
Computing and Informatics, Vol. 32, 2013, 1312–1327

NETWORK FIREWALL USING ARTIFICIAL
NEURAL NETWORKS

Kristián Valent́ın, Michal Malý

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics
Comenius University
Mlynská dolina, Bratislava, Slovakia
e-mail: {valentin, maly}@fmph.uniba.sk

Abstract. Today’s most common firewalls are mostly rule-based. Their knowledge
consists of a set of rules upon which they process received packets. They cannot
do anything they have not been explicitly configured to do. This makes the system
more straightforward to set up, but less flexible and less adaptive to changing
circumstances. We will investigate a network firewall whose rule-base we will try
to model using an artificial neural network, more specifically using a multi-layer
perceptron (MLP) trained by the back-propagation algorithm. The training data
are acquired from the network and we consider two possible scenarios. In Scenario 1,
the user has no firewall available and the policy is deduced from the existing traffic in
the network which is considered to be legitimate. In Scenario 2, the learning module
is placed behind the existing firewall (or firewalls) in order to learn their behavior. In
both cases, all traffic, which is recorded, contains only positive examples; however,
a direct training of a MLP from a set of positive examples is impossible. We
solved this problem using a synthetic generation of negative examples which led to
successful learning.

Keywords: Network firewall, artificial neural networks, computer security

Mathematics Subject Classification 2010: 68T05 (Learning and adaptive sys-
tems), 62H30 (Classification and discrimination, cluster analysis)

Network Firewall using Artificial Neural Networks 1313

1 INTRODUCTION

Internet security becomes more and more important along with spreading the Inter-
net access over the world. One of its key components is a firewall. A network firewall
is a system or group of systems that enforces an access control policy between two
networks. Most firewalls are rule-based; this means that responsible persons have
to enter the rules manually, using their knowledge of the network architecture and
according to the users’ requirements.

2 PURPOSE AND METHOD

2.1 Scenarios

We investigate the use of artificial neural network for two main practical purposes
(scenarios):

1. Is it possible to build a firewall if only a sample of “usual traffic” is available?
As mentioned above, the persons have to obtain considerable knowledge prior to
setting the firewall; the possibility of an automatic firewall setup without prior
knowledge can help the laymen.

2. Having a fully set up (rule-based) firewall system, is it possible to “copy” the de-
sired behavior (to mimic the rule-set)? In a big corporate environment, a number
of firewalls and other network appliances, usually connected into a hierarchy, can
influence the traffic between the user and the Internet. Due to organizational
matters, such as change of network architecture or a hardware failure, it may be
necessary to replace part of the system; however a direct export of the firewall
rules may not be available (e.g., interfering rules; firewalls having incompatible
rule formats; non-existing program to “merge” rules from two firewalls). The
possibility to copy the behavior can save a considerable amount of laborious
work.

For both scenarios we considered only the input firewall, i.e., a firewall handling
the inbound traffic. The output firewall can be constructed analogically, using the
outbound traffic.

2.2 Method

We decided to use a connectionist approach – a multi-layer perceptron (MLP) –
to be the heart of the AI firewall system. Its task will be to correctly classify the
“right” and “wrong” packets presented.

Connectionism is a natural complement to the symbolic approach, which in our
case is represented by the rule-based firewall. Using the connectionist approach is
supposed to be very useful mainly in Scenario 2 discussed above, because there is
no dependency on the symbolic representation (format of the firewall rules).

1314 K. Valent́ın, M. Malý

MLP will learn from a (presumably) attack-free and failure-free traffic data set.
This data set will contain packets described by some of their basic identification
signs, such as the source and destination IP addresses and ports, and the protocol.
Afterward, the firewall should correctly distinguish between the learned traffic and
a potential attack, although only positive examples were presented.

The reason why only positive examples are available is caused by the physical
position of the learning system. In Scenario 1, our module stands between the
computer and the Internet; all traffic is considered legitimate. In Scenario 2, our
module is placed behind all other existing firewalls (whose behavior we want to
copy). These firewalls allow only legitimate traffic to pass. All dropped or rejected
packets will be hidden from our module.1

3 FIREWALL

A firewall is a software or a hardware system which filters network traffic according
to a pre-defined policy. For this, it is implanted in a crucial place of the operating
system or in the network architecture’s key positions. There, it analyzes what goes
through and applies actions upon a rule set.

Usually, there are 3 basic actions the firewall can do with a packet. These actions
are part of the rule definitions. Each rule defines one action. The actions have quite
self-explanatory names.

ALLOW (or ACCEPT) action permits a packet to pass trough the firewall in or
out (depending on the traffic direction). This is a trivial action because this
would be the case if the firewall were not present.

DENY (or DROP) drops a packet without any notification to the sender. It is the
most useful action.

REJECT action, similarly to DENY, prohibits a packet from passing, but with
a notification2 sent back to the sender.

Firewalls need to be placed in external perimeters but also inside a network for
secure segmentation of data. Internal deployment of firewalls is a relatively new
best practice. It is largely driven by the tendency that we can no more differenti-
ate a tangible, reliable network border between the trusted internal and untrusted
external network traffic. One has to take into consideration possible security issues
arising within the trusted network as well. A firewall separating for example two
company departments could slow down or even stop the spreading of spam, viruses,
or other threats.

1 Although, in some cases, it is possible to get knowledge about the rejected packets,
e.g., rejected outbound packets.

2 The notification message is an ICMP (Internet Control Message Protocol) destination-
unreachable packet, defined in RFC 792. The ICMP packet is sent only when permitted,
e.g., when it is not going to or from a broadcast address.

Network Firewall using Artificial Neural Networks 1315

3.1 Basic Packet Filter

Basic packet firewall should be able to process incoming or outgoing packets upon
a pre-configured policy. The policy is represented by a set of rules which defines
what should be done with a particular packet: either it should be allowed/passed
through, or dropped (with or without a notification). The core task is to encode
that set of rules into the neural network so that this functionality would be pre-
served.

In order to properly mimic the functionality of the firewall, we need to build
a model of the rules in the firewall’s rule-base. This would be the task for the MLP.
Possible alternative methods include: Support Vector Machines (SVMs), clustering
algorithms3, generic programming, and other methods.

3.2 Learning from Positive Examples

Gold’s theorem [9] can be summarized as follows: Without explicit error correction,
the rules of a logical system with a sufficient structural complexity could not be
inductively discovered, even in theory. More specifically: A class of languages is
unlearnable if only positive learning examples are available.

The implication for the learning MLP to model the firewall is straightforward.
We have only a positive training set, P , and it is impossible to directly learn from
such a training set4. Therefore, we must provide an additional assumption (con-
straint).

Consider a set of all negative examples, N . It holds that the complement of
positive examples contains all negative examples: PC ⊆ N . If the positive example
set is “fair”, we can approximate N by PC , so:

PC ≈ N

where

PC = U − P .

The set of all potential examples (packets), U , is finite, when we consider the
fact that the IP addresses, ports, and protocols also come from finite ranges. In
theory, it would be possible to generate all packets from PC , although it would be
computationally very hard because of its enormous size.

3 In combination with supervised learning to fine-tune the covering of rules by the
cluster.

4 For a demonstration of this, we tried to train a neural network using only a set of
positive examples. As expected, the network overgeneralized its training data and provided
positive output (ACCEPT) for every input. We also tried to start with the weights having
a zero value in order to shift network response to the negative values; however, this was
also unsuccessful.

1316 K. Valent́ın, M. Malý

Figure 1. Illustration of the generalization of the set of positive examples P (dots). Ev-
erything except the dots is the complement PC ; however, the ideal boundary of the
positive examples is to be found by generalization. Underlearning, correct (early
stopped) learning, and overlearning is shown. For correct generalization, also some
examples not present in P are to be considered positive (white space within the
boundary), what corresponds to the set N \ PC .

However, it is not required to generate all packets from PC . During the training
procedure, only a set of negative packets of a pre-defined size is needed; therefore,
it is possible to generate packets “on-line”: When we need a packet from N , we
generate a random packet and check whether it belongs to P . If not, the packet
belongs to PC and it is provided, in the other case, the procedure is repeated until
a packet from PC is obtained5.

It is not necessary to memorize the packets. During training, always a new
random packet from P is provided. This also helps to avoid accidental learning
of a positive packet as a negative example: Suppose a random packet from PC is
generated; but in fact, this packet is legitimate, but was not spotted during the
data acquisition. Therefore, it does not belong to N and its repeated use during
training could lead to erroneous learning. Using the packet only once causes only
small damage.

The additional assumption is that we want to find the best generalization of
the boundary between P and PC in terms of ANN early stopping (for illustration
see Figure 1). This assumption makes the necessary inductive bias to overcome the
original indetermination.

5 Because size of P is small relative to the all possible packet space U , it is rarely
necessary to do a new iteration.

Network Firewall using Artificial Neural Networks 1317

4 RELATED WORK

According to[11], recent network anomaly detection systems such as NIDES [1],
ADAM [3], and SNORT6 plug-in SPADE [18] can detect network level attacks (port
scans, denial of service (DoS) attacks), but cannot detect application specific attacks,
such as buffer overflow exploits.

Regarding the use of artificial intelligence, it is playing an increasingly important
role in network management. In particular, research in the area of intrusion detec-
tion relies extensively on AI techniques to design, implement, and enhance security
monitoring systems [8].

ANNs have been utilized to identify both misuse and anomalous patterns [7, 6,
15, 5, 12]. Studies have shown that the current anomaly detecting IDSs are failing
to reach adequate detection rate while having few false alarms [10, 2].

The noteworthy techniques from AI that could provide a better solution to
shortcomings of IDS and IDPS implementations are ANNs, SVMs, and Multivariate
Adaptive Regression Splines (MARS), and the collection of different soft computing
techniques7 [13]. They are widely used due to their generalization capabilities of
known attacks to recognize also the unknown.

In the future, more hybrid systems could be expected to arise. IDS will keep
a certain, well defined level of security and an adaptive AI system will make it more
flexible to new challenges.

Recent research proposed various types of ANNs to learn firewall rules, however,
an implementation of the packet filter firewall is not available (reported only as
a future work in [17]).

5 IMPLEMENTATION

5.1 Data Sets

For training and testing, enough examples need to be synthetically generated or
captured from the real network (e.g., using tcpdump program). We used generated
data, because there is much more control in terms of quantity and quality of the
created packets. Note that this method will usually just approximate the real traffic
flow and therefore the created model will not be as accurate as it could be when real
data would have been used. Our goal was to diminish this effect as much as possible
and to build a robust model suitable also for a real-world environment deployment.

6 Snort R© is an open source network intrusion prevention and detection system
(IDS/IPS) developed by Sourcefire. According to a recent survey [16], it is the most
favorite IDS in 2006.

7 Unlike hard computing, soft computing it is tolerant of imprecision, uncertainty, par-
tial truth, and approximation.

1318 K. Valent́ın, M. Malý

IP address/mask Port Protocol Action

192.168.1.0/255.255.255.0 any UDP ALLOW

0.0.0.0/0.0.0.0 161 UDP ALLOW

0.0.0.0/0.0.0.0 162 UDP ALLOW

0.0.0.0/0.0.0.0 3306 TCP REJECT

0.0.0.0/0.0.0.0 22 TCP ALLOW

0.0.0.0/0.0.0.0 21 TCP REJECT

0.0.0.0/0.0.0.0 53 UDP ALLOW

0.0.0.0/0.0.0.0 443 TCP ALLOW

0.0.0.0/0.0.0.0 80 TCP ALLOW

192.168.1.5/255.255.255.255 520 UDP ALLOW

10.3.3.0/255.255.255.0 8080 TCP ALLOW

192.168.2.0/255.255.255.0 any UDP ALLOW

92.154.54.8/255.255.255.255 any UDP ALLOW

91.154.55.0/255.255.255.0 any UDP ALLOW

Table 1. Table of rules used to generate traffic coming through a firewall. The goal of the
neural network was to infer those rules by learning from generated traffic. Note
that these are only rules we can directly know about; rules with DROP action are
hidden. Rules have zero IP address and mask matches all IP addresses.

One training example, which represents an abstract form of a packet’s header
(it does not contain all the information a real packet usually has), consisted of these
attributes:

• IP address: IPv4 format, e.g., 192.168.1.1

• port: an integer number between 0-65535

• protocol: the most common – TCP and UDP

• action: ALLOW, REJECT, and DENY.

For generating the data we used similar list of rules to those used in classic
firewalls. The list of rules contained a couple of arbitrary rules with ALLOW and
REJECT actions (see Table 1). The complementary negative packets (from PC)
had DENY action set in its attributes. The action serves as the class of the data
we want the packet to be classified to, i.e., as the target value for training the MLP
network.

In principle, there are two ways how to generate packets using the list of rules.

1. A random rule is chosen from the list and a random packet is generated to meet
the criteria of this rule. For example the rule will be: 192.168.1.0/24 TCP

any ALLOW, which says that any destination TCP port is allowed from a source
IP address belonging to a particular network subset (the network address is
192.168.1.0 and the subnet mask has 24 bits, e.g., 255.255.255.0). The
random packet generated in the next step will be for example 192.168.1.18

TCP 80.

Network Firewall using Artificial Neural Networks 1319

2. A random packet is generated and then checked against the list of rules, if it
fits to some or more of them. When no rule is found, the generated packet is
discarded and the process is repeated.

The first approach is computationally faster because creating a random packet
upon a rule is trivial. However, it will not often lead to fully real-like data, i.e., it
could give the network too many hints about the original rules, but it could provide
enough approximation for the experimental purposes.

The second approach can be considered more plausible in terms of its approxi-
mation of a real traffic, but it is computationally exhausting. The probability that
a randomly generated packet could have been generated by one of the rules (i.e.,
that the packet will “fall” into some of the rule) is very small. In our case the
number of unique packets is 232 × 216 × 2× 3 ≈ 1.7× 1015.

We decided to use the first approach because we had limited computational
resources. We chose binary coding because it is closely related to subnet coding.
Subnet masks are usually written in the form of 2n. Despite its disadvantages8, we
expect that this representation is the best possible. We maintain that some kind of
continuous coding often used for training the MLP (and also possible in this case)
is not very suitable in this domain.

5.2 MLP Architecture

The input IPv4 packet consisted of an IP address (32 bits), port (16 bits), and
protocol (1 bit) which gives the total of 49 bits. Because of the binary coding, we
used 49 input neurons (see Figure 2). The number of hidden layers and also the
number of neurons in those layers has to be found.

An associated output (target value) can be one of the following actions: AL-
LOW, REJECT, and DENY. Here, we used a one-hot coding, i.e., one neuron is
responsible for each of the possible actions (classes). Hence, we used three output
neurons with softmax activation function.

The process of searching the optimal number of hidden layers or the number of
neurons in those layers is not a trivial task. However, more-or-less accurate lower
bounds can be computed, e.g., see [4]; in this case we would like to preserve some
capacity. Hence, we will gradually raise the number of neurons in the hidden layer,
or potentially also the number of hidden layers, to achieve the best result while
respecting Occam’s razor as mentioned before.

The weights will be randomly generated from the uniform distribution9 from the
interval [−0.1, 0.1].

8 For example, the fact that two successive numbers could differ in more than one bit
could lead to problems when learning an “interval” rule. In this case, a code like Gray
code, which has the property that successive numbers differ in exactly one bit, could be
used for this purpose.

9 All values from the distribution are equally possible.

1320 K. Valent́ın, M. Malý

To sum up:

• input: binary, IP+port+protocol (TCP | UDP), 32+16+1 = 49 bits (neurons)

• hidden layers: to be found

• weights: uniformly generated from the interval [−0.1, 0.1]

• output: three neurons (ALLOW, REJECT, DENY),

IP address port protocol

... ...

ALLOW / REJECT / DENY

...

Figure 2. MLP Architecture

5.3 Output Discretization

Because we use a logistic activation function – the sigmoid – which is continuous,
and discrete target categories (ALLOW, DENY, and REJECT), discretization of the
MLP’s output is needed. Afterward, we can easily interpret the MLP’s output as
one of tree categories, i.e., firewall’s actions. We will use the following discretization
formula:

discretize(x)


1 x > 0.55

random(0, 1) x ∈ [0.45, 0.55]

0 otherwise.

(1)

Using a random value in the middle range of the possible values is usually better
then a fixed value. When the results will not be adequate, the formula (1) can be
rewritten into:

discretize(x)

{
1 if x > k

0 otherwise
(2)

where k is adjusted to the highest value possible while keeping the highest classifi-
cation rate.

Network Firewall using Artificial Neural Networks 1321

When the discretized output of the MLP, either using criteria (1) or (2), will not
code any of the categories, we will use the DENY rule. That situation would be, we
think in most cases, when the output will be 000, i.e., all three output neurons will
not have been activated enough. The DENY action has been chosen because it is
always better to drop a malicious packet than to pass it, i.e., false positive rate will
be lowered at the expense of higher number of false negatives.

5.4 Training

The training phase is determined by selecting the learning algorithm and setting its
parameters. The decision is usually domain- or task-dependent, but there are some
standard options which can be generally used. Parameters include the activation
function, learning constant, and other supplying methods for improving learning.

We chose the error-driven back-propagation (BP) learning algorithm [14] with
sigmoid activation function. Sigmoid logistic function is useful because of its suitable
range (from 0 to 1). We also used the momentum method to help to speed up the
convergence and to better avoid local minima.

This is the most important information for the training process:

• learning method: error-driven back-propagation

• activation function: sigmoid f(x) = 1/(1 + exp(−x))

• additional method: momentum (∆w(t+ 1) = −α∂E
∂w

+ µ∆w(t)).

To avoid overfitting and to preserve certain level of generalization we used cross-
validation. We will randomly split the training data into two disjoint sets. The first
set, 80 % of the data, will be used for training, the other, 20 % of the data, will be
used for validation purposes. The validation served as a stopping criterion for the
learning process, i.e., when there was a very small change in the classification error
on the validation set between two successive epochs the learning was stopped.

Before each epoch, we generated negative examples for both the training and
validation sets. We used four times more negative examples than the number of
examples in the training set (i.e., the positive vs. negative examples ratio is 20:80).
The training set prefers the negative examples to obtain a better coverage of the
negative examples. We observed best convergence using the 20:80 ratio. In case of
the validation set, we used the 50:50 ratio, to give equal weights for both negative
and positive examples. Every generated negative example has only a one-epoch life
span.

The learning process stops when the error on validation set stabilizes – when
the difference between the previous and the current errors divided by the current
error is lower than some small constant. In our case, this constant was set to 0.1 %.

1322 K. Valent́ın, M. Malý

5.5 Testing

Testing was done using a standard method. The testing set was presented to the
trained network. Then, the output of the network was compared to the target value
for each training example. After this process, the number of correct and wrong
answers is summed. There are two types of wrong answers: false positive and
false negative categories. The former is when the target response is ALLOW (i.e.,
a positive response in general) and the network’s outputs DENY or REJECT; and
vice versa, the latter represents the situation when the target response is DENY
or REJECT (i.e., a negative response in general) and the network actually says
ALLOW.

These statistics are useful when analyzing the results and deciding about the
changes in the architecture or the learning process. To properly test the trained MLP
we needed to solve a similar problem as during training, namely lack of negative
examples. We had only the same captured/generated packets as before, just we had
split those data into training and testing set. Again, the solution is similar to that
used during training; negative examples were generated from PC set.

One part of testing data set is taken from the positive examples set, the second
part is generated from PC . How large should the testing set be? An ideal testing
set will include all the possible packets from N , but as mentioned above, that would
be very difficult to accomplish.

To overcome the lack of a complete set of negative examples N we decided to
use port scan. This scan can test how could the firewall be trusted in the real-
world environment. Its principle is very simple: the firewall is tested with generated
packets having an arbitrary destination IP address and every possible destination
port number (i.e., from 0 to 655535) using TCP and UDP protocols. We chose one
random and one known IP address and analyzed which ports are open and which
are closed.

6 RESULTS

The first step was to find a suitable network architecture for the firewall. We started
with one hidden layer containing four neurons. Then, step-by-step, we added more
and more neurons while performing learning and testing phase to compute the classi-
fication rate. The number of neurons was the only changing variable, other learning
parameters were fixed to some usual values. The learning rate was set to 0.05,
momentum (µ) to 0.1.

Using one hidden layer was sufficient as we take into account the Occam’s razor
and kept the model as simple as possible. The number of hidden neurons was set
to 13.

A good trade-off between speed and quality of learning seemed to be 20 000
examples. The training data sets consisted of combination of negative and positive
examples in 80:20 ratio. During the training, a new set of negative examples was

Network Firewall using Artificial Neural Networks 1323

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

Le
ar

ni
ng

 E
rr

or
(lo

g
sc

al
e)

Epoch

Figure 3. Total error in the validation set during learning

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

F
al

se
 n

eg
at

iv
e

Epoch

Figure 4. The number of false negative classifications in the validation set during learning

1324 K. Valent́ın, M. Malý

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

F
al

se
 p

os
iti

ve
s

Epoch

Figure 5. The number of false positive classifications on the validation set during learning.
Missing lines mean that there was no false positive classification for that epoch.

generated in every epoch for the training set (80:20 ratio), and also for the validation
set (50:50 ratio).

The first discretization method, presented in Section 5.3, was not quite successful
during testing. When we used the port scan to check the open ports, there were too
many of them. The latter formula resulted in higher success in port scanning with
k > 0.9. Henceforth, the default-drop-policy was strengthened and fewer ports were
opened while the classification ratio remained the same.

Classification on the testing set was 99.79 %. The progress of learning error on
validation set is shown in Figure 3. The number of false negative classifications on
the same set decreases during training, as illustrated in Figure 4. The number of
false positives oscillated between very small numbers as a result of the new negative
examples being generated, as seen in Figure 5.

7 FURTHER WORK

In our model of the firewall, we used an MLP network for both UDP and TCP
protocols. Because the rules (in terms of classic firewalls) for those protocols are
usually independent, using two separate MLP networks could improve the model.
This could eliminate the source of error arising from the network generalization with
respect to those two independent protocols.

Similarly, another set of MLP networks can be used for the output firewall.
Moreover, in case of output firewall and considering Scenario 2, it is possible to
capture the ICMP responses and infer the REJECT rules of the original firewall(s).

Network Firewall using Artificial Neural Networks 1325

8 CONCLUSION

The main goal was to build an adaptive firewall system which could be trained
just from the set of positive examples (packets which should be ALLOWed by the
firewall). We have considered two scenarios. In Scenario 1, the rule-set should be
deduced from the firewall-free network. The task of Scenario 2 was to mimic the
behavior of an existing firewall or set of firewalls. In both scenarios, only the positive
examples are extracted.

The Gold’s theorem suggests and also our experiments showed that a direct
learning from just the positive examples is impossible. We developed a solution
where the negative examples are generated with respect to the positive ones we
already have. This enabled the system to learn with a fine classification accuracy
(99.8 %). As an important contribution we consider the ability of our model to learn
just from the set of positive examples when viewed from the black-box perspective.

A core part of the system was presented; however, a complete production sys-
tem would need some additional modules like GUI, notification system, user man-
agement, etc., which would enable the deployment in the real-world environment.
The current state of the research offers a stateless firewall with additional tools
for generating and converting the input data. In addition to the stateless firewall,
the statefull firewall can be obtained relatively easily by implementing some of the
deterministic finite automaton models as the TCP protocol is standardized.

Acknowledgment

This work has been supported by the Slovak Grant Agency for Science (projects
No. 1/0439/11 and 2/0019/10).

REFERENCES

[1] Anderson, D.—Lunt, T. F.—Javitz, H.—Tamaru, A.—Valdes, A.: De-
tecting Unusual Program Behavior Using the Statistical Component of the Next-
Generation Intrusion Detection Expert System (NIDES). Computer Science Labora-
tory SRI-CSL, 1996, pp. 95–06, 1995.

[2] Axelsson, S.: The Base-Rate Fallacy and the Difficulty of Intrusion Detection.
ACM Trans. Inf. Syst. Secur., Vol. 3, 2000, No. 3, pp. 186–205.

[3] Barbará, D.—Couto, J.—Jajodia, S.—Popyack, L.—Wu, N.: ADAM: De-
tecting Intrusions by Data Mining. In Proceedings of the IEEE Workshop on Infor-
mation Assurance and Security, West Point, NY 2001, pp. 11–16.

[4] Bartlett, P. L.—Maass, W.: Vapnik-Chervonenkis Dimension of Neural Net-
works. In Michael A. Arbib (Ed.): The Handbook of Brain Theory and Neural Net-
works, MIT Press, Cambridge, Massachusetts 2003, pp. 1188–1192.

[5] Cannady, J.: Artificial Neural Networks for Misuse Detection. National Information
Systems Security Conference 1998, pp. 368–81.

1326 K. Valent́ın, M. Malý

[6] Debar, H.—Becke, B.—Siboni, D.: A Neural Network Component for an Intru-
sion Detection System. In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy 1992.

[7] Debar, H.—Dorizzi, B.: An Application of a Recurrent Network to an Intrusion
Detection System. In Proceedings of the International Joint Conference on Neural
Networks 1992, pp. 78–83.

[8] Gagnon, F.—Esfandiari, B.: Using Artificial Intelligence for Intrusion Detection.
In Proceeding of the 2007 Conference on Emerging Artificial Intelligence Applications
in Computer Engineering, Amsterdam, The Netherlands 2007, pp. 295–306.

[9] Gold, E. M.: Language Identification in the Limit. Information and Control, Vol. 10,
1967, No. 5, pp. 447–474.

[10] Lazarevic, A.—Ertoz, L.—Kumar, V.—Ozgur, A.—Srivastava, J.: A Com-
parative Study of Anomaly Detection Schemes in Network Intrusion Detection. In
Proceedings of the Third SIAM International Conference on Data Mining 2003,
pp. 25–36.

[11] Mahoney, M.—Chan, P.: Learning Models of Network Traffic for Detecting Novel
Attacks. Technical report, Florida Institute of Technology 2002.

[12] Mukkamala, S.—Janowski, G.—Sung, A. H.: Intrusion Detection Using Neu-
ral Networks and Support Vector Machines. Heidelberg: Physica/Springer 2001,
pp. 121–138.

[13] Mukkamala, S.—Sung, A. H.—Abraham, A.: Intrusion Detection Using an En-
semble of Intelligent Paradigms. Journal of Network and Computer Applications,
Vol. 28. 2005, No. 2, pp. 167–182, Computational Intelligence on the Internet.

[14] Rumelhart, D. E.—Hinton, G. E.—Williams, R. J.: Learning Representations
by Back-Propagating Errors. Nature, Vol. 323, 1986, No. 6088, pp. 533–536.

[15] Ryan, J.—Lin, M. J.—Miikkulainen, R.: Intrusion Detection with Neural Net-
works. Advances in neural information processing systems 1998, pp. 943–949.

[16] SecTools.Org. Top 5 Intrusion Detection Systems. http://sectools.org/ids.html
[Online; accessed 20-April-2010].

[17] Yoo, I. S.—Ultes-Nitsche, U.: An Intelligent Firewall to Detect Novel Attacks.
In Proceedings of Conference on Korean Science and Engineering Association in UK
2002.

[18] Zaki, M. J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Ma-
chine Learning, Vol. 42, 2001, No. 1, pp. 31–60.

Kristián Valent��n received his bachelor degree in applied in-
formatics and his master’s degree in cognitive science from the
Faculty of Mathematics, Physics and Informatics of Comenius
University in Bratislava. His main research interests include
neural networks, image processing and pattern recognition us-
ing biologically motivated algorithms. He is currently a Ph. D.
student at the same faculty and a researcher at the Institute of
Measurement Science, Slovak Academy of Sciences, Bratislava
under supervision of Professor Ivan Bajla.

Network Firewall using Artificial Neural Networks 1327

Michal Mal�y received his master’s and Ph. D. degree in com-
puter science from the Faculty of Mathematics, Physics and In-
formatics of Comenius University in Bratislava in 2013. His main
reasearch interests include reinforcement learning, natural lan-
guage processing and neuroscience.

