by the greedy approach.

The unit candidates for development in the second period are SUB, SUD, SUH

and SUJ . At this point in the development cycle, these units yield NPVs of
US$−248 K, US$−198 K, US$ 294 K and US$−50 K, respectively. Therefore, SUH ,
which yields the highest NPV, is the unit selected for development by the greedy
approach.

The process proceeds until the eleventh period, when the last unit is selected for
development. At this point, the greedy approach selects the following development
sequence for the software project introduced in Section 2.1:

SUA → SUH → SUI → SUJ → SUK → SUD → SUE → SUF → SUG

→ SUB → SUC ,

which yields an NPV of US$ 2 193 K.

2.4 The Simple Look-Ahead Approach

The simple look-ahead approach is a farseeing heuristics that analyses the paths
connecting the units that have already been built to the undeveloped software units.
Denne and Cleland-Huang [17] call these paths strands.



The Maximization of the Financial Benefits Yielded by a Set of MMFs and AEs 1155

According to the simple look-ahead approach the next unit to be developed is
always the one heading the strand that yields the highest NPV, considering the
development period the software project is currently in.

Consider the example introduced in Section 2.1, because the dummy unit Begin
requires no time to be built, at the very beginning of period 1 its development will
have already been completed.

Therefore, the initial set of strands analysed by the simple look-ahead approach
contains the software units in the paths and sub-paths connecting the already devel-
oped unit Begin to the remaining undeveloped units. Table 4 presents the strands
considered by the single look-ahead approach in the first period of the development
cycle.

Strand NPV (US$ 1 K)
Adding Terms Total

SUA y SUB y SUC 391− 248 + 1 962 2 105

SUA y SUB 391− 248 143

SUA 391 391

SUD y SUE y SUF −199 + 1 405 + 1 420 2 606

SUD y SUE −199 + 1 405 1 206

SUD −199 −199

SUD y SUG −199 + 1 132 933

SUH y SUI 314 + 56 370

SUH 314 314

SUJ y SUK −50 + 194 144

SUJ −50 −50

Table 4. Strands considered by the single look-ahead approach in the first period of the
development cycle

As SUD y SUE y SUF is the strand that yields the highest NPV, i.e.
US$ 2 606 K, SUD is the software unit initially selected for development by the single
look-ahead approach.

In the beginning of the second period unit UD will have already been built, so
the set of strands requires some adjustment. Table 5 presents the strands that are
analysed by the simple look-ahead approach at the beginning of that period.

Because SUE y SUF is the strand that yields the highest NPV, i.e. US $ 2 825 K,
SUE is selected for development. The process continues until the last undeveloped
unit is selected for development in the eleventh period. For the example introduced
in Section 2.1 the simple look-ahead approach indicates that development of AEs
and MMfs should be carried out as follows:

SUD → SUE → SUA → SUF → SUB → SUC → SUG → SUH → SUI

→ SUJ → SUK ,

which yields an NPV of US$ 4 475 K.
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Strand NPV (US$ 1 K)
Adding Terms Total

SUA y SUB y SUC 387− 246 + 1 745 1 866

SUA y SUB 387− 246 141

SUA 387 387

SUE y SUF 1 405 + 1 420 2 825

SUE 1 405 1 405

SUG 1 319 1 319

SUH y SUI 294 + 51 345

SUH 294 294

SUJ y SUK −50 + 184 134

SUJ −50 −50

Table 5. Strands considered by the single look-ahead approach in the second period of the
development cycle

2.5 The Weighted Look-Ahead Approach

According to Denne and Cleland-Huang [17], by negatively weighting the number
of periods required for the development of each strand, one actually increases the
chances of the simple look-ahead approach selecting the strand that maximizes the
financial return of a software project.

This weighting favors the development of strands that are delivered over a shorter
period of time, despite the fact that they may provide an NPV that is similar to
others. Therefore, the weighted look-ahead approach facilitates even further the
earlier appropriation of the financial benefits yielded by a software project.

According to Denne and Cleland-Huang [17] the most effective weighting factor
depends on a number of project characteristics such as the shape of the precedence
diagram and the window of opportunity, i.e. the length of time from the beginning
of a software project to the time when the project’s final product becomes obsolete
and has to be replaced by a more attractive solution.

Denne and Cleland-Huang [17] suggest the use of the following formula to ne-
gatively weight the NPV of a given strand S:

Weighted-NPV(S) = NPV(S)× (1− (WF× (p− 1))), (1)

where WF is a pre-selected weighting factor and p is the number of periods necessary
to build all software units in S.

Practical experiments carried out by Denne and Cleland-Huang [17] indicate
that for a sixteen-period window of opportunity the ideal weighting factor belongs
to the close interval [10 %..15 %], while for an eight-period window it belongs to the
close interval [20 %..25 %].
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For example, consider a strand SUX y SUY y SUZ that takes three periods
to be developed and yields an NPV of $ 50 K if its development starts in period 1.
Also, allow for a weighting factor of 10 %. In these circumstances

Weighted-NPV(SUX y SUY y SUZ) =

$ 50K × (1− (10 %× (3− 1))) = $40K.

Now, consider a strand SUV y SUW , which yields the same NPV, if its deve-
lopment starts in period 1 but takes only two periods to be developed. Hence, this
strand yields a weighted NPV of

$ 50K × (1− (10 %× (2− 1))) = $ 45K,

indicating that it is a more attractive choice for development.

Keeping in perspective the example introduced in Section 2.1, Table 6 presents
the strands that are analysed by the weighted look-ahead approach in the first
period of the development cycle. Following Denne and Cleland-Huang’s advice [17],
a weighting factor of 10 % has been used to figure the weighted-NPVs that are shown
in Table 6.

Strand NPV (US$ 1 K)
Unweighted Weighted

SUA y SUB y SUC 2 105 2 105 ∗ (1− (10 %× (3− 1))) = 1 684

SUA y SUB 143 143 ∗ (1− (10 %× (2− 1))) = 129

SUA 391 391 ∗ (1− (10 %× (1− 1))) = 391

SUD y SUE y SUF 2 626 2 626 ∗ (1− (10 %× (3− 1))) = 2 101

SUD y SUE 1 206 1 206 ∗ (1− (10 %× (2− 1))) = 1 085

SUD -199 −199 ∗ (1− (10 %× (1− 1))) = −199

SUD y SUG 1 120 1 120 ∗ (1− (10 %× (2− 1))) = 1 008

SUH y SUI 370 370 ∗ (1− (10 %× (2− 1))) = 333

SUH 314 314 ∗ (1− (10 %× (1− 1))) = 314

SUJ y SUK 144 134 ∗ (1− (10 %× (2− 1))) = 130

SUJ -50 −50 ∗ (1− (10 %× (1− 1))) = −50

Table 6. Strands considered by the weighted look-ahead approach in the first period of the
development cycle

Note that SUD y SUE y SUF is the strand that yields the highest Weighted-
NPV, i.e. US$ 2 101 K. Because SUD is the software unit that heads that strand, it
is this unit that is selected for development in the first period.

Table 7 presents the strands that are considered by the weighted look-ahead
approach in the second period of the development cycle.

Note that it is now SUE y SUF that yields the highest Weighted-NPV, i.e.
US$ 2 543 K. Hence, it is the unit SUE that is selected for development in the second
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Strand NPV (US$ 1 K)
Unweighted Weighted

SUA y SUB y SUC 1 886 1 886 ∗ (1− (10 %× (3− 1))) = 1 509

SUA y SUB 141 141 ∗ (1− (10 %× (2− 1))) = 127

SUA 387 387 ∗ (1− (10 %× (1− 1))) = 387

SUE y SUF 2 825 2 825 ∗ (1− (10 %× (2− 1))) = 2 543

SUE 1 405 1 405 ∗ (1− (10 %× (1− 1))) = 1 405

SUG 1 319 1 319 ∗ (1− (10 %× (1− 1))) = 1 319

SUH y SUI 294 294 ∗ (1− (10 %× (2− 1))) = 294

SUH 314 314 ∗ (1− (10 %× (1− 1))) = 314

SUJ y SUK 134 134 ∗ (1− (10 %× (2− 1))) = 121

SUJ -50 −50 ∗ (1− (10 %× (1− 1))) = −50

Table 7. Strands considered by the weighted look-ahead approach in the second period of
the development cycle

period. The process proceeds until the last unit is selected for development in the
eleventh period. At this point, the weighted look-ahead approach indicates that

SUD → SUE → SUF → SUA → SUB → SUC → SUG → SUH → SUI

→ SUJ → SUK

is the strand that yields the highest NPV, i.e. US$ 4 600 K.

2.6 Comparing the Results Presented by the IFM’s
Scheduling Algorithms

Table 8 presents the results provided by each of the IFM’s scheduling algorithms
considering the example introduced in Section 2.1. Moreover, for comparison pur-
poses, Table 8 also presents the result provided by the brute-force algorithm, which
exhaustively analyses all possible implementation sequences in order to select the
one that yields the highest NPV.

It is important to note that without the support of the brute-force approach,
which requires an exponential computing effort to yield its results, one is at a loss to
determine how far from the implementation sequence that yields the actual highest
NPV the outputs of the IFM’s algorithms are.

2.7 The Approximation Algorithm’s Mathematical Foundation

In the 1930s a general result obtained by Kolmogorov1 [23, 24] on the theory of
statistics allows for the establishment of a confidence interval around the empirical

1 Also known as Kolmogoroff, Andrei Nikolaevich, the well-known Russian mathemati-
cian [22].
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Approach Implementation Sequence NPV Percent
(US$ 1 K)

Brute force SUD → SUE → SUF → SUG → SUA → 5 187 100.0 %
SUB → SUC → SUH → SUJ → SUK → SUI

Greedy SUA → SUH → SUI → SUJ → SUK → 2 193 42.3 %
SUD → SUE → SUF → SUG → SUB → SUC

Single SUD → SUE → SUA → SUF → SUB → 4 475 86.3 %
look-ahead SUC → SUG → SUH → SUI → SUJ → SUK

Weighted SUD → SUE → SUF → SUA → SUB → 4 600 88.7 %
look-ahead SUC → SUG → SUH → SUI → SUJ → SUK

Table 8. Results presented by the IFM’s algorithms

density function of any continuous random variable, with an arbitrary degree of
confidence. In this section, Kolmogorov’s result along with related results obtained
by others [31, 29] are used to lay down the mathematical foundations of an approx-
imation algorithm that identifies a software project’s implementation sequence of
MMFs and AEs that yields the highest NPV.

First, Kolmogorov’s result is presented in a formal manner. Next, related work
that extends Kolmogorov’s result to encompass discrete random variables is dis-
cussed. Finally, all these results are combined to lay down the mathematical foun-
dations of the approximation algorithm.

2.7.1 The Kolmogorov Confidence Contours

In formal terms, for a continuous random variable x let

F (x) = P (X ≤ x)

be its cumulative density function, or cdf. Also, let X1, X2, . . ., Xn be a random
sample of x and

Sn(x) = Pn(X ≤ x) =
1

n

n∑
i=1

{
1 if Xi ≤ x
0 otherwise

be the corresponding empirical density function, or edf.
In addition, let Dn = sup|F (x) − Sn(x)|, where sup stands for the supreme

(least upper bound) of a set of ordinal-scale values. According to Glivenko [20] and
Cantelli [21]

lim
n→∞

Dn = lim
n→∞

sup|F (x)− Sn(x)| → 0,

i.e. as the size of the sample increases, the distance between the cdf and the edf
tends toward zero.

A strong result obtained by Kolmogorov [23, 24] in the 1930s not only shows
that the statistic Dn does not depend on F (x), but also states that the probability
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α of Dn not exceeding an arbitrary value in the form of λ√
n

is given by

P (Dn ≤
λ√
n

) = α.

In the course of time λ has been tabulated for different sample sizes and levels
of confidence. Table 9 presents the value of λ for different values of n (the sample
size) and α (the level of confidence). Tables containing a more detailed list of values
of λ can be found in [25, 26, 27, 28] and many other statistics texts.

n α
0.90 0.95 0.99

10 0.323 0.369 0.457

20 0.232 0.265 0.329

30 0.190 0.218 0.270

40 0.165 0.189 0.235

n > 40 1.07√
n

1.22√
n

1.52√
n

Table 9. The value of λ for different values of n and α

As a result, if one takes k random observations of a continuous random vari-
able x, where k is greater than 40, the probability that the distance between x’s cdf
and its edf is smaller than 1.22√

k
is 0.95, i.e.

P (Dk ≤
1.22√
k

) = 0.95.

2.7.2 Dealing with Discrete Random Variables

In the 1970s the results obtained by Kolmogorov [23, 24] were extended to handle
discrete distributions by Conover [29], and Coberly and Lewis [30] independently.

Furthermore, according to Walsh [31], when applied to discrete variables the
values derived from Kolmogorov’s work lead to a safely conservative estimate of
λ√
k
. This claim was later acknowledged by Pettitt and Stephens [32], and Conover

himself [27].

2.7.3 The Basis of the Approximation Algorithm

If the random sample that is used to build an edf is comprised of NPVs of the
implementation sequences of MMFs and AEs belonging to the same software project,
then those confidence intervals bear a special meaning. When applied to the highest
NPV in the sample, the confidence interval indicates how close to the actual absolute-
maximum NPV that particular value is, in relative terms.

For instance, consider a 3 000 random sample from the implementation sequences
displayed in Table 3 together with their respective NPVs. Also, let h be the highest
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NPV in that sample. In these circumstances, as the estimations are conservative

P

(
D3 000 ≤

1.22√
3 000

)
≥ 0.95 =⇒ P

(
|F (h)− S3 000(h)| ≤ 1.22√

3 000

)
≥ 0.95.

Because h is the highest value in the sample, S3 000(h) is necessarily 1. As a result

P (|F (h)− 1| ≤ 0.0223) ≥ 0.95

⇓
P (−0.0223 ≤ F (h)− 1 ≤ 0.0223) ≥ 0.95

⇓
P (0.977 ≤ F (h) ≤ 1.0223) ≥ 0.95.

As by definition F (h) cannot exceed 1,

P (0.977 ≤ F (h) ≤ 1) ≥ 0.95.

Therefore, the probability that all the other NPVs in the set of all possible
NPVs are smaller than or equal to h is 0.977, with a level of confidence that equals
or exceeds 95 %. Hence, h may be considered a good approximation to the highest
possible NPV, and the implementation sequence that has h as its NPV may be
taken as the implementation sequence to be followed during the development of
the corresponding software project. Table 10 compares the estimated and actual
differences between F (h) and Sn(h) for different sample sizes, in absolute terms,
considering the NPVs displayed in Table 3.

Note that if one is not satisfied with the results provided by a certain sample size,
one may randomly increase the number of observations in the sample and improve
the results until one is fully satisfied with them.

Sample h F(h) |F(h)− S(h)|
Size (US$ 1 K) Real Estimated

100 4 628 0.9960 0.0040 0.1220

200 4 628 0.9961 0.0039 0.0683

500 4 724 0.9979 0.0021 0.0546

1 000 4 898 0.9994 0.0006 0.0386

3 000 4 983 0.9998 0.0002 0.0223

5 000 4 995 0 9998 0 0002 0 0173

Table 10. Sample related statistics for α = 0.95

3 THE STATISTICAL APPROACH

Consider the precedence graph G = (SU, E) of a software system that has been
divided into MMFs and AEs. In these circumstances,
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• SU = {su1, su2, . . . , sun}, the set of vertex, is a set of MMFs and AEs, and

• E, the set of edges, is a set of ordered pairs, such that if (sua, sub) ∈ E, then
sua is a predecessor of sub, indicating that the development sua must precede
the development of sub.

Figure 1 presents an example of such a graph. A quite comprehensive introduction
to graph theory is given by Diestel [33].

Algorithm 1 introduces a finite sequence of steps that randomly select an imple-
mentation sequence that contains all the units in SU and complies with the prece-
dence constraints specified in E. Table 11 presents the meaning of the variables,
sets and functions used in the specification of Algorithm 1.

Symbol Meaning

dusu the duration of the development of software unit su ∈ SU
stsu the period in which the development of su starts
Pred(su) the set of the predecessors of su as specified in E
Ready the set of all software units that are ready for development, as

all their respective predecessors have already been built
InDev the set of software units that are currently being developed
Blocked the set of software units blocked for development, because at

least one of its predecessor have not yet been developed
Built the set of software units that have already been built
period the time counter
#teams the number of teams available to work on the development of

the software units in SU
SU ′ an auxiliary set such that SU ′ ⊆ SU
Select a function P(SU) × N → P(SU), where P(SU) is the power

set of SU and N is the set of natural numbers, such that
Select(SU ′, k) randomly selects k elements from SU ′

Table 11. The meaning of the variables, sets and functions used in the specification of the
statistical approach scheduling algorithm

Note that Algorithm 1 permits the concurrent development of an arbitrary num-
ber of software units. However, at all times, the number of sequences that are being
concurrently developed is limited by the number of development teams that are
available to work on the construction of the software project under consideration.

In order to obtain the implementation sequence that best maximizes the NPV of
a software project, one should first run Algorithm 1 n times. In these circumstances
the choice of n depends on two factors, i.e.

• how close to the actual sequence that maximizes the NPV one wants the result
to be, and

• how confident one wants to be that the result presented by the statistical ap-
proach is close enough.
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Table 9 can help in solving these questions. According to the information dis-
played in Table 9, the higher the value of n, the closer to the actual solution one
tends to be. Also, the value of α can be used to state how confident one can be that
the NPV yielded by the statistical approach is close enough to the real NPV that
maximizes the financial benefits of a software project, in relative terms. Table 12
summarizes the steps comprising the statistical approach.

Step Action

1 Identify the precedence diagram G = (SU, E) of a software
project that has been divided into MMFs and AEs

2 Identify the number of development teams that are available
to work on the software project, i.e. #teams

3 Select the number n of development sequences to be randomly
generated according to the constraints imposed on E. One
may use the information shown in Table 9 to better select n

4 Execute Algorithm 1 n times

5 For every execution of Algorithm 1 save the implementation
sequence generated by the algorithm together with its NPV

6 Among the implementation sequences generated by Algorithm
1, identify the one that yields the highest NPV, naming this
sequence H

7 Use Kolmogorov’s results presented in Section 2.7 to create
a confidence interval Dn around F (h = NPV(H))

8 Take Dn = |F (h) − S(h)| as an indicator of the relative dis-
tance between h and the NPV of the implementation sequence
that actually maximizes the financial benefits of the software
project

9 Take H as the sequence that best maximizes the financial bene-
fit of the software project that has G as its precedence diagram

Table 12. The steps comprising the statistical approach

4 AN EXAMPLE

As examples tend to make understanding easier, the statistical approach proposed
in Section 3 is applied step-by-step to a reasonably complex software project.

Step 1: Identify the precedence diagram of a software project

In this example one should take into consideration the diagram presented in
Figure 1.

Step 2: Identify the number of development teams

Suppose that due to unfavorable market conditions only one development team is
currently available to work on the software project under consideration,
i.e. #teams = 1.
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Step 3: Select the number of development sequences to be randomly ge-
nerated

In order to obtain a tight confidence interval around the estimates yielded by
the statistical approach, consider generating a random sample with 5 000 obser-
vations.

Steps 4 and 5: Execute Algorithm 1 five thousand times, saving the re-
sults

Table 13 presents the 5 000 random sample generated by Algorithm 1.

Sched. Period NPV
Option 1 2 3 4 . . . 8 9 10 11 (US$ 1K)

1 SUJ SUD SUH SUA . . . SUC SUI SUK SUF 2 954

2 SUD SUE SUG SUA . . . SUH SUJ SUI SUK 4 881

3 SUD SUE SUF SUG . . . SUC SUJ SUK SUI 5 016
...

...
...

...
... . . .

...
...

...
...

...

5 000 SUJ SUD SUH SUA . . . SUC SUI SUK SUF 2 954

Table 13. Random sample of possible implementation sequences

Step 6: Identify the implementation sequence that yields the highest
NPV

Among the implementation sequences generated in the previous step

SUD → SUE → UG → SUF → SUA → SUB → SUC → SUJ → SUK

→ SUH → SUI

is the sequence the yields the highest NPV, i.e. US$ 5 076 K. Name this se-
quence H.

Step 7: Create a confidence interval around the NPV obtained in the
previous step

Let h = NPV(H). According to Walsh (see Section 2.7)

P

(
|F (h)− 1| ≤ 1.22√

5 000
= 0.0173

)
≥ 0.95.

Note that P (|F (h) − 1| ≤ 0.0173) ≥ 0.95 =⇒ P (0.9827 ≤ F (h) ≤ 1) ≥ 0.95.
As F (h) = 0.9998 (see Table 3), the result predicted by Walsh not only is
accurate, but it also makes H a very good choice for the implementation sequence
that should be followed during the development of the corresponding software
project.
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Step 1: Initialization of the set containing the software units
in development and that have already been built. Also,
the initialization of the time counter.

InDev← {}
Built← {}
period← 1

Step 2: Initialization of the set containing the software units that
are ready to be developed.

Ready← {su ∈ SU|Pred(su) = {}}
if Ready = {} then go to Step 8

Step 3: Initialization of the set containing the software units that
are not ready to be developed.

Blocked = SU −Ready
Step 4: Select software units to be developed.

if |InDev | < #teams ∧ Ready 6= {}

then


SU′ ← Select(Ready,#teams− |InDev |)
∀su′ ∈ SU′ =⇒ stsu′ ← period
InDev ← InDev ∪ SU′

Step 5: Finish building the software units whose completion time
are the earliest. The time counter is updated accordingly

SU′ = {sui ∈ InDev | ∀suj ∈ InDev =⇒ stsui + dusui ≤ stsuj + dusuj}
Built ← Built ∪ SU′

InDev ← InDev − SU′

Take anysu′ ∈ SU′

period ← stsu′ + dusu′

Step 6: Make available for development the software units whose
predecessors have already been built

Ready← {sui ∈ Blocked|∀suj ∈ Pred(sui) =⇒ suj ∈ Built}
Step 7: Check whether there are still software units to be developed

if InDev 6= {} ∨ Ready 6= {} then go to Step 4
Step 8: All software uits have been scheduled

Stop

Algorithm 1. The statistical approach scheduling algorithm

5 CONCLUSIONS

Many of the software systems that are being built today tend to be complex from
the perspective of not only the problems they are set up to solve, but also in dealing
with the large number of self-contained units they are often divided into. Therefore,
situations in which there is an exponential number of possible scheduling options
for the development of these units are slowly becoming the rule in software projects
rather than the exception [34].

The approximation method presented in this paper is specially useful in the
presence of large sets of interconnected MMFs and AEs, when the use of the brute-
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force approach becomes inviable due to the computational effort it requires to yield
a precise result. Hence, it is better suited to deal with a larger variety of real world
situations.

There is however an obvious drawback one should be aware of: if the project
under consideration is small (less than ten software units for example) the brute-
force approach to finding the scheduling option that maximizes the financial value of
a project is likely to provide an exact answer in a bearable length of time. Therefore,
in these circumstances the brute-force approach may be preferable to the statistical
approach presented in this paper as it tends to yield a better result with a compu-
tational effort that may be considered negligible.

Nevertheless, as the statistical approach provides approximation solutions with
an arbitrary degree of confidence, it is preferable to the heuristical methods put
forward by the authors of the IFM, which provide no dependable estimate for the
approximation error they make.

Moreover, by using the statistical approach, whose approximation error can
be made as small as one wishes, developers and project managers can feel more
confident about the rightness of the decisions they made with the intent to speed
up the appropriation of the financial benefits yielded by the software projects they
are responsible for, keep the capital required by those projects small and mitigate
the risk exposure due to changes in the marketplace.
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