
Computing and Informatics, Vol. 32, 2013, 1272–1292

IMPLEMENTATION OF A RANLUX BASED
PSEUDO-RANDOM NUMBER GENERATOR
IN FPGA USING VHDL AND IMPULSE C

Agnieszka Da̧browska-Boruch, Grzegorz Gancarczyk
Kazimierz Wiatr

AGH University of Science and Technology
Department of Electronics
al. A. Mickiewicza 30
30-059 Kraków, Poland
&
ACC CYFRONET AGH
ul. Nawojki 11
30-950 Kraków, Poland
e-mail: {adabrow, gegula, wiatr}@agh.edu.pl

Abstract. Monte Carlo simulations are widely used e.g. in the field of physics and
molecular modelling. The main role played in these is by the high performance
random number generators, such as RANLUX or MERSSENE TWISTER. In this
paper the authors introduce the world’s first implementation of the RANLUX al-
gorithm on an FPGA platform for high performance computing purposes. A sig-
nificant speed-up of one generator instance over 60 times, compared with a graphic
card based solution, can be noticed. Comparisons with concurrent solutions were
made and are also presented. The proposed solution has an extremely low power
demand, consuming less than 2.5 Watts per RANLUX core, which makes it perfect
for use in environment friendly and energy-efficient supercomputing solutions and
embedded systems.

Keywords: RANLUX, FPGA, PRNG, HPC, HPRC, VHDL, Impulse C

Mathematics Subject Classification 2010: 68U01, 65P20, 60G099

Implementation of a RANLUX Based PRNG in FPGA 1273

1 INTRODUCTION

The ACC Cyfronet AGH is the biggest high performance computing centre in
Poland [17]. The main motivation for this work was to ease CYFRONET scien-
tific users with their complex computational and time consuming tasks. The main
problem for the users focused on Astrophysical Competence Centre of CYFRONET
are the extremely time consuming Monte Carlo (MC) simulations, used in e.g. the
SuperB experiment [18]. In the SuperB experiment, the MC simulations last longer
than any other calculations taken and consume more than 670 kHEP-SPEC06 of the
HPC centres computational power per year [19].

As for the MC experiments themselves, they rely on random sampling, there-
fore the fast and reliable generation of (pseudo-) random numbers is extremely im-
portant. Among others the Organisation Européenne pour la Recherche Nucléaire
(CERN) recommends only three PRNGs (Pseudo-Random Number Generators) for
MC simulation purposes, i.e. the RANMAR, the RANECU and the RANLUX im-
plementations [8]. These PRNGs are used i.a. in the following packages: FermiQCD,
UKQCD, SZIN, ISAJet, GEANT4, PYTHIA, HERWIG, SHERPA, ALPGEN. The
MERSENNE TWISTER is also being frequently used in the MC applications, as
one with an extremely long period and satisfying the randomness of results [8].
As for the CYFRONET users dealing with High Energy Physics (HEP), only the
RANLUX was in their scene of interest.

The authors goal was to check, if implemented in the hardware the RANLUX
core suits as an external accelerator of the PRNs generation process. Special care
was taken to investigate, how such a solution could be attractive for super computers
centres.

The measurements show that the single RANLUX algorithm instance run on
a 5th generation FPGA device (currently the 7th generation is being brought into
the market) is consuming less than 2.5 W with 40 % of the performance of Intel’s
low power processor with 35 W of Total Dissipated Power (TDP), and 45 % of the
performance of an AMD high performance processor with 125 W of TDP.

In Section 2 there is a brief background of the RANLUX algorithm, its history
and solutions currently used. Section 3 is fully devoted to a description of the
RANLUX algorithm implementations in the VHDL and Impulse C languages, a few
words about the languages used and the reconfigurable platform, which was exploited
during the tests can be found there as well. Section 4 contains comparisons of all the
aforementioned solutions, while Section 5 gives information about present research
and future plans of development. At the end of the article Appendixes A and B
can be found. In both implementations of the RANLUX algorithm cores done in
Impulse C (A) and VHDL (B) were inserted.

2 BACKGROUND

The RANLUX algorithm is a pseudo-random number generator. It is one of the
standard generators used for the Monte Carlo simulations. The RANLUX was de-

1274 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

veloped by Martin Lüscher in 1994 [1]. The author of the RANLUX PRNG started
his work with the existing SWB (Subtract-With-Borrow) RCARRY algorithm pro-
posed by Marsaglia and Zaman [2]. The RCARRY PRNG has a generation period
in the order of 10171. At first it seemed to have very good statistical properties,
but now it is well known that the RCARRY fails some of the newer randomness
tests. This fact was Lüscher’s motivation to create a new algorithm for the pseudo-
random number generator. The main assumption was that a new PRNG should
pass all known statistical tests.

2.1 The RANLUX Algorithm

The RANLUX algorithm was developed using the theorem of the Kolmogorov en-
tropy and the Lyapunov exponent. A single RANLUX algorithm step needs to
perform two stages for computation of a single precision floating point or integer
PRN. The first stage of this single step is the determination of the ∆n value from
Equation (1) [7]

∆n = xn−s − xn−r − cn−1, (1)

where s = 10, r = 24 in the original RANLUX algorithm.

The ∆n value is calculated for n ≥ r. It means that the algorithm starts with
n = 24. The next stage of the single algorithm’s step is to determine the values of
the xn and the carry cn. These values are calculated from a dependence (2)

xn =

{
∆n, cn = 0 if ∆n ≥ 0
∆n + m, cn = 1 if ∆n < 0

, (2)

where m = 224 and xn is an integer in the range 0, . . ., 224 − 1.

In the basic specification of the RANLUX, the output value can be integer xn

or floating point xn/224 in the range 0, . . . , 1.

The basic core of the RANLUX algorithm needs the first 24 values x0, . . . , x23

and the carry bit c23 to function properly. In other words the RANLUX algorithm
needs a total of 576 bits to start-up. These bits can be generated using Equa-
tion (3) [7]

bn = (bn−13 + bn−31) mod 2, (3)

where bn indicates the individual bits and n ≥ 0.

The dependence (3) requires 31 initial bits for a proper start of recursion. These
initial bits can be represented by an integer seed with a value between 1 and 231−1.

The author of the RANLUX algorithm noticed that omitting a few generated
numbers from Equation (2) improves statistical properties of the PRNG. It means
that the PRNG’s sequence of numbers has better randomness than the simple
RCARRY algorithm. Lüscher introduced so-called luxury levels for this reason.
The RANLUX algorithm has five luxury levels: 0–4. The basic rule for the RAN-
LUX algorithm is that r generated pseudo-random numbers are delivered, while

Implementation of a RANLUX Based PRNG in FPGA 1275

p−r generated numbers are omitted in every pack of p generated PRNs. All p num-
bers (both r used and p− r omitted) are used for the further recursive calculations.
Lüscher has determined the r value as 24. The exact values for every luxury level
were given in Table 1.

Luxury Delivered Omitted All generated numbers
level numbers numbers in one algorithm pass

(r) (p− r) (p)

0 24 0 24
1 24 24 48
2 24 73 97
3 24 199 223
4 24 365 389

Table 1. The luxury levels of the RANLUX algorithm [1]

The usage of luxury level 4 ensures that the sequence of delivered numbers
has a chaotic character. Additionally, luxury level 4 guarantees preservation of
the generator’s period [4]. A further increasing of numbers of the omitted values
does not make sense, because it does not improve the randomness of the generated
sequence, but it requires much more calculation effort per each 24 random numbers
in a generated sequence.

The most popular is luxury level 3. It is satisfying from the statistical properties
point of view. As for luxury level 2, the random number sequence can have defects
in theory (low range correlation between samples), but in practice no defects have
been detected yet [4].

Please note that the levels with the best statistical properties use prime p para-
meter values and only for those the RANLUX algorithm has passed one of the most
important statistical property tests, the DIE HARD battery of tests of randomness
and crush.

2.2 Existing Implementations

Solutions currently used for PRNs (Pseudo-Random Numbers) generation due to
the RANLUX’s guidelines are the ones for the General Purpose Processors (GPPs),
i.e. those based on x86, Cell, Spark, ARM, etc. architecture and for General Purpose
Graphic Processing Units (GPGPUs), i.e. AMD’s (former ATI) or nVidia’s graphic
cards.

The graphic card should be considered as an external accelerator (connected
with the GPP by the PCI-E bus), its role is to generate only random numbers
and send them to the GPP for further processing, or as autonomic computational
systems, which are meant to generate PRNs and make additional processing locally
(i.e. on the card) with no GPP usage. In this second case the role of the GPP is
reduced to run only the operational system and send initial data to the graphic card.

1276 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

In this paper graphic cards will be considered as external accelerators only and not
as whole, independent, computational systems.

The RANLUX implementations are written in the ANSI C (with Assembler in-
serts), C++, Fortran, Java, OpenCL, CUDA C and nVidia’s ASM programming
languages. The performance of the Java solutions stand out from the others, there-
fore they will not be discussed here, just like the solutions written in nVidia’s ASM
will not be taken into account, because they are currently out-of-date. As for the
Fortran implementation, it was done by James [3], just as the ANSI C one done by
Lüsher. Both have a similar performance.

The classical solutions run on the GPPs can use up to 4 independent threads
per core (thanks to the SSE registers usage) and run on up to 6 cores independently.
This gives up to 24 RANLUX instances run in parallel on one processor (e.g. Intel
Xeon X5670). Each instance is the RANLUX algorithm run with different initial
conditions (seeds). The produced samples are still random as long as luxury level
of 3 or 4 is used. For the lower luxury level values, a correlation between the
output of a single instance is visible, ergo a correlation between the results of two
independent instances occurs even more clearly. Lüsher’s ANSI C + ASM solution
of RANLUX (version 3.3) is available at his homepage [20] and distributed under
the GNU General Public License (GPL) conditions.

The C++ SISCone (Seedless Infrared Safe Cone) implementation uses only one
core and one thread per core in its original form. It is used as a part of the larger
HEP project simulation, where MC experiments are involved. The code and more
information about the SISCone jet algorithm are available at [21] and distributed
also under the GNU GPL conditions.

For both CUDA C and OpenCL solutions presented in [8] and [9], code is not
accessible online. As for the RANLUX’s OpenCL implementation, large parts of
used code were inserted in the Demchick’s paper [8].

Because all four implementations differ from the original one given by Lüscher,
the authors decided to:

• modify the ANSI C + ASM and C++ code to have the same p parameter value
as the one given by Lüscher originally,

• run GPP solutions in one core, one thread mode only, which ensures the same
measuring conditions as the ones for FPGAs,

• cite results just as they were in the case of the OpenCL and CUDA C imple-
mentations.

One of the first publications with the results of the software implementation of
the RANLUX PRNG is the Hamilton and James [5] article. They implemented the
original Lüscher’s algorithm with luxury levels 0–4. The implementation was made
using the Fortran language.

Implementation of a RANLUX Based PRNG in FPGA 1277

An estimation of single RANLUX instance efficiency was done using the effi-
ciency parameter, which uses a kSa/MHz unit, due to a well known approxima-
tion (4)

P ∼ f, (4)

which denotes that the power P consumed by the working processing unit is pro-
portional to its clock speed f . Equation (4) is a generalised version of more complex

P = CV 2f, (5)

which can be found i.a. in [24] and [25]. C denotes total capacitance of the processing
unit, while V is its supply voltage. The CV 2 factor for all considered hardware
platforms differs by less than 15 %, therefore it was simply neglected.

Demchik in [8] presented the implementation of the RANLUX algorithm with
different luxury levels (Table 2) than the ones in the original Lüscher’s algorithm.
Luxury level 1 is the same as in the original RANLUX, but the next levels are differ-
ent. In Demchik’s solution: 96 numbers are omitted from luxury level 2, 216 numbers
are omitted from luxury level 3 and 384 numbers are omitted from luxury level 4.
All these numbers are multiples of 24. Demchik wrote that the GPU had shown
better performance for such defined luxury levels. He archived method 1.11 GSa/s
(random numbers/samples per second) in the global buffer at luxury level 3, but
for 4 096 RANLUX threads with different seed values. It means that one thread
produces only 271 kSa/s. It also denotes, that this solution has a total efficiency
of 1.53 MSa/MHz at luxury level 3 (the ATI Radeon HD 5 850 GPGPU core works
with a 725 MHz clock speed [8]) and 0.37 kSa/MHz of efficiency per single GPGPU
thread. The author has also implemented a so-called planar method and achieved
10.85 GSa/s at luxury level 3. There is no information in [8] how many RANLUX
instances with different seed values were used in this solution.

Another GPU implementation of the RANLUX algorithm is Wende’s work [22].
In this work the luxury levels are also different from the Lüscher’s algorithm. Wen-
de’s luxury levels are shown in Table 2. The implementation was done using
an nVidia Tesla C1060 graphic card. The author had used 240 thread blocks and
each thread block contained 16 CUDA threads. This implementation had 3 840 sub-
RANLUX instances. Each RANLUX instance worked with a different seed value.
This solution generated 720 MSa/s at luxury level 1, i.e. 3 MSa/s per single thread
block and 187.5 kSa/s per one sub-RANLUX instance. This solution stands at the
level of a total efficiency of 1.20 MSa/MHz (the clock speed of the Tesla C1060
GPGPU core is equal to 602 MHz [22, 23]) and the efficiency of a single thread of
0.31 kSa/MHz at luxury level 1.

3 DESCRIPTION OF HARDWARE IMPLEMENTATIONS

The hardware-aided generation of PRNs was done using the DRC AC2020 reconfig-
urable system [11]. The mentioned workstation is equipped with an AMD Opteron

1278 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

Luxury Original RANLUX 3.0 Demchik’s Wende
level RANLUX [1] [7] planar [8] [22]

0 24 133 – 109
1 48 226 24 202
2 97 421 120 397
3 223 – 240 –
4 389 – 408 –

Table 2. The p parameter values (number of PRNs generated during one algorithm pass)
in different RANLUX implementations

2 352 GPP working with a frequency of 2.1 GHz. The AC2020 also has one FPGA
device (a so called Reconfigurable Processing Unit – RPU) inside the motherboard’s
second CPU socket. Both the GPP and RPU are connected by a 64 bit wide Hy-
perTransport v1.0 bus [14]. In the case of the AC2020, the RPU used is the Xilinx’s
Virtex5 LX220-2 FPGA running with a maximum frequency of 200 MHz. The RPU
clock can be downgraded (e.g. to 167 MHz) if needed, but in the case of the imple-
mentations shown in this article, it was always working at the highest possible clock
speed.

The GPP role was to start up (by sending a seed) the RANLUX generator
implemented inside the RPU and collect the generator’s output data, therefore no
extra pre- or post-processing was done by the GPP.

Inside the RPU a single RANLUX instance was implemented. By “instance”,
a single RANLUX generator core is meant. The implemented algorithm is 100 %
compatible with the RANLUX v3.0 specification [7], including the initialisation
given by Equation (3) and the luxury levels as the ones shown in Table 1.

What is worth emphasising is that the initialisations other than the one given
by Lüscher (Equation (3), [7]) and used by the authors of [8, 9, 22] are more
GPP/GPGPU oriented than the default one and that the usage of p parameter
values other than the ones given by Lüscher (Table 1, [7]) may not fulfil the Kol-
mogorov’s conditions, ergo the whole assumption about the randomness of output
data obtained by the authors of [8, 9, 22] using their own modification of the ori-
ginal algorithm is at least doubtful. Also none of the articles says a single word
about verifying the results with the DIE HARD battery tests. As in the case of
the initialisation function, the usage of the p parameter other than the default one
makes the algorithm more GPP/GPGPU oriented, significantly increasing its per-
formance.

3.1 Impulse C

Impulse C is a High Level Synthesis/Language (HLS/HLL) used to program custom
applications targeting FPGA devices. It is an ANSI C based language adapted
to be used in the process of reconfigurable logic designing, with additional special
hardware oriented functions and C-to-HDL compiler pragmas. Both functions and

Implementation of a RANLUX Based PRNG in FPGA 1279

pragmas give programmers an opportunity to implement their algorithms in a fully
parallel manner and by adapting hardware to the algorithm, not opposite, as in the
case of GPP, where hardware architecture is stiff and cannot be changed.

The Impulse C license is currently held by the Impulse Accelerated Technologies
Inc. [10]. The company delivers the Impulse C language standard, the CoDeveloper
IDE for programming, the simulation and verification processes, C-to-HDL compiler
and also the Platform Support Packages (PSPs), i.e. special libraries designed es-
pecially for a given vendor (e.g. Xilinx, Altera), device (e.g. Virtex5, Stratix IV) or
even reconfigurable platforms (e.g. DRC AC2020, Pico E-16). Such solutions not
only make it easy to write its own code and implement it, but also to port any code
written once to any platform, by simply choosing a different PSP.

Impulse C uses a stream oriented, process based programming model, where
processes (threads) can be run both using a GPP (a software process) and RPU
(a hardware process). Also, there can be many hardware and software processes
running in parallel or concurrently. The processes exchange information using so
called streams, which are in fact FIFOs (First In First Out registers). In some cases
the processes can exchange information using other solutions (it depends on the PSP
support), like shared memory banks. Nevertheless, the stream remains as the main
communication path. Beside Impulse C, there are many other, similar HLSs/HLLs
(e.g. Handel-C, AutoESL, Mitrion-C) [15, 13, 16], but none is as mature as Impulse
C, developed and designed especially for high performance reconfigurable computing
purposes. Also, only Impulse C gives an opportunity to write the whole application
(both hardware and software parts) at once with one tool.

The block diagram showing the data flow for the RANLUX-based PRNG im-
plemented in the DRC AC2020 system using the Impulse C language is shown in
Figure 1.

SW

Starter

SW

Consumer

HW

RANLUX
Initialisation

Process

HW

RANLUX
Core

Process

Function Function

Process

seed

signal stream stream

sample
init

sample

Figure 1. Data flow diagram of the RANLUX based PRNG implemented in Impulse C

The diagram shown in Figure 1 is divided into two parts composed of three
processes. In the software part, two processes are working. The first one, the Starter,
passes the seed to the hardware generator using a 32 bit wide signal (only 31 bits
of the passed seed are used inside the generator core). The signal is an Impulse C
synchronisation solution, which additionally carries valid data and can be faster than
the stream, while sending a small portion of data as in this case. The RANLUX
core is inactive until the starting signal triggers it.

1280 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

The second software process, the Consumer, receives data from the generator
and writes it into the memory, file, etc.

The communication between the generator and the Consumer is made using
a 32 bits wide stream working in a burst mode. The burst mode, known for example
from the USB interface, makes that a pack of data (e.g. 1 024 samples) is being
transmitted, instead of a single sample. Such a solution increases the transfer rate,
because the stream is opened and closed only once, instead of N times, where N
is the number of samples in a single pack. The samples are transmitted through
the output stream as long as the users want it to. Physically, both the stream and
signal use this same medium, i.e. 64 bit wide HyperTransport v1.0 bus connecting
the GPP with the RPU.

The RANLUX generator implemented inside the RPU is composed of two com-
ponents (functions), where both are run inside the same process simply called ran-
lux. The first function, called RANLUX Initialisation, is triggered by the input
signal and generates the first 24 samples using the seed value passed by this sig-
nal. The generation is done in regard to Equation (3), but instead of obtaining
one bit per clock cycle, it calculates the whole about 12 times faster (576 bits in
47 clock cycles). When the initialisation ends, the main RANLUX function is run
(RANLUX core). It produces one sample per clock cycle. Such a performance was
obtained by pipelining the whole process and by implementing the samples memory
circular buffer, needed by the generation process, in the form of a register. Regis-
ters, unlike memories, have low access time (no addressing is needed, therefore one
read/write operation per clock cycle) and all their cells can be accessed and modified
independently at once. The generated samples are simply sieved in such a manner
that 24 are passed to the output stream, next p− 24 are rejected and so on. The p
parameter value depends only on the chosen luxury level. The operation of sieving
lowers generator performance simply by a factor of 24/p. When the output stream
buffer is full, data is sent to the Consumer process and new samples start to fill up
the output buffer.

The results of the synthesis and implementation operations done using the Xil-
inx’s ISE Design Suite 13.3 show that the generator core can run with a maximum
frequency of 249 MHz, simultaneously occupying less than 5 % of the available logic
resources (slices). Further information about the core itself in a more consistent
form is shown in Table 3 at the end of this section.

3.2 VHDL

VHDL is one of the most frequently used languages for the description of digital
systems such as FPGAs. VHDL is described in the IEEE Std. 1 076 standard. As
for now, there were three revisions of this standard: the first one in 1993, the second
one in 2003 and the last one in 2008. The most popular is the first revision from 1993
and it is denoted as the IEEE 1076–1993. It was used here to create the described
RANLUX implementation. The data flow diagram of the VHDL implementation is
shown in Figure 2, while a more defined block diagram is in Figure 3.

Implementation of a RANLUX Based PRNG in FPGA 1281

Initialisation
RANLUX
Shift reg.

seed
init

samples
RANLUX

Core

Luxury
Level

data[14]

data[0]

data

out

Figure 2. Data flow diagram of the RANLUX based PRNG implemented in VHDL

Figure 3. Block diagram of the RANLUX based PRNG implemented in VHDL

The block diagram is divided into four modules. The first of them is the Initia-
lisation module. It has the same functionality as the RANLUX Initialisation block
in the Impulse C implementation case. The module provides initial values for the
RANLUX algorithm. It means that it generates 576 bits of initial values using
the dependency (3) using 31-bits seed value and it needs only one clock cycle for
computation.

These achieved 576 bits are divided into 24 initial values that are transmitted to
the RANLUX Shift register module at once. The shift register module is responsible
for shifting data of one position per clock cycle and it outputs two values that are
needed for the calculation of the next xn number and the cn carry bit.

For this calculation, Equation (2) is used and it is realised inside the RAN-
LUX Core module. The new value of xn achieved from the core module is written
to the shift register module in each clock cycle and the process of generation con-
tinues.

The last module is the Luxury Level module. This module is responsible for lux-
ury levels realisation. It takes all generated numbers from the RANLUX Shift regis-
ter and decides which of them must be transmitted as the output pseudo-random
numbers sequence. This decision depends on the used luxury level.

1282 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

The results received from the tools of synthesis and implementation (ISE 13.1)
for xc5vlx220-2 FPGA unit show that the RANLUX module can run with a maxi-
mum frequency of 414 MHz (Table 3). The RANLUX module consumed 3 % of the
available resources of Xilinx xc5vlx220-2.

Solution
Parameter Impulse C VHDL

fmax [MHz] 249 414
No. of registers – 2 357 (1 %) 1 429 (1 %)
No. of LUTs – 4 608 (3 %) 2 245 (1 %)
No. of BRAMs – 1 (1 %) 0 (0 %)
No. of slices – 1 846 (5 %) 1 216 (3 %)
Power Consumption [W] 2.400 2.121

Table 3. Detailed information about the designed RANLUX cores implemented in Xilinx’s
xc5vlx220-2 FPGA device

4 COMPARISON OF IMPLEMENTATIONS

All the detailed results are shown in Table 4. Both the GPP solutions were run on
x86 architecture processors. The first one was Intel i5 2 520 M low power proces-
sor with a 2.5 GHz clock speed, while the second one was AMD high performance
Phenom II X4 945 processor with a 3 GHz clock speed.

Exactly 100 measurements of time were taken to generate 100 MSa of usable
PRNs at the given luxury level for the GPPs and both RPU implementations, and
then averaged. The mean time to generate this 100 MSa at the given luxury level
was then taken to count the throughput of those solutions.

As for the GPGPU results, they were borrowed from [8] and [22] exactly as they
were. What should be noted is that the luxury levels in those tests were different
than the ones for the GPPs and RPU.

The results presented in Table 4 and Figure 4 show that the FPGA based RAN-
LUX generator is the most power efficient. It is 4 times more efficient than the GPP
based solution and 290 times more efficient than the GPGPU based solution. The
PRNs at luxury level 3 can be produced during 1 second, at the cost of 1 MHz of
the processing unit clock speed. This 1 MHz is proportional to energy consumed by
this unit.

Looking at the overall throughput of a single RANLUX instance, the GPP based,
highly optimised solution in C language is the best. It has about 2.5 times higher
throughput than the FPGA based one (at luxury level 3). The RPU used still has
more than 67 times higher throughput than the GPGPU based solution.

The cause of the FPGA based RANLUX generator performance being lower
than in case of the GPP based one is very simple. The RPU is working with a clock
speed 12 times lower than the Intel i5 2 520 M and the performance obtained for
luxury levels 1 – 4 was the highest possible at a 200 MHz clock speed. As for

Implementation of a RANLUX Based PRNG in FPGA 1283

P
la

tf
or

m
R

P
U

1
G

P
P

G
P

G
P

U

Im
p
u
ls

e
C

V
H

D
L

C
2

C
+

+
3

O
p

en
C

L
4

C
U

D
A

C
5

In
te

l6
A

M
D

7
In

te
l6

A
M

D
7

L
L

0
13

4.
4

–
55

0.
7

44
4.

9
12

0.
2

11
8.

0
1.

23
0.

32
In

st
an

ce
L

L
1

10
0.

6
10

0.
0

26
5.

6
23

9.
2

64
.8

64
.4

0.
85

0.
19

T
h
ro

u
gh

p
u
t

L
L

2
49
.8

49
.5

12
1.

3
11

2.
3

33
.2

33
.4

0.
53

0.
10

[M
S
a/

s]
L

L
3

21
.6

21
.6

55
.2

47
.8

15
.0

15
.2

0.
27

–
L

L
4

12
.4

12
.3

31
.5

27
.2

8.
7

8.
8

0.
17

–

L
L

0
67

2
–

22
0.

0
14

8.
0

48
.1

39
.3

1.
70

0.
53

In
st

an
ce

L
L

1
50

3
50

0.
0

10
6.

0
79
.7

25
.9

21
.5

1.
20

0.
32

E
ffi

ci
en

cy
L

L
2

24
9

24
7.

5
48
.5

37
.4

13
.3

11
.1

0.
73

0.
17

[k
S
a/

M
H

z]
L

L
3

10
8

10
8.

0
22
.1

15
.9

6.
0

5.
1

0.
37

–
L

L
4

62
61
.5

12
.6

9.
1

3.
5

2.
9

0.
23

–

1
X

il
in

x
V

ir
te

x
5

L
X

22
0-

2,
20

0
M

H
z

cl
o
ck

sp
ee

d
2

L
ü
sc

h
er

’s
R

A
N

L
U

X
v
3.

3,
lu

x
u
ry

le
ve

ls
as

in
T

ab
le

1
3

S
oy

ez
’s

an
d

S
al

am
’s

R
A

N
L

U
X

,
lu

x
u
ry

le
ve

ls
as

in
T

ab
le

1
4

D
em

ch
ik

’s
R

A
N

L
U

X
,

lu
x
u
ry

le
ve

ls
as

in
T

ab
le

2,
A

T
I

R
ad

eo
n

H
D

58
50

5
W

en
d
e’

s
R

A
N

L
U

X
,

lu
x
u
ry

le
ve

ls
as

in
T

ab
le

2,
n
V

id
ia

T
es

la
C

10
60

6
In

te
l

i5
2

52
0

M
,

2.
5

G
H

z
cl

o
ck

sp
ee

d
7

A
M

D
P

h
en

om
II

X
4

94
5,

3
G

H
z

cl
o
ck

sp
ee

d

T
ab

le
4.

C
o
m

p
ar

is
on

of
th

e
d
iff

er
en

t
R

A
N

L
U

X
im

p
le

m
en

ta
ti

on
s

re
su

lt
s

1284 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

Figure 4. Efficiency of single instances of the RANLUX algorithm. Squares denote
FPGA based implementation (dark – Impulse C, light – VHDL). Triangles denote
GPP based implementations (upward-pointing triangle – C, downward-pointing
triangle – C++, dark – Intel, light – AMD). Circles denote GPGPU based imple-
mentation (light – ATI, dark – nVidia).

luxury level 0, the limited HyperTransport v1.0 bus bandwidth was the cause of
such a low result. Aldo DRC Corp. claims that the bandwidth should be at the
level of 200 MTransfer/s, the real measurement was about 133 MTransfer/s.

5 CONCLUSIONS

The results show that the overall throughput of the multithread GPGPU based
implementation of the RANLUX algorithm is the highest. The strength of the
graphic card is in the high number of small computing cores. As shown in Table 4,
the performance of a single core is poor, despite the fact that it works with a higher
clock speed than presented RPU (e.g. nVidia Tesla C1060 CUDA Core clock is
602 MHz).

The GPP based performance depends on the quality of the algorithm imple-
mentation in the given programming language, as well as on the quality and age of
the GPP used. The Intel i5 with a 20 % lower clock speed outperforms the AMD
Phenom II for optimised C + ASM code and gives a similar performance in the case
of the C++ implementation. The GPPs are characterised by a higher throughput
per one RANLUX instance, with acceptable efficiency.

Implementation of a RANLUX Based PRNG in FPGA 1285

The FPGA based solutions are characterised by the best efficiency and the
further possibility to implement more RANLUX cores inside the same FPGA unit.
Such solutions would be similar to the multicore ones of GPPs and GPGPUs.

In the near future, the authors plan to introduce further improvements in the
RANLUX algorithm hardware implementations, which should enable the increase
in the performance of this pseudo-random number generator. At first, the authors
want to use more than one RANLUX core in one FPGA. It was estimated that they
can hold up to 25 RANLUX cores working in parallel with different seed values in
one Xilinx xc5vlx220-2 device, without a heavy increase in power consumption.

The authors are currently working on the architecture, which allows computation
of ten samples in one clock cycle, using a single RANLUX instance. The first tests
prove that it increases the performance of the single RANLUX core implementation
about 10 times compared to the solution presented in this article.

Acknowledgments

The authors would like to express their sincere appreciation to Dr. P. Russek from
AGH–UST. He contributed significantly to the curriculum of the work. The au-
thors would also like to thank E. Trexel and B. Dudwood from Impulse Accelerated
Technology and M. Peterson form Synective Labs for their precious technical advice
and guidance in comprehending language constructs and the right programming
strategies of Impulse C.

This scientific work was made thanks to the “POWIEW” project. The project
is co-funded by the European Regional Development Fund (ERDF) as a part of the
Innovative Economy program.

1286 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

APPENDIX A – Impulse C source code

Full version under GNU GPL available on (after August 2012):
http://www.cyfronet.pl/projekty_badawcze/?a=powiew/centrum-komp

RANLUX Initialisation�
1 void r a n l u x i n i t (co int32 seed , co int32 x [] , co uint1 ∗ car ry){

#pragma CO INLINE
3

int i 1 ;
5 co int32 iSeed = seed ;

co int32 temp0 ;
7 co int32 temp1 ;

co int32 temp2 ;
9

11 temp0 = c o b i t e x t r a c t u (seed , 0u , 24u) ;
temp1 = c o b i t e x t r a c t u (seed , 24u , 7u) ;

13 x [0] = temp0 ;
x [1] = temp1 ;

15

for (i 1 = 1u ; i 1 < MAGIC 1 ; i 1++){
17 #pragma CO UNROLL

19 temp1 = c o b i t i n s e r t u (temp1 , 7u , 6u ,
c o b i t e x t r a c t u (temp0 , 18u , 6u) ˆ

21 c o b i t e x t r a c t u (temp0 , 0u , 6u)) ;

23 temp1 = c o b i t i n s e r t u (temp1 , 13u , 11u ,
c o b i t e x t r a c t u (temp1 , 0u , 11u) ˆ

25 c o b i t e x t r a c t u (temp0 , 6u , 11u)) ;

27 x [i 1] = temp1 ;

29 temp2 = c o b i t e x t r a c t u (temp1 , 11u , 7u) ˆ
c o b i t e x t r a c t u (temp0 , 17u , 7u) ;

31

x [i 1 +1] = temp2 ;
33

temp0 = temp1 ;
35 temp1 = temp2 ;

}
37

temp1 = c o b i t i n s e r t u (temp1 , 7u , 6u ,
39 c o b i t e x t r a c t u (temp0 , 18u , 6u) ˆ c o b i t e x t r a c t u (temp0 , 0u , 6u)) ;

41 x [MAGIC 1] = c o b i t i n s e r t u (temp1 , 13u , 11u ,
c o b i t e x t r a c t u (temp1 , 0u , 11u) ˆ

43 c o b i t e x t r a c t u (temp0 , 6u , 11u)) ;

45 ∗ car ry = c o b i t e x t r a c t u (temp1 , 31u , 1u) ;
}
� �

Implementation of a RANLUX Based PRNG in FPGA 1287

RANLUX Core�
co int32 ran lux gen (co int32 xLicznik , co int32 xLicznik14 , co uint1 ∗ car ry)

2 {
#pragma CO INLINE

4

co int32 de l t a ;
6

8 de l t a = ISUB32(ISUB32(xLicznik14 , xL iczn ik) , ∗ car ry) ;

10 ∗ car ry = c o b i t e x t r a c t u (de l ta , 31u , 1u) ;

12 de l t a = IADD32(de l ta , TF2TF) ;

14 return c o b i t e x t r a c t u (de l ta , 0u , 24u) ;
}
� �

1288 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

RANLUX Main

�
1 void ranlux (co signal in , co stream out){

3 co int32 seed ;
co int32 nSample ;

5 co int64 mSample ;
co uint31 i ;

7 co int32 x [MAGIC] ;
co int32 x1 [MAGIC] ;

9 co uint1 car ry = 0u ;
int j ;

11 co uint9 s i e v e = LEVEL;

13 c o a r r a y c on f i g (x , co kind , "register") ;

15

do {
17 c o s i g n a l wa i t (in , &seed) ;

co stream open (out , OWRONLY, INT TYPE(STREAMWIDTH)) ;
19

co par break () ;
21

r a n l u x i n i t a l t (seed , x1 , &carry) ;
23

25 for (j = 0 ; j < 24 ; j++){
#pragma CO UNROLL

27

nSample = x [j] = x1 [j] ;
29 mSample = (co int64) nSample ;

co s t r eam wr i t e (out , &mSample , s izeof (co int64)) ;
31 }

33 for (i = MAGIC; i < BORDER; i = UADD31(i , 1u)){
#pragma CO PIPELINE

35

nSample = ran lux gen (x [0] , x [1 4] , &carry) ;
37 for (j = 0 ; j < 23 ; j++){

#pragma CO UNROLL
39

x [j] = x [j +1] ;
41 }

x [MAGIC−1] = nSample ;
43

45 i f (s i e v e < MAGIC){
mSample = (co int64) nSample ;

47 co s t r eam wr i t e (out , &mSample , s izeof (co int64)) ;
}

49

s i e v e = UADD9(s i eve , 1u) ;
51

i f (s i e v e >= LEVEL){
53 s i e v e = 0u ;

}
55 }

57 c o s t r e am c l o s e (out) ;
} while (1) ;

59 }
� �

Implementation of a RANLUX Based PRNG in FPGA 1289

APPENDIX B – VHDL source code

RANLUX Core�
1 l ibrary IEEE ;

use IEEE . STD LOGIC 1164 . a l l ;
3 use IEEE .STD LOGIC SIGNED. a l l ;

5 entity b a s i c c e l l i s
port (

7 Cin : in STD LOGIC;
x1 : in STD LOGIC VECTOR(31 downto 0) ;

9 x2 : in STD LOGIC VECTOR(31 downto 0) ;
RDY x1 : in STD LOGIC;

11 RDY x2 : in STD LOGIC;
RDY Cin : in STD LOGIC;

13 Cout : out STD LOGIC;
x out : out STD LOGIC VECTOR(31 downto 0) ;

15 RDY x out : out STD LOGIC;
RDY Cout : out STD LOGIC

17) ;
end b a s i c c e l l ;

19

21 architecture b a s i c c e l l of b a s i c c e l l i s
begin

23

process (x1 , x2 , Cin , RDY x1 , RDY x2 , RDY Cin)
25 variable Cin var : STD LOGIC;

variable de l t a : STD LOGIC VECTOR(31 downto 0) ;
27 begin

i f RDY Cin = ’0 ’ then
29 Cin var := ’ 0 ’ ;

else
31 Cin var := Cin ;

end i f ;
33

i f RDY x1 = ’1 ’ and RDY x2 = ’1 ’ then
35 de l t a := x1 − x2 − Cin var ;

37 i f de l t a >= 0 then
Cout <= ’0 ’ ;

39

x out <= de l t a ;
41

RDY Cout <= ’1 ’ ;
43 RDY x out <= ’1 ’ ;

else
45 Cout <= ’1 ’ ;

x out <= de l t a + "00000001000000000000000000000000" ;
47

RDY Cout <=’1 ’;
49 RDY x out <=’1 ’;

end i f ;
51 else

RDY x out <= ’0 ’ ;
53 RDY Cout <= ’0 ’ ;

end i f ;
55 end process ;

end b a s i c c e l l ;
� �

1290 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

REFERENCES

[1] Lüscher, M.: A Portable High-Quality Random Number Generator for Lattice
Field Theory Simulations. Computer Physics Communications, Vol. 79, 1994, No. 1,
pp. 100–110.

[2] Marsaglia, G.—Zaman, A.: A New Class of Random Number Generators. Annals
of Applied Probability, Vol. 1, 1991, pp. 462–480.

[3] James, F.: RANLUX: A Fortran Implementation of the High-Quality Pseudo-
Random Number Generator of Lüscher. Computer Physics Communications, Vol. 79,
1994, No. 1, pp. 111–114.

[4] James, F.: Finally, a Theory of Random Number Generation. In: D. Fotiadis and
C. Massalas (Eds.): Scattering and Biomedical Engineering: Modeling and Applica-
tions, Proceedings of the Fifth International Workshop on Mathematical Methods in
Scatter, Corfu, October 2001, pp. 114–121.

[5] Hamilton, K. G.—James, F.: Acceleration of RANLUX. Computer Physics Com-
munications, Vol. 101, 1997, No. 3, pp. 241–248.

[6] Hamilton, K. G.: Assembler RANLUX for PCs. Computer Physics Communica-
tions, Vol. 101, 1997, No. 3, pp. 249–253.

[7] Lüscher, M.: Algorithms used in RANLUX v3.0. Available on: http://luscher.

web.cern.ch/luscher/ranlux/notes.pdf.

[8] Demchik, V.: Pseudo-Random Number Generators for Monte Carlo Simulations on
ATI Graphics Processing Units. Computer Physics Communications, Vol. 182, 2011,
No. 3, pp. 692–705.

[9] Nikoleisen, I.: Quantum Monte Carlo Analysis of Bose–Einstein Condensation.
AMD Fusion11 Developer Summit 2011.

[10] Impulse Accelerated Technologies Web site. Available on: http://www.

impulseaccelerated.com.

[11] DRC Computer Corp. Accelium
TM

Appliance Platform Product DataSheet,
PO A 7–08, 2012. http://drccomputer.com/pdfs/DRC_Accelium_Appliance_

Platform.pdf.

[12] DRC Computer Corp. Accelium
TM

Coprocessors Product DataSheet, DS AC 7–08,
2012. http://drccomputer.com/pdfs/DRC_Accelium_Coprocessors.pdf

[13] Xilinx Web site. Available on: http://www.xilinx.com.

[14] HyperTransport Consortium Web site. Available on: http://www.hypertransport.
org.

[15] Bowen, M.: Handel-C: Language Reference Manual. 2012, Available on: http:

//www.pa.msu.edu/hep/d0/l2/Handel-C/Handel\%20C.PDF.

[16] Pietroń, M.—Russek, P.—Wiatr, K.: Loop Profiling Tool for HPC Code In-
spection as an Efficient Method of FPGA Based Acceleration. International Journal
of Applied Mathematics and Computer Science, Vol. 20, 2010, No. 3, pp. 581–589.

[17] ACC CYFRONET AGH Web site. Available on: http://cyfro.net/en/.

Implementation of a RANLUX Based PRNG in FPGA 1291

[18] Giorgi, M. et al.: SuperB: A High-Luminosity Heavy Flavour Factory. INFN, Con-
ceptual Design Report, March 2007. Available on: http://www.pi.infn.it/SuperB/
?q=CDR.

[19] Chwastowski, J.—Chrza̧szcz, M.—Lesiak, T.: The SuperB Project: A Win-
dow to the Matter-Antimatter Asymmetry and a Challenging Computing Platform.
In: Proceedings of the 5th ACC CYFRONET AGH Users Conference, Zakopane,
March 2012, p. 65.

[20] RANLUX homepage. Available on: http://luscher.web.cern.ch/luscher/

ranlux/.

[21] SISCone Jet Algorithm homepage. Available on: http://siscone.hepforge.org/.

[22] Wende, F.: Simulation of Spin Models on Nvidia Graphics Cards Using CUDA.
Available on: http://edoc.hu-berlin.de/master/wende-florian-2010-10-20/

PDF/wende.pdf.

[23] nVidia Web site. Available on: www.nvidia.com.

[24] Curd, D.: Power Consumption in 65 nm FPGAs. Xilinx White Paper: Virtex-
5 FPGAs, WP246 (v1.2), 2007. Available on: http://www.xilinx.com/support/

documentation/white_papers/wp246.pdf.

[25] Gupta, S. et al.: CAD Techniques for Power Optimization in Virtex-5 FPGAs. In:
IEEE Custom Integrated Circuits Conference, San Jose, September 2007, pp. 85–88.

Agnieszka Da�browska-Boruch received M. Sc. and Ph. D. degrees in electronics from
the AGH University of Science and Technology (AGH–UST), Kraków, Poland, in 2002
and 2007, respectively. Since 2004 she is with the Department of Electronics, AGH-
UST, Kraków, Poland. She has published over 30 papers in journals and conferences and
also one book: “FPGA implementation of real-time video coding in MPEG-2 standard”
(Warszawa: Akademicka Oficyna Wydawnicza EXIT, 2008). Her research interests in-
clude image compression, real time systems, reconfigurable systems and devices, hardware
acceleration of computations.

Grzegorz Gancarczyk received the M. Sc. degree in electro-
nics from the AGH-UST, Kraków, Poland, in 2009. Since 2009
he is with the Academic Computer Centre (ACC) CYFRONET
AGH, Kraków, Poland and now also with the Department of
Electronics, AGH-UST, Kraków, Poland. His research inter-
ests include stochastic processes, statistics, phenomenon of noise,
digital signal processing and hardware acceleration of numerical
methods.

1292 A. Da̧browska-Boruch, G. Gancarczyk, K. Wiatr

Kazimierz Wiatr received M. Sc. and Ph. D. degrees in elec-
trical engineering from the AGH–UST, Kraków, Poland, in 1980
and 1987, respectively, D. Hab. (habilitation) degree in electron-
ics from the University of Technology of Lódz, Lódz, Poland, in
1999 and the Professor degree in 2002. Since 1980 he works at
the Department of Electronics, AGH-UST, Kraków, Poland. He
is the Head of Reconfigurable Computing Systems Group. Since
2004 he is the Director of the ACC CYFRONET AGH. Since
2006 he serves as chairman of the board of PIONIER – Polish
Optical Internet – Consortium. Between 1998 and 2002 he was

the adviser to the Prime Minister of Poland on “education and upbringing of the young
generation”. He managed 9 Polish Scientific Research Committee research grants. His
works resulted in over 200 publications, 19 books, 5 patents and 35 industrial implemen-
tations. He achieved Polish Science and Higher Education Minister’s Award. He has been
involved with youth education for more than 30 years. He is one of the founders of the
Polish independent scouting movement. His research interests include educational issues,
processes automation, image systems, multiprocessor and many core systems, reconfig-
urable devices and hardware methods of calculations accelerating.

