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Abstract. Incremental data mining has been discussed widely in recent years, as
it has many practical applications, and various incremental mining algorithms have
been proposed. Hong et al. proposed an efficient incremental mining algorithm for
handling newly inserted transactions by using the concept of pre-large itemsets.
The algorithm aimed to reduce the need to rescan the original database and also
cut maintenance costs. Recently, Lin et al. proposed the Pre-FUFP algorithm to
handle new transactions more efficiently, and make it easier to update the FP-tree.
However, frequent itemsets must be mined from the FP-growth algorithm. In this
paper, we propose a Pre-FUT algorithm (Fast-Update algorithm using the Trie data
structure and the concept of pre-large itemsets), which not only builds and updates
the trie structure when new transactions are inserted, but also mines all the frequent
itemsets easily from the tree. Experimental results show the good performance of
the proposed algorithm.

Keywords: Data mining, frequent itemset, incremental mining, pre-large itemset,
trie

1 INTRODUCTION

Data mining has produced a variety of efficient techniques in recent years, and
the approaches may be classified as those working on transaction databases, tem-
poral databases, relational databases, and multimedia databases, among others.
Many mining methods have also been proposed, such as techniques for association
rules, classification, clustering and sequential patterns [4]. Among these, mining
association rules in transaction databases is the most common approach in data
mining [1, 2, 3, 4, 5, 8, 11, 12].

Many algorithms for mining association rules from transactions have been pro-
posed, most of which are based on the Apriori algorithm [3], which generates and
tests candidate itemsets in each level. However, this may require scanning databases
iteratively, and cause high computational cost. An important data structure used
in the Apriori algorithm is the hash-tree [3]. In order to improve performance of the
Apriori algorithm, Bodon and Ronyai [6] adopted the trie data structure to replace
hash-trees. In addition to Apriori-based algorithms, Han et al. [13] proposed the
Frequent-Pattern tree (FP-tree) structure to efficiently mine frequent itemsets (FIs)
without candidate generation. Both the Apriori and the FP-tree mining approaches
utilize batch mining, which means that they must process all the transactions in
a batch way.

In real-world applications, new transactions are usually inserted into databases
incrementally. The first incremental mining algorithm was the Fast-Updated algo-
rithm (called FUP), proposed by Cheung et al. [9]. Although the FUP algorithm
could indeed improve mining performance for incrementally growing databases, the
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original databases still needed be rescanned. Hong et al. then proposed the concept
of pre-large itemsets to further reduce the need for rescanning [14]. A pre-large item-
set is defined by two support thresholds. The upper support threshold is the same
as that used in the conventional mining algorithms, while the lower one is defined
as the lowest support ratio for an itemset to be treated as pre-large. An itemset
with a support ratio below the lower threshold is thought of as a small itemset.
This algorithm does not need to rescan the original database until a number of new
transactions has been inserted. Since rescanning the database requires considerable
computation time, the maintenance cost can thus be reduced with the pre-large-
itemset algorithm.

Various algorithms have been developed based on the concept of pre-large item-
sets [15, 16, 17, 26]. For example, Hong et al. modified the FP-tree structure and
designed a fast updated frequent pattern tree (FUFP tree) [15] for handling newly
inserted transactions based on the FUP algorithm [9]. The FUFP-tree structure
they used was similar to the FP-tree structure, except that the links between pa-
rent nodes and their child nodes were bi-directional. After that, Lin et al. proposed
the Pre-FUFP algorithm, which updated and constructed the FUFP tree when new
transactions are inserted. In addition to transactions insertion, some algorithms for
handling deleting and modifying transactions have also been developed [16, 17].

In this paper, we propose the Pre-FUT algorithm for handling newly inserted
transactions based on the pre-large itemsets concept and the trie data structure [6].
The trie structure used in the proposed algorithm can not only keep candidates,
but also frequent itemsets and pre-large itemsets. By adopting the trie structure
and some pruning techniques, the process of generating candidates and determining
supports becomes easier and faster. Based on trie, we can find FIs directly from
the tree-building process. The experimental results also show that the proposed
algorithm has good performance for incrementally handling inserted transactions.

The rest of this paper is organized as follows. Related works are reviewed in
Section 2, and the proposed Pre-FUT maintenance algorithm is described in Sec-
tion 3. An example to illustrate the proposed algorithm is given in Section 4, while
the experimental results showing the performance of the proposed algorithm are
provided in Section 5. Finally, the conclusion and directions for future work are
presented in Section 6.

2 RELATED WORKS

In this section, some related research is briefly reviewed on the topics of the hash-tree
data structure, trie data structure and pre-large-itemset algorithm.

2.1 Hash-Tree Data Structure

A hash-tree is a data structure that can reduce the time needed to determine the
support of itemsets in the Apriori algorithm, and new candidate itemsets can be
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stored in a hash-tree. A hash-tree is a rooted (downward), directed tree. A node
of the hash-tree contains either a list of itemsets (a leaf node) or a hash table
(an interior node). In an interior node, each bucket of the hash table points to
another node. The root of the hash-tree is defined to be at depth 1. An interior
node at depth d points to nodes at depth d + 1. Itemsets are stored in the leaves.
When we add an itemset c, we start from the root and go down the tree until we
reach a leaf. At an interior node at depth j, we decide which branch to follow
by applying a hash function to the jth item of the itemset. All nodes are initially
created as leaf nodes. When the number of itemsets in a leaf node exceeds a specified
threshold, the leaf node is converted to an interior one. Figure 1 shows a hash-tree,
which contains five candidates of size 3. Here, the items are capital letters. The
hash value of a letter is its sequential number in the English alphabet (0 for A,
1 for B, etc.). As G and M have the same hash value of 1, the sets {A,E,G} and
{A,E,M} are stored in the same leaf. The root has two children and the tree has
four leaves.

Figure 1. A hash-tree containing five candidates

Assume that we have a transaction t and we want to determine the support of
the candidates in the hash-tree. Here, we do not generate and test every k-subset
of t. Navigation in the hash-tree allows us to eliminate from consideration whole
families of k-itemsets with a given prefix. If we are at an interior node and have
reached it by hashing the item i, we hash on each item that comes after i in t and
recursively repeat this task. When we arrive at a leaf, then we have to test explicitly
if the candidates stored in the leaf are actually subsets of t. The benefit of using
a hash-tree is that the number of explicit tests is much less than total number of
candidates. A more detailed account of this process can be found in [3, 19].
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2.2 Trie Data Structure

The trie data structure was originally introduced to store and retrieve words in
a dictionary efficiently [25, 20]. A trie is a rooted, (downward) directed tree, like
a hash-tree. The root is at depth 0, and a node at depth d can point to nodes at
depth d + 1. A pointer is also called an edge or a link, which is labeled by a letter.
Each leaf represents a word which is the concatenation of the letters in the path
from the root to the node. Note that if the first k letters are the same in two words,
then the first k steps on the two paths are the same as well. The trie data structure
is suitable to store and retrieve not only words, but any finite ordered sets.

Bodon and Ronyai [6] extended the trie structure to mine FIs with good perfor-
mance. In their approach, the trie structure stores not only candidates, but also FIs.
In their setting, a link is labeled by an item symbol, and the alphabet is thus the (or-
dered) set of all items J . A path in a trie is a candidate itemset which includes one
or more links, with labels in an increasing order. Small itemsets are removed from
the trie after the procedure of determining the support of the candidates finishes,
and the trie only stores all the FIs. A k-itemset C = {i1, i2, . . . , ik} can thus be
viewed as a word i1, i2, . . . , ik composed of letters from J , with i1 < i2 < . . . < ik. In
the task of building the trie from the candidate itemsets, when inserting an itemset
we have to start from the root node. If we get to a node which has no link labeled
with the next letter ik of the itemset, then we create a new node and a link pointing
to it, whose label is ik. We repeat this procedure till we reach the end of the item-
set. Figure 2 presents an example of a trie that stores the candidates {A,C,D},
{A,E,G}, {A,E, L}, {A,E,M}, and {K,M,N}. The authors showed that their
approach could improve the performance of generating candidates and determining
supports in the following ways.

1. New candidates were generated from pairs of nodes which had the same parents.
That is, the two itemsets were the same except for the last items.

2. Some pruning techniques were adopted to determine the supports of itemsets ef-
ficiently. When the supports of the candidate k-itemsets need to be determined,
their method does not generate all k-subsets of a transaction t, but instead stops
if possible. More precisely, if the current processing is at a node at depth d, then
it moves forward on those links that have the labels i ∈ t with indices less than
|t| − k + d + 1. For example, assume transaction t = {B,C,E,K,M} and the
supports of the candidate 3-itemsets are to be determined by the above method.
The notation id{X} is used to represent the index of item X in transaction t.
First, the processing starts at root, which has two links {A} and {K}. Because
{K} ∈ t, id{K} = 3, and id{K} ≥ |t| − k + d + 1(= 5− 3 + 0 + 1 = 3), it can
be confirmed that there are not 3-subsets of t with the first item being {K}.

Next, the authors proposed an improvement to the procedure for finding sup-
ported candidates, based on the fact that superfluous moves are usually performed
in a trie search in the sense that there are no candidates in some of the directions
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explored. To illustrate this, consider the following example. Assume Figure 3 shows
the result of a trie search, in which only candidate {A,B,C,D,E} is generated after
frequent 4-itemsets are determined.

Figure 2. A trie data structure

When the supports of the candidate 5-itemsets need to be determined by the
transaction t = {A,B,C,D,E, F,G,H, I}, every node of the trie needs to be visited,
and thus 32 nodes are visited in this case. However, this is apparently unnecessary,
since only one path leads to a node at depth 5. At a node with many links, the
current processing mechanism has to decide which one to follow, because this will
significantly affect the running time. To avoid superfluous traveling, at every node
the length of the longest directed path that starts from it will be stored. When
searching for k-itemset candidates at depth d, we move downward only if the max-
imal path length at this node is k − d. Note that this trick cannot be applied to
a hash-tree, because a leaf at depth d does not necessarily store d-itemset candidates.
Bodon and Ronyai also showed that storing counters at each node needs memory,
but as their experiments proved, this approach can significantly reduce search time
for candidate itemsets. More comparative results about the two data structures,
hash-tree and trie, can be found in [6].

2.3 Some New Approaches for Incrementally Mining FIs

In this section, we will discuss in more detail approaches for incrementally mining
FIs. As noted in Section 1, many incremental algorithms have been proposed, and
each has advantages and disadvantages. There are currently two approaches to
mining FIs in incremental databases. The first is based on generating candidates
in each iteration, while the second does not need to do this. The first approach to
incremental mining is known as the FUP algorithm [9], and it is similar to Apriori-
like algorithms, which have to generate large number of candidates and repeatedly
scan the database. In Thomas et al. [32], the negative border is maintained along
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Figure 3. A trie with a single 5-itemset candidate

with the FIs to perform incremental updates, and this algorithm still requires a full
scan of the whole database if an itemset outside the negative border gets added
to the FIs or its negative border. This approach always generates candidates for
each iteration. In the Apriori-based incremental algorithms, the tasks of generating
candidates and determining their supports requires considerable time, and thus some
techniques can be applied to overcome this weakness, such as using a hash-tree [3]
or trie [6, 20].

The other approach to incremental mining is based on an FP-tree structure. This
is a prefix-tree structure for storing compressed candidates and crucial information
in transactions. An algorithm called AFPIM (Adjusting FP-tree for Incremental
Mining) [24, 21] is designed to efficiently find new FIs based on adjusting the FP-
tree structure. However, adjusting the FP-tree of the original database according to
the changed transactions is computationally complex. A different algorithm, called
EFPIM (Extending FP-tree for Incremental Mining) [27], has thus been proposed
to find FIs with minimum re-computation when new transactions are added to or
old transactions are removed from the database. This approach uses the structure
EFP-tree (extended FP-tree), which is equal to the FP-tree when the algorithm is
run for the first time and expanded during the next incremental mining. The EFP-
tree of the original database is maintained to mine FIs without needing to rescan the
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original database. However, the EFIPM algorithm still rescans the whole database
when there is a frequent item in the updated database that does not appear in the
EFP-tree built from the original database. This means that it is small in the original
database. Therefore, the algorithm needs to rescan the original database to re-build
EFP-tree.

In 2001, Hong et al. proposed the concept of pre-large itemsets [14]. A pre-large
itemset is defined by two support thresholds, and in this approach the algorithm
does not need to rescan the original database until a number of new transactions
have been inserted. Based on the concept of pre-large itemsets, the maintenance
for mining FIs in an incremental database can be reduced, and a number of related
algorithms have been developed [15, 16, 17, 26, 22]. For example, Hong et al. modi-
fied the FP-tree structure and designed a fast updated frequent pattern tree (FUFP
tree) [15] for handling newly inserted transactions based on the FUP algorithm [9].
In addition to transaction insertion, some algorithms have been developed to handle
deleting and modifying transactions [16, 17]. In addition, the concept of pre-large
itemsets has been also applied to mine sequential patterns in sequential databases.
For example, Wang et al. [34, 35] used the concept of pre-large sequences for han-
dling deleting and modifying transactions in sequential databases. In 2011, Hong
et al. [18] applied the concept of pre-large sequences for mining sequential patterns in
a sequential database when new transactions are frequently added into the database.
Similar to mining FIs in an incremental database, the concept of pre-large sequences
was proposed to reduce the need for rescanning original database. Like pre-large
itemsets, pre-large sequences are defined by a lower support threshold and an upper
support threshold that serve to avoid the direct movement of sequences from large to
small and vice versa. The maintained algorithm does not require rescanning original
databases until the accumulated amount of newly added sequences exceeds a safety
threshold, which depends on the size of the database. Thus, as databases grow
larger, the number of new transactions allowed before database rescanning is also
required to grow. The pre-large-based approach thus becomes increasingly efficient
as databases grow.

2.4 Pre-Large Itemset Algorithm

The pre-large itemsets algorithm was proposed by Hong et al. [14]. It is based on
a safety threshold f to reduce the need to rescan the original databases to efficiently
maintain the frequent itemsets. The safety number f of the inserted records is
derived as follows:

f =

⌊
(Su − Sl)d

1− Su

⌋
(1)

where Su is the upper threshold, Sl is the lower threshold, and d is the number of
original transactions. A summary of the nine cases and their results are given in
Table 1.
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Cases 1, 5, 6, 8 and 9 will not affect the final large itemsets according to the
weighted average of the counts. Cases 2 and 3 may remove existing large itemsets,
and cases 4 and 7 may add new large itemsets. If we retain all large and pre-large
itemsets with their counts after each pass, then cases 2, 3 and 4 can be handled
easily. In addition, the ratio of the number of new transactions to the number of
old transactions is usually very small in the maintenance phase, and this is more
apparent as the database grows larger. It has been formally shown that an itemset
in case 7 cannot possibly be large for the entire updated database as long as the
number of new transactions is smaller than the number f [14].

Cases: Original – New Results

Case 1: Large – Large Always large

Case 2: Large – Pre-large Large or pre-large,
determined from existing information

Case 3: Large – Small Large or pre-large or small,
determined from existing information

Case 4: Pre-large – Large Pre-large or large,
determined from existing information

Case 5: Pre-large – Pre-large Always pre-large

Case 6: Pre-large – Small Pre-large or small,
determined from existing information

Case 7: Small – Large Pre-large or small,
when the number of transactions is small

Case 8: Small – Pre-large Small or pre-large

Case 9: Small – Small Always small

Table 1. Nine cases and their results

3 PROPOSED PRE-FUT ALGORITHM

3.1 Notation

• D – the original database

• T – the set of new transactions

• U – the entire updated database, i.e., D ∪ T

• d – the number of transactions in D

• t – the number of transactions in T

• Sl – the lower support threshold for pre-large itemsets

• Su – the upper support threshold for large itemsets, Su > Sl

• X – an itemset

• TrD – a trie storing the set of pre-large and large itemsets from D
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• TrU – a trie storing the set of pre-large and large itemsets from U = D ∪ T

• countT (X) – the number of occurrences of X in T

• countTrD(X) – the number of occurrences of X in TrD

• countTrU (X) – the number of occurrences of X in TrU

3.2 Pre-FUT Algorithm

As mentioned earlier, Bodon and Ronyai showed that generating candidates and
determining item supports might become easy and fast with the aid of the trie
data structure and pruning techniques [6, 23]. Hong et al. used the hash-tree data
structure and the pre-large concept to efficiently mine FIs for incrementally inserted
transactions [14]. In this paper, we adopt the trie data structure in Hong et al.’s
method to further speed up the mining of frequent itemsets when new transactions
are incrementally inserted into a database. We thus propose the Pre-FUT algorithm
which is stated as follows.

INPUT: A lower support threshold Sl, an upper threshold Su, a trie TrD storing
large itemsets and pre-large itemsets derived from the original database consist-
ing of (d + c) transactions, and a set of t new transactions.

OUTPUT: A trie TrU storing large and pre-large itemsets, and rescanned itemsets
from U .

The rescanned itemsets in the trie are small in the original database but pre-
large or large in the new transactions. They are stored in the trie but not used to
generate new candidates.

4 AN EXAMPLE TO ILLUSTRATE THE PROPOSED
INCREMENTAL DATA MINING ALGORITHM

An example is given in this section to illustrate the proposed incremental data
mining algorithm. Assume the initial data set includes the eight transactions shown
in Table 2. For Sl = 30 % and Su = 50 %, the sets of large itemsets and pre-large
itemsets for the given data are shown in Tables 3 and 4, respectively. A trie TrD
storing the set of pre-large and large itemsets in the original database is shown in
Figure 4.

Assume the two new transactions shown in Table 5 are inserted after the trie
TrD is built. The Pre-FUT algorithm proceeds as follows, and the variable c is
initially set at 0.

From line 1 of the algorithm, f =
⌊
(Su−Sl)d
1−Su

⌋
=
⌊
(0.5−0.3)8

1−0.5

⌋
= 3

From lines 4 to 6, two newly inserted transactions are first scanned to get their
1-itemsets and counts. A trie TrU is then built from them, and the results are shown
in Figure 5.



Improving Efficiency of Incremental Mining by Trie Structure 619

Algorithm 1 Pre-FUT algorithm

1: f =
⌊
(Su−Sl)d

1−Su

⌋
2: k = 1
3: TrU initially is the root node
4: add k-itemsets from the newly inserted transactions to TrU

5: repeat

6: scan T to determine countTrU (X) = countT (X), ∀X ∈ TrU with |X| = k
7: for all itemset X ∈ TrU with |X| = k do
8: if X does not exist in TrD then

9: if

(
countTrU (X)

t
≥ Sl

)
then . Cases 7, 8, 9 in Table 1

10: mark X as a rescanned itemset in TrU

11: end if
12: else
13: remove X from TrU

14: end if
15: end for
16: for all itemset X ∈ TrD with |X| = k do . Cases 1, 2, 3, 4, 5, 6 in Table 1
17: if X exists in TrU then

18: if

(
(countTrD (X)+countTrU (X))

d+t+c
≥ Sl

)
then

19: countTrU (X) = countTrU (X) + countTrD (X)
20: else
21: remove X from TrU

22: end if
23: else

24: if

(
countTrD (X)

d+t+c
≥ Sl

)
then

25: add itemset X to TrU with countTrU (X) = countTrD (X)
26: end if
27: end if
28: end for
29: if (t+ c > f) then
30: rescan the original database to determine whether the rescanned itemsets are large or pre-large
31: end if
32: k = k + 1
33: until Trie gen(TrU , k) 6= ∅
34: . Trie gen generates new candidate k-itemsets from TrU and stores them in TrU

35: if (t+ c > f) then
36: d = d+ t+ c
37: c = 0
38: else
39: c = c+ t
40: end if

Lines 7 to 15 mark the 1-itemsets which are small in the original database.
They are the 1-itemsets in TrU , which do not exist in TrD but are pre-large or large
itemsets in the new transactions. In this example, only the 1-itemset {F : 1} is
small in the original database, but it is pre-large in the new transactions and is thus
marked as a rescanned 1-itemset. The results are shown in Figure 6.

Lines 16 to 28 then process the 1-itemsets which are pre-large or large in the
original database. In this example, the large or pre-large 1-itemsets are {A : 6, B : 5,
C : 6, D : 3, E : 7}. Since they also exist in TrU , their total counts are calculated
using countTrU (X) = countTrU (X) + countTrD(X). Table 6 shows the results.
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Original database

TID Items

1 ACE

2 ABDE

3 BCDE

4 ACE

5 ACE

6 ABC

7 BDE

8 ABCE

Table 2. An example of an original database

Large itemsets

1 item Count 2 items Count 3 items Count

A 6 AC 5 ACE 4

B 5 AE 5

C 6 BE 4

E 7 CE 5

Table 3. The large itemsets derived from the original database

Pre-large itemsets

1 item Count 2 items Count 3 items Count

D 3 AB 3 BDE 3

BC 3

BD 3

DE 3

Table 4. The pre-large itemsets derived from the original database

Original database
TID Items

9 ABCD
10 CEF

Table 5. Two new transactions

Items Count
A 7
B 6
C 8
D 4
E 8

Table 6. Two new transactions
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Figure 4. The trie TrD storing the set of pre-large and large itemsets in the original
database

Figure 5. The trie TrU that is constructed

The new support ratios of A, B, C, D and E are then calculated. For example,
the new support ratio of A is 7/(8 + 2 + 0), which is larger than 0.3. A is thus
a pre-large itemset. In this example, the support ratios of A, B, C, D and E are
greater than 0.3, so that their counts will be updated in the trie. The results are
shown in Figure 7.

Since t + c = 2 + 0 = 2 ≤ f , rescanning the original database is unnecessary
(from lines 29 to 31), and nothing is done, and then at line 32 k is set at 2. In this
algorithm, the sub-function Trie gen(TrU , k) generates candidate k-itemsets with
k = 2 from trie TrU . In this example, Trie gen(TrU , k) 6= ∅ with k = 2, such that
the algorithm is repeated. Note that the marked nodes will not be used to generate
new candidates. The results of the trie TrU after the new candidate 2-itemsets are
generated with their counts from the new transactions are shown in Figure 8.
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Figure 6. The trie TrU after the rescanned itemset is marked

Figure 7. The trie TrU after line 28

Similar to the first iteration, lines 7 to 15 mark the 2-itemsets which are small
in the original database. They are the 2-itemsets in TrU which do not exist in TrD

but are pre-large or large itemsets in the new transactions. In this example, these
2-itemsets include {AD : 1, CD : 1}. The results are shown in Figure 9.

Lines 16 to 28 then process the 2-itemsets which are pre-large or large in the
original database. In this example, these 2-itemsets are {AB : 3, AC : 5, AE : 5,
BC : 3, BD : 3, BE : 4, CE : 5, DE : 3}. They exist in TrU , so their total counts
are calculated using countTrU (X) = countTrU (X) + countTrD(X). In this example,

Figure 8. The trie TrU after line 33
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Figure 9. The trie TrU after the rescanned 2-itemsets are marked

the support ratios of {AB}, {AC}, {AE}, {BC}, {BD}, {BE}, {CE} and {DE}
are greater than 0.3. The results are shown in Figure 10.

Figure 10. The trie TrU after line 28 for 2-itemsets

Since t+c = 2+0 = 2 ≤ f , rescanning the original database is unnecessary, and
nothing is done. Similarly, because Trie gen(TrU , k) 6= ∅ for k = 3, the algorithm
is repeated. The results of the trie TrU after the new candidate 3-itemsets are
generated with their counts from the two newly inserted transactions are shown in
Figure 11.

Similarly, lines 7 to 15 mark the 3-itemsets which are small in the original
database, and in this example only the 3-itemset {ABC : 1} satisfies the condition.
The other two 3-itemsets {ABE : 0}, {BCE : 0} are removed from TrU . The
results are shown in Figure 12.
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Figure 11. The trie TrU after line 33 for 3-itemsets

Figure 12. The trie TrU after line 15 for 3-itemsets
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Lines 16 to 28 then process the 3-itemsets which are pre-large or large in the
original database. In this example, the 3-itemsets include {ACE : 4, BDE : 3}.
The results are shown in Figure 13.

Figure 13. The trie TrU after line 28 for 3-itemsets

Because Trie gen(TrU , k) = ∅ for k = 4, the loop ends.
Lines 35 to 40 are then executed. Because t + c = 2 ≤ f , c = c + t = 2 + 0 = 2

the result of the algorithm is thus the trie TrU that stores the pre-large and large
itemsets for the whole updated transactions, as well as the rescanned itemsets. We
can use TrU to tore the rescanned itemsets to mine next newly inserted transactions.

Note that the final value of c is 2 in this example and f − c = 1. It means that
one more new transaction can be added without rescanning the original database.

5 EXPERIMENTAL RESULTS

Experiments were conducted to evaluate the performance of the proposed algorithm.
All the algorithms were implemented on a PC with a Core 2 Duo (2× 2 GHz) CPU
and 2 GBs of RAM running Windows 7. All the algorithms were coded in C++. Two
databases were used. One is Kosarak (with 990 002 transactions) the well-known
and the other is T40I10D100K (with 100 000 transactions).

We compared the performance of the proposed Pre-FUT algorithm with that of
the pre-large-itemset algorithm [14] which uses the hash-tree data structure. We do
not compare our algorithm with the Pre-FUFP algorithm by Hong et al. [26], since
they only computed the time for building and updating the FUFP tree when the new
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transactions were inserted in their experiments. In our experiments, we compute the
time for mining all FIs of the two algorithms. The first 900 000 transactions were
extracted from the Kosarak database for offline mining. Each next 1 000 transactions
were then sequentially used each time as new transactions for the experiments.
The upper and the lower support thresholds were set at 1 % and 2 %, respectively.
Figure 14 shows execution times required by the two algorithms for processing each
inserted 1 000 transactions. It can be seen that the proposed Pre-FUT maintenance
algorithm ran faster than the pre-large-itemset algorithm.

Figure 14. Comparison of the execution times for sequentially inserted transactions for
Kosarak database

Next, the T40I10D100K database was used for the experiments. The first 90 000
transactions were extracted from the T40I10D100K database for offline mining.
Each next 1 000 transactions were then sequentially used each time as new trans-
actions for the experiments. The upper and the lower support thresholds were set
at 5 % and 2 %, respectively. As mentioned above, when the number of inserted
transactions reached the safety number, the original database was processed again.
In the experiments with the T40I10D100K database, the safety number was calcu-
lated as f = 90 000 ∗ (0.05 − 0.02)/(1 − 0.05) = 2 842. Figure 15 shows execution
times required by the two algorithms for processing each 1 000 inserted transactions.
It can be seen from the figure that the Pre-FUT maintenance algorithm ran faster
than the pre-large-itemset algorithm, even in the case when the number of inserted
transactions exceeded the safety threshold.
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Figure 15. Comparison of execution times for sequentially inserted transactions for
T40I10D100K database

The shapes of Figures 14 and 15 are different. In the first experiment with the
Kosarak database, the safety threshold f = 90 0000∗(0.02−0.01)/(1−0.02) = 9 183
and 1 000 transactions will be inserted each time. The algorithm thus did not need
to rescan the original database until the tenth batch of inserted new transactions. In
the previous nine batches of inserted new transactions, each time the algorithm only
needed to process the 1 000 inserted transactions to update the total counts of item-
sets. Figure 14 shows comparative times of processing 1 000 new transactions each
time in nine batches of inserted new transactions. In the second experiment with
the T40I10D100K database, the safety threshold f = 2 842. Because only 1 000
transactions were inserted each time, the algorithm needs to rescan the original
database when the third batch of inserted new transactions arrive. The high points
in Figure 15 are the cases when the algorithm had to rescan the original database.
Processing the whole database would require more time than when processing only
the inserted transactions. In real applications, the number of new inserted transac-
tions is usually smaller than that in the original database, and thus the proposed
approach is efficient.

6 CONCLUSION AND FUTURE WORK

This paper has adopted an alternative data structure for incremental data mining.
The Pre-FUT algorithm has been proposed, which is based on the concept of pre-
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large itemsets to reduce the number of database scans. It uses two user-specified
upper and lower support thresholds to avoid small items becoming large in the
updated database when transactions are inserted. All the tasks are processed and
stored in a trie. With these strategies, the proposed approach can thus spend less
execution time than the pre-large-itemset algorithm which is coded by the hash-tree
data structure.

Hong et al. recently developed some algorithms for deleting and modifying trans-
actions based on the pre-large itemsets concept [16, 17]. The results of our coding
show that the task of inserting or deleting itemsets using the trie data structure can
be processed very quickly and effectively. Moreover, we can mine FIs directly from
the tree-building process by using the trie data structure. Therefore, in future, we
will also extend our approach to mining tasks with deleted and modified transactions
using the trie structure and the pre-large itemsets concept.
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