
Computing and Informatics, Vol. 33, 2014, 131–153

ROUGH FUZZY SUBSPACE CLUSTERING FOR DATA
WITH MISSING VALUES

Krzysztof Simiński
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Abstract. The paper presents rough fuzzy subspace clustering algorithm and ex-
perimental results of clustering. In this algorithm three approaches for handling
missing values are used: marginalisation, imputation and rough sets. The algorithm
also assigns weights to attributes in each cluster; this leads to subspace clustering.
The parameters of clusters are elaborated in the iterative procedure based on min-
imising of criterion function. The crucial parameter of the proposed algorithm is
the parameter having the influence on the sharpness of elaborated subspace clus-
ter. The lower values of the parameter lead to selection of the most important
attribute. The higher values create clusters in the global space, not in subspaces.
The paper is accompanied by results of clustering of synthetic and real life data
sets.
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1 INTRODUCTION

The attributes in data sets have not always the same importance. Sometimes some
attributes are of minor importance or even represent nothing but noise. The meth-
ods for elimination of useless dimension have been elaborated; but these methods
remove attributes globally from all data tuples. The global approach by feature
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transformation (e.g. PCA or SVD) leads to problems with interpretability of elabo-
rated models. The global elimination of dimensions may not be satisfactory because
clusters may exist in different subspaces. This leads to subspace clustering where
each cluster may exist in its own subspace [14, 17, 36].

There are two kinds of subspace clustering: bottom-up and top-down [36]. The
first approach splits the clustering space with a grid and analyses the density of
data examples in each grid cell extracting the relevant attributes/dimensions (e.g.
CLIQUE [4], ENCLUS [7], MAFIA [19]). The latter (top-down) approach starts
with full dimensional clusters and tries to throw away the dimensions of minor
importance (e.g. PROCLUS [2], ORCLUS [3], δ-Clusters [51], FSC [17, 16]).

The next quite often problem is the lack of values in the data tuples. The reasons
are various: errors in answer acquisition, impossibility to get data (e.g. patient
has died), refusal to answer some questions in the questionnaire, inapplicability
of questions, irrelevant or unknown attributes, random noise, impossible values,
retrospective usage of data – i.e. the data were gathered for other purpose than the
research needs. In [38] a medical example is given where only 1 patient in 55 had
all blood tests done. Overall 9.2 % of blood test results are missing. In [28] the real
life data set is presented with more than 50 % of values missing. The paper [30]
presents three classes of missing data types:

MCAR – missing completely at random: The probability of a tuple having a miss-
ing value for an attribute depends neither on the known values nor on the missing
data.

MAR – missing at random: The probability that the tuple has a missing value
for an attribute may depend on the known values, but not on the value of the
missing data itself.

NMAR – not missing at random: The probability of an instance having missing
value for an attribute could depend on the value of that attribute.

The paper [1] classifies the difficulty of analysis of data sets with missing values.
The data sets with less than 1 % of missing values are labelled as trivial, 1–5 %
as manageable. For data sets with 5–15 % of missing values some sophisticated
methods are required and finally more than 15 % missing values “severely impact
any kind of interpretation”.

Generally three approaches are used to handle the problem of missing values:

1. imputation – the unknown values are substituted with estimated ones [38, 48,
10, 18, 53, 54];

2. marginalisation (WDS: whole data strategy) in done in two ways:

(a) the data tuples with missing values are removed from the data set [46, 23]
or

(b) the features (attributes) with missing values are ignored [8] – this leads to
lowering the dimensionality of the task;
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3. applying rough sets for expressing the imprecision caused by lack of data [35,
22, 20].

The advantage of both data imputation and marginalisation is in their sim-
plicity. Imputation is more frequently used than marginalisation [24]. The results
elaborated based on data sets with imputed values cannot be fully trusted [46]. The
imputed values may have no physical meaning in real life [48]. The missing val-
ues are commonly replaced with zeros, random numbers, mean value over all data
set [33], mean value over the class the example belongs to [21], median imputation,
deductive imputation (the missing values are deduced from other information of the
pattern), regression-based imputation [6] or value based on real distribution (the
missing values are replaced with random values with data set distribution) [48].
Expectation-Maximisation (EM) [10] algorithm is applied in [18]. Imputation based
on nearest neighbourhood is proposed in [53, 54], K-Nearest neighbour imputa-
tion in [5]. Imputation with fuzzy K-means clustering (FKMI) is described in [1].
To avoid imputation of non existing values the hot-deck procedure has been pro-
posed [39] with various distance measures [15, 11]. Similar to hot-deck approach
called cold-deck approach was proposed in [27]. In [31] the Event Covering ap-
proach [49] is claimed to be the most suitable for radial basis function network
classifiers. The impact of imputation of missing values on classification error is
discussed in [12]. The review of imputation methods can be found in [31, 32].

The method proposed by [47, 48] divides the feature (attribute) set A into fea-
tures Ao with no lacking values and partially observed features Am. Then a special
clustering algorithm is applied.

The novelty of the paper is the subspace clustering algorithm for data set with
missing values. The algorithm can handle missing value data sets simultaneously by
applying imputation, marginalisation and rough sets. This leads to rough fuzzy clus-
tering [44, 43]. The algorithm also assigns the weights to the attributes separately
in each cluster [42, 45]. Combining these features leads to rough fuzzy subspace
clustering. The clustering is one of the initial steps in fuzzy model creation in
neuro-fuzzy system [41, 34, 26, 50]. One of the applications of this algorithm may
be the partition of input domain for neuro-fuzzy systems.

The paper is organised as follows: Section 2.1 describes the preprocessing of
data (imputation and marginalisation). Section 2.2 introduces a new algorithm for
rough fuzzy subspace clustering. Section 3 describes the experiments and finally
Section 4 summarizes the conclusions.

In the paper the empty characters (A) are used to denote the sets, bolds (a) –
matrices and vectors, uppercase italics (A) – the cardinality of sets, lowercase ita-
lics (a) – scalars and set elements. Overline a denotes upper value of the rough
set, underline a – the lower one. Tilde over symbol ã means that the value was
calculated with the “upper” data set X̃, tilde below a symbol a˜ stands for the value

elaborated with “lower” data set X˜ (the sets X̃ and X˜ are described in Section 2).
Detailed list of symbols is given in Table 1.
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R set of clusters
r cluster, r ∈ R
R number of clusters, R = ‖R‖
X set of tuples, data examples

X̃ imputed set of data examples
X˜ marginalised set of data examples
x tuple, data example, x ∈ X
x̃ tuple from imputed data set, x ∈ X
x˜ tuple from marginalised data set, x ∈ X
xi ith tuple

x descriptor of a tuple, x = [x1, . . . , xA]T

X number of tuples, X = ‖X‖
Xu number of tuples in upper set, Xu =

∥∥∥X̃∥∥∥
Xl number of tuples in lower set, Xl =

∥∥X˜∥∥A set of attributes
a attribute, a ∈ A
A number of attributes in a tuple, A = ‖A‖
At threshold number of attributes
µ partition matrix
µ̃ru membership value of the uth tuple to rth “upper” cluster
µ˜rl membership value of the lth tuple to rth “lower” cluster

drj distance between rth cluster’s centre and jth tuple

ηu weight of the uth tuple in X̃
vr the centre of rth cluster
s̃ the fuzzyfication of the “upper” cluster
s˜ the fuzzyfication of the “lower” cluster
s the upper fuzzyfication of the cluster
s the lower fuzzyfication of the cluster
z vector of weights of the attributes
f the fuzzyfication parameter

Table 1. Symbols used in the paper

2 OUR APPROACH

The drawback of imputing for handling missing values mentioned in the Introduction
is no distinction between original untouched data and imputed values [24]. Further,
the imputed values may have no medical/physical meaning [48], thus the models
based on imputed data cannot be fully trusted [46].

Our solution applies marginalisation imputation and rough sets. Marginalisation
removes the tuples with missing values. The remaining tuples contain only original
data. This data set is denoted as X˜ . Imputation is used to handle data with missing

values. All data augmented with imputed data stand for upper data set X̃. The
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lower data set is a subset of upper data set: X˜ ⊆ X̃. Both sets X˜ and X̃ are used to
elaborate the rough set clusters. This approach maintains the distinction between
original and imputed values. If the data set lacks no values the “upper” and “lower”
data sets are the same: X˜ = X̃ = X.

2.1 Preprocessing of Data

Preprocessing of data creates X˜ and X̃ data sets from original data set X. The
first one is created with marginalisation, the latter with imputation. The following
sections describe these procedures in detail.

2.1.1 Marginalisation

The data set X˜ contains only these data tuples from X that lack no values. Margi-
nalisation excludes the tuples, not the attributes, thus there is no dimensionality
reduction. This approach is similar to that used by [46, 23].

2.1.2 Imputation

The tuples with missing values are substituted with new tuples with imputed values.
If the tuple lacks n values, it is substituted with kn tuples with all combination of
imputed values (these are the mean values m of missing attribute calculated from
values existing in other tuples, m + σ, where σ is the standard deviation of the
attribute, m − σ, thus k = 3). The maximum and minimum values are not used
here, because the extreme values may be outliers and one extreme bias value can
substantially influence the clustering process. This approach will be later referenced
as full imputation. Unfortunately the number of new tuples grows very fast with
the number n of missing values from the original tuple. This explosion in number of
tuples can have disadvantageous influence on the efficacy of calculations. Thus when
the tuple lacks more than At values not all possible combinations are imputed, but
for each missing value v only k new tuples are created and other missing attributes
q 6= v are imputed by means of the respective attributes. So only kn new tuples are
added. Figure 1 presents an example of a data set with missing values denoted with
question marks. If At > 2 the tuple x1 will be substituted with kn = 32 = 9 tuples –
Figure 2. If A < 2 the tuple in question will be imputed with kn = 3 ·2 = 6 tuples –
Figure 3. The twofold approach is used because in real-life data set the tuple may
lack 8 or more values.

If the tuple with missing values is substituted with t imputed tuples, each of
these imputed tuples is assigned weight η = 1/t. The weight is treated as condition
in conditional clustering (Equation (3)).



136 K. Simiński

a1 a2 a3 a4
x1 2 ? ? 1
x2 1 4 6 3
x3 8 5 7 3
x4 5 2 9 1
x5 8 3 6 2
x6 7 0 5 4

average 2.80 6.60
st. dev. 1.72 1.36

Figure 1. Example of the data set with missing values (denoted with question marks).
The last two rows show the average values and standard deviation of attributes a2
and a3.

a1 a2 a3 a4
x1 2 ? ? 1
x7 2 1.08 5.24 1
x8 2 1.08 6.60 1
x9 2 1.08 7.96 1
x10 2 2.80 5.24 1
x11 2 2.80 6.60 1
x12 2 2.80 7.96 1
x13 2 4.52 5.24 1
x14 2 4.52 6.60 1
x15 2 4.52 7.96 1

Figure 2. Tuples No. 7–15 are imputed in the data set from Figure 1 in place of tuple x1

when At > n = 2

2.2 Rough-Fuzzy Subspace Clustering

The clustering method is based on minimising the criterion function:

J =
R∑

r=1

[
Xu∑
u=1

µ̃m
ru

A∑
a=1

zfrad
2
ra (x̃u) +

Xl∑
l=1

µ˜mrl
A∑

a=1

zfrad
2
ra

(
x˜l)
]
, (1)

where

d2ra (x) = (xka − vra)2 (2)

is the distance for the ath attribute from the rth cluster centre for the tuple x. The
symbol x̃ denotes the tuple form the “upper” data set X̃ and x˜ is a tuple from
“lower” data set X˜ .
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a1 a2 a3 a4
x1 2 ? ? 1
x16 2 2.80 5.24 1
x17 2 2.80 6.60 1
x18 2 2.80 7.96 1
x19 2 1.08 6.60 1
x20 2 2.80 6.60 1
x21 2 4.52 6.60 1

Figure 3. Tuples No. 16–21 are imputed in the data set from Figure 1 in place of tuple x1

when At < n = 2

For each data tuple from “upper” data set the conditional boundary is

∀
u∈X̃

R∑
r=1

µ̃ru = ηu, (3)

where ηu is a tuple’s weight (cf. Section 2.1.2). This condition is similar to the
condition used in conditional FCM algorithm [37]. For lower clustering the standard
FCM boundary is applied:

∀
l∈X˜

R∑
r=1

µ˜rl = 1. (4)

The cluster centres are elaborated based only on “lower” membership values:

vi =

∑Xl

l=1 µ˜il x˜l∑Xl

l=1 µ˜il . (5)

Constraints for dimension weights z are similar:

∀
r∈R

A∑
a=1

zra = 1. (6)

The Lagrange function for criterion function can be expressed as

L(µ, λ1, λ2, λ3) =
R∑

r=1

[
Xu∑
u=1

µ̃m
ru

A∑
a=1

zfrad
2
ra (x̃u) +

Xl∑
l=1

µ˜mrl
A∑

a=1

zfrad
2
ra

(
x˜l)
]

− λ1
R∑

r=1

[
A∑

a=1

zra − 1

]

− λ2
Xl∑
l=1

[
R∑

r=1

µ˜rl − 1

]
− λ3

Xu∑
u=1

[
R∑

r=1

µ̃ru − wu

]
. (7)



138 K. Simiński

For the rth rule

∂L

∂µ̃ru

= mµ̃m−1
ru

(
A∑

a=1

zfrad
2
ra (x̃u)

)
− λ3 = 0 (8)

∂L

∂µ˜rl = mµ˜m−1rl

(
A∑

a=1

zfrad
2
ra

(
x˜l)
)
− λ2 = 0 (9)

∂L

∂zra
=

Xl∑
l=1

µ˜mrl f zf−1ra d2ra
(
x˜l)− λ1 = 0. (10)

Transforming Equation (8) we get:

∂L

∂µ̃ru

= mµ̃m−1
ru

(
A∑

a=1

zfrad
2
ra (x̃u)

)
− λ3 = 0, (11)

λ3
m

= µ̃m−1
ru

(
A∑

a=1

zfrad
2
ra (x̃u)

)
, (12)

µ̃ru =

(
λ3
m

) 1
m−1

(
A∑

a=1

zfrad
2
ra (x̃u)

) 1
1−m

. (13)

Analogously for Equation (9):

µ˜rl =

(
λ2
m

) 1
m−1

(
A∑

a=1

zfrad
2
ra

(
x˜l)
) 1

1−m

, (14)

substituting 13 into 3:

wu =
R∑

r=1

(
λ3
m

) 1
m−1

(
A∑

a=1

zfrad
2
ra (x̃u)

) 1
1−m

. (15)

Dividing 13 by 15 gives:

µ̃ru = wu

(∑A
a=1 z

f
rad

2
ra (x̃u)

) 1
1−m

∑R
r=1

(∑A
a=1 z

f
rad2ra (x̃u)

) 1
1−m

. (16)

Analogously the µ˜rl is calculated:

µ˜rl =

(∑A
a=1 z

f
rad

2
ra

(
x˜l)
) 1

1−m

∑R
r=1

(∑A
a=1 z

f
rad2ra

(
x˜l)
) 1

1−m

. (17)
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Now the dimension weights are to be calculated. When f 6= 1 the transformation
of Equation (10) gives:

Xu∑
u=1

µ˜mrl f zf−1ra d2ra
(
x˜u)− λ1 = 0 (18)

Xl∑
u=1

µ˜mrl f zf−1ra d2ra
(
x˜u) = λ1 (19)

f zf−1ra

Xl∑
l=1

µ˜mrl d2ra (x˜u) = λ1. (20)

Further:

zf−1ra =
λ1

f
∑Xl

l=1 µ˜mrl d2ra (x˜u) (21)

zra =

(
λ1
f

) 1
f−1

(
Xl∑
u=1

µ˜mru d2ra (x˜u)
) 1

1−f

. (22)

Combining Equations (22) and (6) we get:

1 =
A∑

a=1

(
λ1
f

) 1
f−1

(
Xu∑
l=1

µ˜mrl d2ra (x˜u)
) 1

1−f

. (23)

Dividing 22 by 23 gives:

zra =

(∑Xl

l=1 µ˜mrl d2ra (x˜u)
) 1

1−f

∑A
a=1

(∑Xl

l=1 µ˜mrl d2ra (x˜l)
) 1

1−f

. (24)

When f = 1 somewhat different approach has to be applied. In such a situation
the objective function (1) becomes

J =
R∑

r=1

[
Xu∑
u=1

µ̃m
ru

A∑
a=1

zrad
2
ra (x̃u) +

Xl∑
l=1

µ˜mrl
A∑

a=1

zrad
2
ra

(
x˜l)
]
. (25)

In such a case the attribute a of the rth rule for which the sum

Xu∑
u=1

µ̃m
rud

2
ra (x̃u) +

Xl∑
l=1

µ˜mrld2ra (x˜l) (26)

is minimal gets the weight zra = 1 and other attributes of this rule get zero weights
(because of the constraint expressed by Equation 6).
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1 i n p u t : X { array o f t u p l e s }
2 i n p u t : max I t e r {maximal number o f i t e r a t i o n s }
3 output : v { c l u s t e r s ’ c en t r e s }
4 output : s { f u z z i f i c a t i o n o f ‘ ‘ upper ’ ’ rough s e t }
5 output : s { f u z z i f i c a t i o n o f ‘ ‘ lower ’ ’ rough s e t }
6 output : z { a t t r i b u t e s ’ we igh t matrix}
7

8 { i n i t i a l i z a t i o n : }
9 numbe rO f I t e r a t i o n s := 0 ;

10 { preproce s s ing o f data : }
11 X̃ := impu ta t i on (X) { c r ea t i on o f ‘ ‘ upper ’ ’ data s e t }
12 X˜ := ma r g i n a l i s a t i o n (X) { c r ea t i on o f ‘ ‘ lower ’ ’ data s e t }
13 { c l u s t e r i n g : }
14 random i n i t i a l i z a t i o n of µ̃ , µ˜ and z ;

15 while numbe rO f I t e r a t i o n s < max I t e r do
16 {
17 c a l c u l a t e v ; {Equation˜5}
18 update µ̃ , µ˜ ; {Eqq . 16 , 17}
19 update z ; {Equation˜24}
20 numbe rO f I t e r a t i o n s := numbe rO f I t e r a t i o n s + 1 ;
21 }
22 end while ;
23 c a l c u l a t e v ; {Equation˜5}
24 augment z ; {Equation˜27}
25 c a l c u l a t e s̃ , s˜ ; {Eqq . 29 , 30}
26 c a l c u l a t e s , s ; {Eqq . 31 , 32}

Figure 4. Rough fuzzy subspace clustering

Alternating application of Equations 5, 17, 16 and 24 leads to the algorithm
presented in Figure 4.

For clustering procedure the sum weights of attributes in one rule have the
constraint expressed by Equation (6). When there are many attributes the values of
weights are very small, what makes them difficult for interpretation. For more clarity
the weights are augmented when the clustering procedure has been finished. The
attribute weights for one rule are divided by their maximal values. This maximal
value is always greater than zero. In this procedure all weights in this rule are scaled
and the maximum weights become one:

∀
r∈R

zra ←
zra

maxi∈[1..A] zri
. (27)
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2.3 Extraction of Clusters from Partition Matrices

The membership function to clusters is defined as Gaussian function

g(x; v, s) = exp

(
−(x− v)2

2s2

)
. (28)

Based on partition matrices µ̃ and µ˜ the parameters v, s are calculated. The cluster

center v = [v1, v2, . . . , vA] is calculated by help of Equation (5). The s parameter is
elaborated by help of Equations [9, 29]

s̃i =

√∑Xu

u=1 µ̃
m
iu (x̃u − vi)∑Xu

u=1 µ̃iu

(29)

for “upper” clusters and

s˜i =

√√√√∑Xl

l=1 µ˜mil (x˜l − vi

)∑Xl

l=1 µ˜il (30)

for “lower” ones. It cannot be guaranteed that the values s˜ elaborated with “lower”
data set are s and s̃ is s; so, having calculated the fuzziness of cluster elaborated with
“upper” and “lower” data set the lower and upper values of fuzziness are elaborated
in the following way:

si = max
(
s̃i, s˜i) (31)

and
si = min

(
s̃i, s˜i) . (32)

This clustering algorithm creates clusters being type-2 fuzzy sets. The type-2
fuzzy clustering is not widely used. The paper [25] proposes the clustering algorithm.
This is modification of the FCM algorithm. The two membership functions are
achieved by applying various values of m parameter for criterion function of FCM
algorithm. The values of the m parameter are selected by user and are not tuned or
modified during the clustering procedure. In our approach the m parameter for both
fuzzy sets is constant (m = 2), the sets differ by the σ parameter. The gap between
“upper” and “lower” fuzzy sets is fitted automatically. The cluster represented by
a pair of fuzzy sets can also be regarded as a rough fuzzy set.

3 EXPERIMENTS

The algorithm minimises the criterion function (1). This class of clustering algorithm
requires the a priori number of clusters because the algorithm itself cannot elaborate
the optimal number of clusters. For experiments the number of clusters is assumed
to be 3 or 5.
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The f parameter (Equation (1)) has to be fixed a priori. In the experiment we
used many values, but the best results were achieved for f ∈ [2, 5]. This interval
seems independent from the data set to cluster.

The data tuples with missing values are fully imputed (Section 2.1.2).

3.1 Data Sets

Data sets used in experiments are both synthetic and real life data sets. The syn-
thetic data set is used to check whether the clusters in subspaces are identified
correctly. The real life data sets depicting methane concentration (Section 3.1.3)
and concrete compressive strength (Section 3.1.2) were prepared and 5 % of values
were removed at random. The water treatment plant data set is untouched.

3.1.1 Synthetic Data set

The synthetic data set ‘g136’ has 6 attributes (dimensions) and two clusters. The
first cluster has points generated with Gauss distribution (mean m = 1 and standard
deviation σ = 1) in dimenstions 1, 3 and 6. The second cluster (in subspace created
by dimensions 2, 4 and 6) is generated with Gauss distribution (m = 9, σ = 1). The
not used attribute values are filled with uniform distribution from interval [0, 10].
The data set is not normalised.

3.1.2 Concrete Compressive Strength

The data set contains 1050 data tuples describing the parameters of the concrete
sample [52]. Each tuple has 9 attributes:

1. the cement content (in [kg/m3]),

2. blast furnace slag,

3. fly ash,

4. water,

5. superplasticizer,

6. coarse aggregate,

7. fine aggregate,

8. age of sample (in days: 1 – 365) and

9. concrete compressive strength (in [MPa]).

The data set lacks 10 % of values. The data set can be downloaded freely from
public repository1 [13]. Five percent of values are removed from the data sets.

1 http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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3.1.3 Methane Concentration

The dataset contains the real life measurements of air parameters in a coal mine in
Upper Silesia (Poland). The parameters (measured in 10 second intervals) are:

1. AN31 – the flow of air in the shaft,

2. AN32 – the flow of air in the adjacent shaft,

3. MM32 – concentration of methane (CH4),

4. production of coal.

To the tuples the 10-minute sums of measurements of (5) AN31, (6) AN32, (7) MM32
are added as dynamic attributes [40]. The data set contains 499 tuples. Five percent
of values are removed from the data sets.

3.1.4 Water Treatment Plant Data Set

The data set describes the measurements of sensors in an urban waste water treat-
ment plant. This domain has been stated as an ill-structured domain. Some values
are missing from the data set. The attribute values are numeric and continuous.
The first attribute (the day of the data) is rejected so there are 38 attributes in
527 tuples. The data set can be downloaded freely from public repository2 [13]. For
brevity of the paper the attributes names are not listed in this paper, but can be
found in data description in the above-mentioned repository. The data set originally
lacked values.

3.2 Results

Figures 5 and 6 present the results of clustering of synthetic data set ‘g136’. It should
be stated clearly that the representation in the figures is symbolical. It means two
features, namely

1. membership µ of the data tuple and

2. weight z are shown in a combined way.

The figures present the product µ · z instead of separate figures of µ and z. This
approach is only used for better representation of two features in one figure. The
attribute weight has no influence on the value of attribute membership. This re-
mark should always be taken into consideration when analysing the above-mentioned
figures.

Each rough fuzzy cluster is represented with two Gaussian functions: the wider
representing the ‘upper’ fuzzy set and the narrower for ‘lower’ fuzzy set.

2 http://archive.ics.uci.edu/ml/datasets/Water+Treatment+Plant
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Figure 5. The results of clustering of synthetic data set ‘g136’ into two clusters. The
left column presents clustering of ‘g136’ data set with 10 % of values missing from
attributes 1, 3 and 4. The attributes 2, 5 and 6 miss no values. The right column
presents the results of clustering of ‘g136’ data set with no missing values. The
representation of cluster membership functions is symbolical – the membership
function is combined with the data tuple’s weight (see details at the beginning of
Section 3.2).
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Figure 6. The results of clustering of synthetic data set ‘g136’ into two clusters. The
left column presents clustering of ‘g136’ data set with 5 % of values missing from
all attributes. The right column presents the results of clustering of ‘g136’ data
set with 10 % of values missing from all attributes. The representation of cluster
membership functions is symbolical – the membership function is combined with
the data tuple’s weight (see details at the beginning of the Section 3.2).



146 K. Simiński

The results of rough fuzzy clustering should be analysed in two aspects. The
first one is the proper identification of subspaces. The results presented in Figures 5
and 6 reveal correct identification of subspaces in dimensions: 1-3-6 and 2-4-6. The
5th dimension is not used correctly in either cluster. The second aspect is correct
handling of missing values. The algorithm creates rough fuzzy sets. The results
show that the more values are missing, the wider is the separation of ‘upper’ and
‘lower’ data sets. If all data tuples are complete and lack no values, the rough
fuzzy clustering degenerates to fuzzy clustering (see the right column of Figure 5).
However, if there are attributes with all values and attributes with missing values
in one data set, the rough fuzzy sets are elaborated for both kinds of attributes.
This feature can be observed in the left column of Figure 5, where attributes 2, 5
and 6 lack no values, but are represented by the rough fuzzy sets. It can also be
observed that the roughness of sets for the complete attributes is less than roughness
of attributes with missing values (attributes 1, 3 and 4).

The results of clustering of real life data sets introduced in Section 3.1 are
presented in Tables 2, 3, 4 and 5.

The cluster parameters (cluster centre (v), “lower” (s) and “upper” (s) fuzziness
and attribute’s weight (z)) are presented in symbolic way as vss(z).

The f parameter in clustering algorithm influences the weight values. If f = 1
only one attribute in the cluster is assigned with maximal (1) value and all other
attributes get zero weights. This is explained by Equation (26). If f � 1 (in practice
f > 10) then all attributes get similar weights (after augmenting all weights are
almost equal to 1). This is confirmed by multiple experiments.

clusters
attr. I II III IV V

1 −0.160.890.39(0.90) −1.310.580.29(0.92) −0.840.900.39(0.95) 0.271.110.48(0.88) 1.250.520.27(0.88)
2 0.150.790.39(0.89) 1.370.650.33(0.85) 0.820.810.39(0.95) −0.311.000.50(0.85) −1.200.560.32(0.81)
3 0.100.830.49(0.79) 1.371.150.68(0.60) 0.740.910.54(0.81) −0.610.700.40(0.95) −0.920.840.53(0.63)
4 0.101.150.84(0.61) 0.580.900.65(0.61) 0.041.190.86(0.64) −0.701.270.88(0.65) 0.031.401.12(0.43)
5 −0.180.860.34(0.96) −1.350.530.24(1.00) −0.880.870.35(1.00) 0.281.030.39(0.97) 1.270.440.21(1.00)
6 0.150.780.31(1.00) 1.440.680.31(0.88) 0.850.860.35(1.00) −0.330.980.37(1.00) −1.240.430.21(1.00)
7 0.100.610.48(0.80) 1.410.780.67(0.60) 0.770.690.53(0.82) −0.600.600.41(0.95) −0.940.560.52(0.64)

Table 2. Results for ‘methane’ data set, f = 5

The ‘methane’ data set was clustered into 5 clusters, the results are presented in
Table 2 (f = 5). The data set lacks 5 % of values. The very important phenomenon
can be seen in the results of clustering (Table 2). The most significant attribute in
four clusters is the 5th one (10-minute sum of the flow of air in the shaft AN31).
This is correlated with the high importance of the first attribute – the flow of the
air in the shaft AN31. In one cluster the most important attribute is the 3rd one
(MM32 – concentration of methane) and the second most important one is the 7th

attribute (10-minute sums of measurements of MM32). In the second cluster the
similar correlation between the 6th (sum of AN32) and 2nd (AN32 – the flow of air
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in the adjacent shaft) attribute can be easily noticed. In is worth mentioning that
in 4 clusters the attribute describing sum of measurements is more important that
the attribute expressing the measurements themselves.

clusters
attr. I II III IV V

1 −0.541.080.80(0.00) −0.451.100.43(0.01) 0.281.251.06(0.00) 0.331.291.13(0.00) −0.671.310.68(0.15)
2 −0.041.220.86(0.00) −0.850.130.04(1.00) 0.311.471.11(0.00) −0.411.080.34(0.03) −0.031.360.37(0.53)
3 1.101.450.53(0.00) 1.011.250.40(0.01) −0.840.040.00(1.00) 0.981.700.58(0.01) 1.031.750.83(0.10)
4 0.091.420.98(0.00) −0.581.080.70(0.00) 0.261.240.99(0.00) −0.631.270.92(0.00) −0.811.180.66(0.16)
5 0.561.120.56(0.00) 0.381.170.53(0.01) −0.351.401.14(0.00) 0.451.270.57(0.01) 0.391.080.38(0.50)
6 −0.521.431.01(0.00) 0.521.010.60(0.00) −0.031.360.96(0.00) −0.131.340.99(0.00) 0.621.020.71(0.14)
7 −0.181.250.87(0.00) 0.690.960.70(0.00) −0.091.411.09(0.00) 0.011.420.58(0.01) 0.020.840.27(1.00)
8 −0.270.080.02(1.00) −0.011.380.61(0.00) 0.111.561.22(0.00) −0.630.160.06(1.00) 0.401.670.38(0.50)
9 −0.150.800.78(0.00) −0.110.890.82(0.00) 0.011.131.10(0.00) −0.510.660.62(0.01) 1.020.910.58(0.21)

Table 3. Results for ‘concrete’ data set, f = 2

clusters
attr. I II III IV V

1 −0.531.000.81(0.01) −0.841.060.33(0.85) 0.281.191.06(0.00) −0.480.910.34(0.02) 1.071.190.83(0.25)
2 −0.001.110.87(0.01) 0.021.510.35(0.82) 0.311.351.11(0.00) −0.860.000.00(1.00) −0.610.190.05(1.00)
3 1.101.240.53(0.01) 0.981.610.84(0.53) −0.840.000.00(1.00) 1.011.090.39(0.02) 0.971.000.42(0.35)
4 0.121.310.98(0.01) −0.821.150.75(0.56) 0.261.160.99(0.00) −0.591.000.68(0.02) −0.441.050.89(0.24)
5 0.560.980.57(0.01) 0.371.060.38(0.79) −0.361.321.14(0.00) 0.391.050.52(0.02) 0.461.100.63(0.29)
6 −0.571.321.00(0.01) 0.821.040.43(0.74) −0.031.240.96(0.00) 0.560.880.55(0.02) −0.790.820.76(0.26)
7 −0.221.150.86(0.01) 0.040.990.24(1.00) −0.091.311.09(0.00) 0.710.870.69(0.02) −0.080.940.70(0.27)
8 −0.270.000.00(1.00) −0.131.320.56(0.65) 0.111.451.22(0.00) −0.051.130.62(0.02) −0.380.790.40(0.37)
9 −0.140.790.79(0.01) 0.021.020.97(0.48) 0.001.121.10(0.00) −0.170.890.83(0.01) 0.220.910.90(0.24)

Table 4. Results for ‘concrete’ data set, f = 5

The clusters elaborated for ‘concrete’ data set are presented in Table 3 for f = 2
and Table 4 for f = 5. For both values of f the most important attributes are 2 (blast
furnace slag), 3 (fly ash), 7 (fine aggregate) and 8 (age of sample). Clustering with
f = 5 gives higher values of attributes weights. This is also clearly seen in Table 3
where some singular attributes achieve maximal weights whereas the rest have very
low weights. When f = 5 (Table 4) the weights of attributes are significantly higher
(with exception of cluster III). This is also important, because when the attributes
have higher weight the reliability of cluster’s parameters for this attribute is higher.

The results of clustering for the ‘water’ data set are presented in Table 5. The
attributes with weights > 0.75 are printed in negative for easier identification. The
results of clustering into 3 clusters show that in the 2nd and 3rd cluster the most
important attribute is ‘output sediments’ (No. 28), whereas in the 1st cluster this
attribute has not very high importance. The importance of attributes in various
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clusters is (to some extend) complementary. In the 1st cluster the weights assigned
to attributes are relatively high, whereas the weights in clusters 2 and 3 are lower.
The precision of localisation of cluster centre, whose weight is low, is not high. The
higher the weight, the more reliable the localisation and fuzziness of cluster.

The clustering algorithm is parametrized. The f parameter seems to be the
most important. The experiments show that the best interval for this parameter
is [2, 5]. The values less than 2 lead to selection of only one attribute. The values
greater than 5 assign similar weights to all attributes; this reduces the rough fuzzy
subspace clustering to rough fuzzy clustering without subspace identification. If the
experimentator wishes sharper clustering, the smaller values of f should be used. If
the subspaces should not be identified very sharply the higher values of f should be
used. Cluster identification sharpness can be different in one clustering experiment.
This phenomenon can be observed in Table 4. The subspace for the 1st cluster is
identified sharply, whereas the 5th cluster in the same experiment has far less sharp
subspace. Based on the results of clustering, it seems that the optimal interval [2, 5]
for parameter f is independent from the clustered data set.

4 CONCLUSIONS

The paper presents rough fuzzy subspace clustering algorithm with experimental
results. To handle the lack of attribute values three approaches are used: marginali-
sation, imputation and rough sets. The algorithm also assigns weights to attributes
in each cluster; this leads to subspace clustering. The parameters of clusters are
elaborated in the iterative procedure based on minimising the criterion function.
The number of clusters has to be given a priori. The crucial parameter of the pro-
posed algorithm is the parameter having the influence on the sharpness of elaborated
subspace cluster. The lower values of the parameter lead to selection of the most
important attribute. The higher values create clustering in global space, not in
subspaces. This parameter seems to be independent from the data sets to cluster.

Clustering of synthetic data sets reveals the ability of the proposed algorithm to
identify the subspaces. Assigning weights to the attributes can also find the relations
between the attributes. Besides, the algorithm is capable of handling the data with
missing values. The more values miss from the data set the more rough clusters
are elaborated. The fact of missing some values from one attribute may interfere
the complete attributes with no missing values. In such data sets (with complete
attributes and attributes with missing values) the attributes with no missing values
may be modelled with rough sets.

The algorithm is thought to be one of the clustering algorithms used for input
domain partition in neuro-fuzzy systems.
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clusters
attr. I II III

1 −0.101.060.87(0.74) 0.081.090.98(0.27) 0.021.041.00(0.30)

2 −0.120.820.73(0.81) 0.010.860.78(0.31) −0.020.880.79(0.33)

3 −0.120.860.80(0.77) 0.070.960.95(0.29) 0.151.010.98(0.31)

4 0.222.540.93(0.72) −0.031.960.99(0.29) 0.012.090.98(0.31)
5 0.081.130.99(0.70) −0.011.141.03(0.28) −0.031.120.95(0.32)

6 −0.140.540.48(1.00) 0.351.451.31(0.24) −0.110.830.60(0.40)

7 0.170.960.68(0.84) −0.341.681.23(0.26) 0.061.390.97(0.31)

8 −0.150.620.54(0.88) 0.421.901.26(0.21) −0.060.650.64(0.38)

9 −0.321.120.69(0.83) 0.011.171.03(0.28) 0.101.151.06(0.30)

10 −0.100.840.79(0.76) 0.090.960.85(0.29) 0.191.040.88(0.30)

11 0.182.620.94(0.71) 0.032.050.96(0.29) 0.052.190.96(0.31)

12 −0.170.520.37(0.96) 0.421.701.06(0.22) −0.090.680.48(0.37)

13 0.201.070.73(0.81) −0.371.671.21(0.26) 0.041.430.98(0.31)

14 −0.070.590.52(0.90) 0.411.911.16(0.21) −0.090.670.61(0.38)

15 −0.311.150.70(0.83) −0.001.201.02(0.28) 0.101.191.06(0.30)

16 −0.210.860.76(0.75) 0.160.940.86(0.29) 0.221.030.88(0.30)

17 0.342.500.94(0.72) −0.111.990.98(0.29) 0.022.130.98(0.31)
18 0.271.240.96(0.71) −0.151.290.95(0.29) 0.021.320.95(0.32)
19 0.090.940.87(0.74) 0.031.281.06(0.28) −0.041.210.95(0.32)

20 0.121.210.70(0.83) −0.211.811.13(0.27) 0.041.650.97(0.31)

21 0.101.190.93(0.72) −0.051.110.93(0.30) 0.021.231.06(0.30)

22 −0.281.060.72(0.82) −0.001.151.03(0.28) 0.091.141.06(0.30)

23 −0.310.960.77(0.79) 0.191.170.80(0.32) 0.111.190.81(0.34)

24 0.513.791.38(0.59) −0.171.840.31(0.51) −0.132.000.33(0.54)
25 0.642.021.55(0.56) −0.251.330.66(0.35) −0.141.350.71(0.37)
26 0.882.421.53(0.56) −0.250.960.40(0.45) −0.190.940.43(0.47)

27 −0.091.260.72(0.82) −0.121.841.09(0.27) −0.001.711.03(0.30)

28 1.113.341.95(0.38) −0.120.110.08(1.00) −0.110.140.09(1.00)

29 −0.271.100.68(0.84) −0.021.141.04(0.28) 0.081.141.05(0.30)

30 −0.232.621.07(0.67) 0.132.140.97(0.29) −0.012.270.99(0.31)
31 −0.311.110.77(0.66) 0.331.211.06(0.28) −0.041.080.95(0.32)
32 −0.131.060.78(0.67) 0.150.870.84(0.31) −0.051.060.91(0.30)
33 −0.552.931.60(0.55) 0.172.030.57(0.38) 0.172.200.60(0.40)
34 −0.481.571.30(0.61) 0.171.400.77(0.33) 0.161.380.81(0.34)
35 −0.572.881.84(0.51) 0.191.970.50(0.40) 0.162.130.52(0.43)
36 −0.631.521.49(0.56) 0.231.370.76(0.33) 0.121.340.79(0.35)
37 −0.881.851.41(0.58) 0.341.090.49(0.41) 0.161.030.51(0.43)

38 −1.132.972.27(0.40) 0.140.110.09(0.98) 0.120.140.12(0.89)

Table 5. Results for the ‘water’ data set (f = 5). The attributes with weights > 0.75 are
printed white in black boxes.
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REFERENCES

[1] Acuña, E.—Rodriguez, C.: The Treatment of Missing Values and its Effect in
the Classifier Accuracy. In D. Banks, L. House, F. R. McMorris, P. Arabie, W. Gaul
(Eds.): Classification, Clustering and Data Mining Applications, Springer 2004,
pp. 639–648.

[2] Aggarwal, C. C.—Wolf, J. L.—Yu, P. S.—Procopiuc, C.—Park, J. S.: Fast
Algorithms for Projected Clustering. SIGMOD Rec., Vol. 28, 1999, No. 2, pp. 61–72.

[3] Aggarwal, C. C.—Yu, P. S.: Finding Generalized Projected Clusters in High Di-
mensional Spaces. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, New York, NY, USA 2000, pp. 70–81.

[4] Agrawal, R.—Gehrke, J.—Gunopulos, D.—Raghavan, P.: Automatic Sub-
space Clustering of High Dimensional Data for Data Mining Applications. SIGMOD
Rec., Vol. 27, 1998, No. 2, pp. 94–105.

[5] Batista, G. E. A.—Monard, M. C.: An Analysis of Four Missing Data Treat-
ment Methods for Supervised Learning. Applied Artificial Intelligence, Vol. 17, 2003,
No. 5-6, pp. 519–533.

[6] Chan, L. S.—Gilman, J. A.—Dunn, O. J.: Alternative Approaches to Missing
Values in Discriminant Analysis. Journal of the American Statistical Association,
Vol. 71, 1976, No. 356, pp. 842–844.

[7] Cheng, C. H.—Fu, A.-W.—Zhang, Y.: Entropy-Based Subspace Clustering for
Mining Numerical Data. In KDD ’99: Proceedings of the 5th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, New York 1999,
pp. 84–93.

[8] Cooke, M.—Green, P.—Josifovski, L.—Vizinho, A.: Robust Automatic
Speech Recognition with Missing and Unreliable Acoustic Data. Speech Commu-
nication, Vol. 34, 2001, pp. 267–285.

[9] Czoga la, E.— Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in
Fuzziness and Soft Computing, Physica-Verlag, A Springer-Verlag Company, Heidel-
berg, New York 2000.

[10] Dempster, A. P.—Laird, N. M.—Rubin, D. B.: Maximum Likelihood from In-
complete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series
B, Vol. 39, 1977, No. 1, pp. 1–38.

[11] Farhangfar, A.—Kurgan, L. A.—Pedrycz, W.: A Novel Framework for Im-
putation of Missing Values in Databases. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, Vol. 37, 2007, No. 5, pp. 692–709.

[12] Farhangfar, A.—Kurgan, L.—Dy, J.: Impact of Imputation of Missing Values
on Classification Error for Discrete Data. Pattern Recognition, Vol. 41, 2008, No. 12,
pp. 3692–3705.

[13] Frank, A.—Asuncion, A.: UCI Machine Learning Repository, 2010.

[14] Friedman, J. H.—Meulman, J. J.: Clustering Objects on Subsets of Attributes.
Journal of the Royal Statistical Society: Series B, Vol. 66, 2004, pp. 815–849.

[15] Fuller, W. A.—Kim, J. K.: Hot Deck Imputation for the Response Model. Survey
Methodology, Vol. 31, 2005, No. 2, pp. 139–149.



Rough Fuzzy Subspace Clustering for Data with Missing Values 151

[16] Gan, G.—Wu, J.: A Convergence Theorem for the Fuzzy Subspace Clustering
(FSC) Algorithm. Pattern Recogn., Vol. 41, 2008, No. 6, pp. 1939–1947.

[17] Gan, G.—Wu, J.—Yang, Z.: A Fuzzy Subspace Algorithm for Clustering High
Dimensional Data. In Proceedings of Second International Conference on Advanced
Data Mining and Applications (ADMA) 2006, China 2006, Vol. 4093 of Lecture Notes
in Computer Science, Springer 2006, pp. 271–278.

[18] Ghahramani, Z.—Jordan, M. I.: Learning from Incomplete Data. Technical re-
port, Lab Memo No. 1509, CBCL Paper No. 108, MIT AI Lab 1995.

[19] Goil, S.—Nagesh, H.—Choudhary, A.: Mafia: Efficient and Scalable Subspace
Clustering for Very Large Data Sets. Technical report 1999.

[20] Grzyma la-Busse, J.: A Rough set Approach to Data With Missing Attribute
Values. In Guoying Wang, James Peters, Andrzej Skowron, and Yiyu Yao (Eds.):
Rough Sets and Knowledge Technology, Vol. 4062 of Lecture Notes in Computer
Science, Springer 2006, pp. 58–67.

[21] Grzyma la-Busse, J.—Goodwin, L.—Grzymala-Busse, W.—Zheng, X.:
Handling Missing Attribute Values in Preterm Birth Data Sets. In Dominik Slezak,
JingTao Yao, James Peters, Wojciech Ziarko, and Xiaohua Hu (Eds.): Rough Sets,
Rough fuzzy subspace clustering for data with missing values, Vol. 3642 of Lecture
Notes in Computer Science, Springer 2005, pp. 342–351.

[22] Grzyma la-Busse, J.—Hu, M.: A Comparison of Several Approaches to Missing
Attribute Values in Data Mining. In Wojciech Ziarko and Yiyu Yao (Eds.): Rough
Sets and Current Trends in Computing, Vol. 2005 of Lecture Notes in Computer
Science, Springer 2001, pp. 378–385.

[23] Hathaway, R. J.—Bezdek, J. C.: Fuzzy C-Means Clustering of Incomplete Data.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 31,
2001, No. 5, pp. 735–744.

[24] Himmelspach, L.—Conrad, S.: Fuzzy Clustering of Incomplete Data Based on
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