
Computing and Informatics, Vol. 33, 2014, 757–782

IMPACT OF SOFTWARE FAULT TOLERANCE
TO FAULT EFFECTS IN OS-DRIVEN RT SYSTEMS

Josef Strnadel, Frantǐsek Slimař́ık

Brno University of Technology, Faculty of Information Technology
IT4 Innovations Centre of Excellence
Božetěchova 2, 612 66 Brno, Czech Republic
e-mail: {strnadel, islimarik}@fit.vutbr.cz

Abstract. Real-time kernels are often utilized to simplify the design of embedded
time/safety-critical applications. However, embedded systems are sensitive to tran-
sient and other faults, each of which can lead to various errors at various system
levels and can potentially result in system failure. In existing works, the real-time
kernels sensitivity to transient SEU errors was studied only with the goal to classify
SEU impacts to system behavior. In this paper, the study is extended to permanent
faults being injected into the persistent program (firmware) memory and into the
volatile data memory. Moreover, it is studied there how the sensitivity is affected if
combination of software fault-tolerant techniques is built into various levels of the
system. On the experimental basis, it is shown that some fault impacts are difficult
to be softened by common fault-tolerant techniques.

Keywords: Fault, effect, error, fault tolerance, real time, operating system, kernel,
task, software, firmware

Mathematics Subject Classification 2010: 68M15, 68N25

1 INTRODUCTION

Many systems exist, which need to satisfy stringent constraints being derived from
systems they control. The paper is dedicated to the systems, perfection of which is
based on both the correctness and the timeliness of the outputs [7, 8, 17]. A system
able to produce the correct response to given stimuli on time is called a real-time
(RT) system.

758 J. Strnadel, F. Slimař́ık

1.1 Real-Time Operating Systems

High complexity of many RT applications has made the adoption of RT operating
systems (RTOS, RT kernels) to simplify the application design [8, 7]. RT applica-
tions running over an RTOS can be designed by the means of mechanisms [17] able
to manage crucial resources such as time, memory, tasks etc. Thus, an RTOS can be
seen as an abstraction layer between an application software (SW) and a platform
hardware (HW). In this paper, it is supposed the application is embedded and its
HW is realized by a microcontroller unit (MCU).

For the abstraction, an RT system is typically modeled as a set (Γ = {τ1, . . . , τn})
of n RT tasks, each of which (τi) is described by the parameters such as priority (Pi),
release time (ri), worst-case execution time (Ci), period (Ti) and response deadline
(Di) required by a scheduling policy able to organize the task executions in such
a way the timeliness of responses produced by the tasks is guaranteed [8].

1.2 Fault Tolerance

As embedded systems are sensitive to many faults, each of which potentially results
in the system failure, proper fault-tolerant (FT) techniques must be built into such
systems. A failure characterizes wrong service delivered by a system, i.e., actual
behavior that is not in compliance with the expected behavior. A fault, i.e., a de-
viation in a component from its intended function, is a failure case and can manifest
itself as an error. Faults can be classified in several ways, e.g., by their duration
as permanent, transient and intermittent [4]. However, latencies related to the
techniques (Figure 1) can cause a significant problem if they are involved in RT
systems. It is because efforts of the techniques can result in a situation in which
timing of the reactions does not comply with the system specification.

Especially in the area of critical systems it holds that any violation of the system
specification (i.e., a failure) can have serious consequences [11] during the system
runtime.

Fault Error Error detection Recovery/Failure

Fault
latency

Error
latency

Fault tolerance
mechanism latency

a s-a-0 fault
occurs

1 written
into the bit with
the s-a-0 fault

wrong value (0)
read instead of

correct value (1)
service execution
continues or fails

system reaction
to failure

(fail-safe, fail-stop,
fail-operational)

System reaction
latency

Figure 1. Typical latencies related to dependability mechanisms

As RT systems can be considered to be a subclass of critical systems, then
a subset of FT techniques must be applied in a way that faults are mitigated while

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 759

the timeliness is not affected. There are many techniques belonging to the FT
group (e.g., fault masking, recovery, correction). In fact, all of them are inspired by
the redundacy concept applicable at both the HW and the SW levels of a system.
Basically, the redundancy can be clasified to spatial redundancy and time redundancy
classes. Within the spatial class, the following sub-classes can be distinguished:

• technical redundancy realized in the HW part of the system (e.g., N-modular
redundancy),

• information redundancy realized in the data part of the system (e.g., detec-
tion/correction codes) and

• program redundancy realized in the SW part of the system (e.g., control-flow
checking).

The techniques from the second class (i.e., inspired by the time redundancy
concept) are typically based on the re-execution of HW and/or SW actions that
previously resulted in an error. The paper is focused on techniques applicable mainly
at the SW level – those can be divided to kernel-level and task-level techniques.

1.3 Structure of the Paper

The paper is organized as follows. In Section 2, key terms related to the paper are
presented such as classification of effects and misbehaviors induced by faults (2.1),
existing works representatives (2.2) and motivation and goals of our research (2.3).
Experimental framework details related to operating system, development platform,
FT techniques, fault injection principle and types of experiments performed in rela-
tion to the paper are presented in Section 3. Section 4 summarizes the experimental
results and Section 5 concludes the paper.

2 DETAILED BACKGROUND OF OUR RESEARCH

Operating systems (OS) dependability has been studied for more than three deca-
des [9], but remains a major concern today [35].

2.1 Fault Effects

OS errors can be caused by faults such as programming bugs, aging, temperature
or other phenomena induced by the system environment such as radiation-induced
bit-flips in memory and registers, called Single Event Upsets – SEU s, and many
others [15]. The error caused by an SEU fault (strike) is called an SEU or – maybe
more frequently – a soft error (SE). Functionality of a system is not permanently
damaged by a SEU, unlike by single event latchup, single event gate rupture, or single
event burnout, which are examples of other radiation effects observed in electronic
devices. Such effects are typically grouped into a single event effect class. In relation

760 J. Strnadel, F. Slimař́ık

to RT systems, SEs – which are typically of transient behavior – can temporarily
affect an RT application as well as an RTOS over which they are executed.

2.2 Representatives of Existing Works

Several solutions have been proposed to deal with reliability w.r.t. embedded RT
systems controlled by an RTOS. In [2, 14], the problems are solved at the scheduler
level in order to improve robustness of RT embedded systems. In [28, 18], check-
pointing with rollback recovery and active replication is implemented to tolerate
SEs at the application (i.e., SW) level. In [37, 10], techniques able to detect and
correct control flow errors without a program interruption are presented. Different
SW approach based on an introduction of additional tasks responsible for checking
other tasks is presented in [31]. Another principle is inspired by microrebooting [6]:
recovery from a microkernel failure is realized by restarting it – the main idea is
that reinitializing data structures by restarting them usually fixes a transient fault.
Further technique, able to automatically identify runtime failures, locate faults, and
find a way to bring the system back to an acceptable behavior can be found in [12].
On top of the SW solutions to the problems, several HW solutions exist. For ex-
ample, in [19] a special HW/SW architecture is presented making services robust
in term of SEs; two approaches are presented, each of which offers feasible solution
for a given limited amount of resources: the first one assumes that the error de-
tection is deployed on static reconfigurable FPGAs, while the second is based on
partial dynamic reconfiguration capabilities of FPGAs. Further approach, based
on a HW scheduler able to detect faults changing tasks execution times and/or
execution flows can be found in [36]. In [27], a hardware-based RTOS-Guardian
(RTOS-G) intellectual property core designed to monitor the RT-task executions in
order to detect faults was presented. Also, many special RT kernel frameworks such
as model-driven [20] or common RT kernels such as [29] were developed to simplify
the design of dependable embedded RT applications either by means of a special
model utilized for the purpose or by narrowing the set of kernel functions. Special
works are related to design or selection of a fault injector utilized to check proper-
ties of the proposed reliability solutions; well-written summary related to the fault
injection concepts can be found in [5].

2.3 Motivation and Goals of Our Research

We decided to limit the research related to this paper to the approaches applicable
at the SW level [30, 33]. We did so because we found that these approaches suffer
from many shortcomings – especially, they have focused to SEU effects only and/or
tried to mitigate the SEU effects using a single FT technique embedded either into
the task or the kernel level of an RT system. At this point, it should be noted that

1. transient SEUs are not the only faults which can impact embedded systems,

2. the fault effects can manifest themselves at various system levels and

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 761

3. multiple FT techniques can be built into various system levels to mitigate prop-
agation of the fault effects.

Our research w.r.t. this paper was motivated maily by the fact that fault effects
induced by multiple fault types are not studied in context of FT mechanisms imple-
mented at various RT system levels.

Typically, embedded systems are realized on the basis of a microcontroller
(MCU) or a field-programmable gate array (FPGA). Among others, such systems
can be prone to high-level faults such as bugs introduced by a human programmer
or faults related to communication interfaces able to update the device firmware. In
FPGA based systems, the latter faults can lead to an unwanted bitstream or me-
mory change causing permanent or temporal system behavior errors; but, effects of
bitstream-related faults are usually minimized because of bitstream-checking mech-
anisms typically present in many FPGAs. In MCU based systems, a fault can be
manifested by change of a program being updated by a bootloader interface. Here,
the situation is worse than in the FPGA area because MCUs are not typically
equipped with similar firmware-checking mechanisms. As a result, practically any
sequence of bytes can be programmed into MCU’s flash provided that a fault is
injected to flash-cell contents, but not to the robust flash access control protocol.
The above-mentioned facts (especially those related to MCU area) have motivated
us to set the following research goals:

• to define a set of FT techniques suitable for implementation into an embedded
RT system controlled by an RTOS. Each of the techniques has to lead to a de-
terministic and short time overheads as they are important to avoid the decrease
of an RT system reactivity,

• to define RT system parts which are the most critical from the overall point
of view to an RT application and to select a set of suitable FT techniques to
increase dependability of the parts,

• to design and realize an RTOS-driven FT architecture, experimentally verify its
impact to distribution of effects induced by various types of faults introduced
into various parts of the system and finally, to interpret and sum achieved results.

2.4 Main Idea of Our Experiments

To achieve the goals specified in Section 2.3, we have decided to utilize the experi-
mental framework configured as follows (for an overview, see Figure 2).

The faults of the following classes were introduced (and their effects were ob-
served) during experiments: transient (such as bit-flip in a memory element), per-
manent (such as programming error) and firmware (such as illegal operating code
or address) faults. Each of the faults, being introduced to low-level parts of the
embedded system (such as CPU registers, memory cells or RT kernel structures
from Table 1), can manifest itself as an error at higher levels of the system (such as
OS service calls, task/memory management services or data/timing misbehaviors).

762 J. Strnadel, F. Slimař́ık

FI seed generator

BDM controller

Fault effect analyzer

FI

manager

BDM

Seed-

driven

FI

control

Fault

effect

uC/OS-II
MCU

CPU

Tasks

RAM/

Flash

Figure 2. Overview of the experimental framework utilized w.r.t. the paper

In [24, 23] the following error classes were distinguished: effectless, application hang,
exception, memory, access malfunction, system crash, incorrect output results, real-
time problems (timing errors), scheduling malfunctions (task scheduling errors).

In relation to this paper, it was decided to take the above-mentioned classifica-
tion as a basis for our experimental setup. The goal of our experiments was to study
the relation among injected faults, fault effects and FT techniques implemented into
the system. First, the effects were observed at the kernel-level only to observe their
impact to the kernel (OS services) behavior, i.e., independently from the application
realized (related experiments are denoted as kernel-level experiments in Sections 3.4
and 4). Afterwards, the effects were observed at the application (task) level to ob-
serve impacts of their propagation up to the level (related experiments are denoted
as Task-level experiments in Sections 3.4 and 4). For the the latter (application-
specific) experiments special sorting application was created to show the propagation
effects. For the fault-effect and error detection purposes, the embedded application
was designed in a way it would be possible to (dis)activate a given combination of
fault-tolerant techniques in selected portions of the embedded system – details to
the implemented techniques can be found in Section 3.2.

Experiments were driven and evaluated by a PC. The PC was utilized as

1. storage for descriptions of faults to be injected into the system and

2. storage of observed fault effects.

The fault-description list is generated randomly and for each of the faults; the fol-
lowing information is stored there: injection time (in µs), fault type (transient, per-
manent, firmware) and fault location – for details related to the fault-list encoding,
see Section 3.3.

Our embedded system (for details, see Section 3.1) utilized as an RTOS-driven
basis for the experiments was running on a microcontroller unit (MCU). The MCU
is equipped with the background debug module (BDM) operating in parallel with
the CPU, both implemented on chip of the MCU; the BDM can be utilized to
read the state of an embedded application at runtime or to stop the application in
a predefined time in order to change a register/memory content (i.e., to inject a fault
in our case) and afterwards to resume the run of the system.

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 763

The injection principle can be summarized as follows. After the PC is initialized
and the fault-list becomes ready, the MCU is reset and run until the forthcoming
injection time. At the time, a fault is injected into the embedded system according
to the information stored in the list. Let it be noted there that just one fault is
injected at a time. Then, the MCU is started to run until the farthest task deadline
is over. In this interval, behavior of the application is monitored by the PC via
the BDM interface (running in parallel with the application code) – any unexpected
behavior of the application such as wrong (late, no) data/reaction or reset because
of wrong memory access or illegal operating code etc. is stored on the PC side. After
the deadline is over (or after the MCU is reset because of the fault) the next fault
is read from the list and the MCU is reset (if not done so yet) and run until the
forthcoming injection time.

Details related to the experiments can be found in the following section.

3 EXPERIMENTAL FRAMEWORK

3.1 Platform Details

For the experiments, it was decided [30, 33] to utilize the µC/OS-II kernel [16, 22]
running on the 8-bit MCU embedded in the Freescale DEMOQE128 board [21].

The kernel was chosen due to the following reasons. First, it was because of
inherent properties of the kernel – it is a portable, scalable, multitasking, preemptive,
deterministic RTOS that is freely available in a well-documented source-code form
(for non-commercial and peaceful purposes only). Second, it is robust, reliable and
since 2000 it is certified by the Federal Aviation Administration (FAA) for use in
safety-critical systems. Third, many works in the area based their experiments just
on the kernel [3, 13, 26, 32, 37].

The board was selected because of its BDM support and its USB port allowing
easy connection to a PC in order to drive the experiments.

3.2 Selected Software Fault-Tolerant Techniques

Since this article considers the implementation of FT by means of SW then it was
necessary to select representative techniques from the software FT group before ex-
periments can be performed. Because it generally holds that FT techniques are
based on the redundancy concept, it was decided [30, 33] to select their represen-
tatives on the basis of the corresponding redundancy type. In the SW area, two
redundancy types are typically utilized: time redundancy and program redundancy,
each of which can be realized by means of forward and backward recovery mecha-
nisms. The following representatives of software FT techniques were selected for the
experiments w.r.t. the paper: N-version programming technique (3.2.1), Primary
backup technique (3.2.2), Control flow checking technique (3.2.3) and SW Watchdog
technique (3.2.4). Principle w.r.t. each of the representatives is summarized below,
followed by description of its setup in the experiments.

764 J. Strnadel, F. Slimař́ık

3.2.1 N-Version Programming

This technique (inspired by the technical N-Modular Redundancy, NMR) is based
on the following design diversity principle (see Figure 3 a)): to solve a problem,
n different algorithms are implemented as separate tasks, each of which is able to
generate the correct solution (output) to a given instance of the problem (input).
After the results are produced, they are analyzed by the voter (selector) for both
their correctness and timeliness.

Experiment setup: During our experiments [30, 33], the problem of sorting a k-
element array (k = 1 000) of 32-bit integers was solved by means of 3 different
sorting algorithms (Bubble sort, Counting sort and Insertion sort). All the algo-
rithms, as well as the voter were implemented to run independently (i.e., in separate
address spaces). Since MCU present in the Freescale DEMOQE128 board does not
contain an on-chip memory management unit able to separate memory spaces of
the 3 running tasks, 3 boards were utilized each of which running one of the tasks.
For communication (synchronization) of the tasks, shared memory (mutexes) were
utilized. The voter was designed either to output an array which was both sorted
correctly and on time or to signalize an error to its superior module. Also, overall
statistics (incorrect output ratio, deadline miss ratio) were collected by the voter.
In order to automate the experiments, the voter was designed so that it was able
to generate new input data just after the output to last input was produced by the
tasks.

3.2.2 Primary Backup

This technique is based on the data diversity principle and can be described as
follows (see Figure 3 b)). Two identical implementations (primary, secondary) of the
same task are executed on the same platform in order to achieve high availability
of a service despite an error is detected in one of the tasks. While the primary task
is active – i.e., able to provide its service as well as to backup its correct state –
the secondary task is inactive. If an error is detected by the Switch task then the
primary task is suspended, the backup memory is read by the secondary task and
the service starts to be provided by the secondary task, which becomes primary
and active now. Thereafter, the functionality of the suspended primary task can be
tested. If an error is not detected during the testing, the task becomes secondary;
otherwise, it must be replaced by an error-free version (moved to a different memory
space, reinitialized etc.).

Experiment setup: In our experiments [30, 33], the tasks were designed to sort a
k-element array (k = 1 000) of 32-bit integers. Both the correctness and the timeli-
ness of results produced by the primary task was checked by the Switch task respon-
sible for switching from an erroneous primary to an error-free secondary task. To
minimize the overhead w.r.t. switching between the tasks, backup states are stored

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 765

Method_A

Method_n

Method_B
Voter

result

sync.

result

errori
n
p
u
t

d
a
t
a

Primary task

Secondary task

Switch input data

result

error

backup signal

Backup
memory

start/stop

start/stopresult

result

state

state

read signal

a) b)

Figure 3. An illustration to a) N-version and b) Primary-backup programming

into a shared memory with access synchronized by means of mutexes. Moreover and
w.r.t. the experiments the Switch task is responsible to

1. produce arrays to sort,

2. signal the correct and on time outputs or an error signaled to the superior module
and

3. collect statistics such as incorrect outputs ratio and deadline misses ratio.

3.2.3 Control-Flow Checking (CFC)

The principle of this technique can be summarized as follows. The program (code) to
be checked for the control-flow (CF) corectness is decomposed into basic blocks first.
Each such block (Bi) is the longest continuous sequence of non-branch instructions
within the code. So, each program (P) can be described by means of the program
graph GP = (V,E), whose set of vertices (V) contains all Bis of P and whose set of
edges (E, where E ⊆ V × V) contains edges (Bi, Bj) ∈ E, each of which represents
an allowed (valid) transition from Bi to Bj. The method variants differ in the
way they check validity of the transitions at runtime. For example, the Enhanced
Control-Flow Checking Using Assertions (ECCA) method [1] assigns a unique prime
(BIDi, block identifier) to each of a program Bis along with the NEXTi value equal
to product of BIDs of all valid successors of Bi in the program. The global variable
(id) is utilized to store results of the SET (TEST) operation performed at the
beginning (end) of each Bi. Wrong CF leads to division by zero.

Similar principle can be found w.r.t. the Control-Flow Checking by Software
Signatures (CFCSS) method [25]. It assigns a unique identifier bi (prime values are
not required) to each of the program blocks (Bi) along with the di value equal to the
difference of a valid bi’s predecessor (Bj) and bi – i.e., di = bj − bi. The transition
from block Bj to block Bi is valid if (Bj ⊕ di) = bi holds, where ⊕ is a symbol
representing the binary xor operation.

766 J. Strnadel, F. Slimař́ık

01 void OS_Sched (void)

02 {

03 /* --- B1 (block #1) --- */

04 OS_ENTER_CRITICAL();

05 if (OSIntNesting == 0) {

06 /* --- B2 (block #2) --- */

07 /* Schedule only if all ISRs done and ... */

08 if (OSLockNesting == 0) {

09 /* --- B3 (block #3) --- */

10 /* ... scheduler is not locked */

11 OS_SchedNew();

12 if (OSPrioHighRdy != OSPrioCur) {

13 /* --- B4 (block #4) --- */

14 /* Ctx-sw if current task is not the HPT */

15 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];

16 OSTCBHighRdy->OSTCBCtxSwCtr++;

17 OSCtxSwCtr++; /* Increment ctx-sw counters */

18 OS_TASK_SW(); /* Perform a ctx-sw */

19 }

20 }

21 }

22 /* --- B5 (block #5) --- */

23 OS_EXIT_CRITICAL();

24 }

a)

Experiment setup: In our experiments [30, 33], the techniques were implemented
into the following µC/OS-II kernel functions: OS Init() designed to initialize the
kernel structures, OS Sched() performing the scheduler function, OS Sched- Lock()

able to lock the scheduler, OS SchedUnlock() able to unlock the scheduler, OS Time-
Tick utilized to manage the operating system time.

Let their implementation be demonstrated on OS Sched() only – the original
code of OS Sched() can be seen in Figure 4 a) while the corresponding CF graph
can be seen in Figure 5.

It can be seen in Figures 4 and 5 there are 5 blocks (B1, . . . , B5) and 7 valid
(allowed) transitions among them in total. The node marks assigned to each of the
blocks are visualized in Figure 5 (BIDs/NEXT s for ECCA together with bis/bjs for
CFCSS technique). Because of limited space in the paper, it is only illustrated how
the CFCSS is implemented in each of the blocks (Figure 4 b)).

3.2.4 Watchdog Task

This technique is inspired by a common embedded instrument, which is an on-chip
HW module – running in parallel with an on-chip CPU – called watchdog (WDG)

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 767

01 void OS_Sched (void)

02 {

03 OS_ENTER_CRITICAL();

04 /* B1 */

05 GSched=b1;

06 if (OSIntNesting == 0) {

07 /* B2 (src: B1) */

08 CheckFlow(&GSched,b2,d12,NULL,0);

09 if (OSLockNesting == 0) {

10 /* B3 (src: B2) */

11 CheckFlow(&GSched,b3,d23,NULL,0);

12 OS_SchedNew();

13 if (OSPrioHighRdy != OSPrioCur) {

14 /* B4 (src: B3) */

15 CheckFlow(&GSched,b4,d34,NULL,0);

16 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];

17 OSTCBHighRdy->OSTCBCtxSwCtr++;

18 OSCtxSwCtr++;

19 OS_TASK_SW();

20 }

21 }

22 }

23 /* B5 (src: B1, B2, B3, B4) */

24 CheckFlow(&GSched,b5,d15,Dsched,(INT8U)3);

25 OS_EXIT_CRITICAL();

26 }

b)

Figure 4. µC/OS-II scheduler – a) the original and b) its CFCSS modification

or computer operating properly (COP); we outlined its principle in [34]. Principle of
the WDG module can be described as follows. After the WDG module is enabled
its inner free-running counter is reset and then started. If the WDG module is not
signaled before the counter reaches its maximum value (i.e., before it overflows),
the MCU is reset with no chance for backup, recovery or graceful degradation of its
operation. Otherwise, the free-running counter is reset only, so new WDG timeout
is set.

In other words, an embedded application must be written in such a way the
WDG module is signalled on time, i.e., before its WDG timeout is over. The WDG
module is typically utilized to exit an embedded system from the deadlock state,
in which the probability of sending the signal is very low. As the consequence, the
deadlocked system is reset and afterwards it starts to run from its initial state, which
is supposed to be deadlock-free.

768 J. Strnadel, F. Slimař́ık

B1

B2

B3

B4

B5

b1 = 0001

b2 = 0010
d12 = 0011

b3 = 0011
d23 = 0001

b4 = 0100
d34 = 0111

b5 = 0101
d15 = 0100

BID = 3
NEXT = 65

BID = 5
NEXT = 91

BID = 7
NEXT = 143

BID = 11
NEXT = 13

BID = 13

Figure 5. µC/OS-II scheduler CF graph with ECCA/CFCSS node labels

t a s k _ i

t

p r i o r i t y

W D G _ i

W D G

c r e a t e

(1)

(2)

W D G

w a i t

t ask pe r i od (T i)

W D G _ i _ T I M E O U T

(3)

W D G

r e s e t

t a s k e x e c u t i o n (C i)

W D G e x e c u t i o n (W i)

W D G

d e l e t e

(4)

(5)

W D G

c r e a t e

(6)

W D G

w a i t

T A S K

r e c o -

v e r y

(8) W D G

d e l e t e

(1 0)

(9)

W D G

r e s e t

W D G

o v e r f l o w

(7)

W D G _ i _ R S T W D G _ i _ R E C

f a u l t y t a s k r e c o v e r e d t a s ke r r o r - f r e e t a s k

t ask pe r i od (T i)

W D G _ i _ T I M E O U T

W D G _ i _ T I M E O U T W D G _ i _ T I M E O U T

W D G _ i _ T I M E O U T

Figure 6. WDG process (WDGi) illustration: error-free, faulty and recovered tasks

Experiment setup: In relation to our experiments [30, 33], the technique is im-
plemented as follows. Each RT task (τi) of priority Pi, where i ∈ N is assigned
a WDG task (WDGi) of priority PWDGi

> Pi. WDGi must be started along with τi
release to activate the mechanism able to recover on time from eventual malfunction
of τi.

The behavior of WDGi can be described as follows: first, WDGi waits for a τi-
specific number of time units (WDG i TIMEOUT ≤ Ci) for the reset signal sent by τi.
If the signal is received before the timeout expires then WDGi is reset, τi is checked
for omission/value errors and the next timeout is adjusted (Figure 6, steps 1 to 4).

If an error is detected or WDGi is not reset on time, the recovery mechanism is
initiated (Figure 6, steps 7 to 10).

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 769

01 static void task_n_watchdog (void * p_arg)

02 {

03 INT8U err;

04 void *msg;

05

06 for(;;)

07 {

08 msg = OSMboxPend(msg_WDG_n, WDG_n_TIMEOUT, &err);

09 if (msg != (void *)0) /* -- WDG reset on-time -- */

10 { /* check for omission and value faults, */

11 } /* then reset SYS_WDG */

12 else

13 { /* -- WDG timeout over -- */

14 if (msg != (void *)0)

15 { /* initiate recovery mechanism */ }

16 }

17 }

18 }

a)

01 static void task_n_body (void *p_arg)

02 {

03 OSTaskCreate(task_n_watchdog,/*WDG task creation*/

04 (void *)0,

05 (OS_STK *)&task_n_wdg_stk[TASK_WDG_STK_SIZE-1],

06 TASK_n_WATCHDOG_PRIO);

07

08 for(;;) /* -- code of the task -- */

09 {

10 /* init data */

11 /* perform function */

12 /* create check & restoration points */

13 /* produce output */

14 OSTimeDly(TASK_n_PERIOD);/*wait for new period*/

15 }

16

17 OSTaskDel(TASK_n_WATCHDOG_PRIO);/* WDG deletion */

18 }

b)

Figure 7. Illustration to a) WDGi and b) τi implementations under µC/OS-II

770 J. Strnadel, F. Slimař́ık

3.3 Fault Injection

In order to control the fault occurence process, a fault injector (FI) is typically
implemented. So it is done in relation to this paper. The FI implementation can be
done in HW or SW; during our experiments [30, 33], the latter (SW) implementation
is realized. The following types of FI implementations can be distinguished:

code insertion FI – the source-code of a program is modified purposely by a pro-
grammer to introduce a particular fault into the system with the goal to analyze
behavioral changes during the program executions,

compile-time FI – source-code is modified randomly by a compiler able to change
commands within the code; errors similar to those produced by a programmer
can be introduced to the system,

runtime FI – a special trigger implemented in SW is utilized to introduce a fault
into the system. The triggers are typically subdivided into

time and interrupt classes. Time (interrupt) triggers are able to introduce a fault
synchronously (asynchronously) to the local system time. By means of the
triggers, various faults can be introduced into memory, registers, I/O ports,
communication interfaces, system services etc.

Injection Principle: During the experiments, the above-mentioned techniques
were utilized to introduce permanent or transient faults either into the µC/OS-II
structures listed in Table 1 or into the firmware (object code) of an application just
before it is programmed to an embedded device. The faults were defined on the basis
of seeds generated randomly before the experiments started (uniform distribution
was utilized for the purpose).

In the seed structure, the following information is stored: fault injection time,
fault type and fault location (Figure 8). A fault of 00 (01) type changes the bit
value in RAM once (adjusts the value repetitively to a fixed value) at runtime while
a fault of type 10 changes the bit value in the correct object code once before it is
programmed into the flash memory.

A command to change a given bit in RAM in a predefined time is sent via the
BDM interface in fault type 00, 01 cases (Figure 2). As the fault of the type is
introduced at runtime, the BDM-driven sequence for the introduction is as follows:

1. the system execution is stopped,

2. the fault is introduced,

3. the system execution is resumed.

In the fault type 10 case, a given object code bit is modified before it is sent via
BDM to be programmed into the flash memory. Afterwards, the system starts to
run on the basis of the faulty object code.

During the experiments, just one fault was introduced into the system (i.e.,
a seed applied) after the system initialization phase had been completed. It implies

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 771

OS data structure location purpose

OSRdyGrp readiness of tasks
OSRdyTbl global variable space within priority groups
OSTime system time storage

.OSEvntGrp Event Control Block info about tasks

.OSEvntTbl (ECB) structure waiting for ECB’s event

.OSTCBDly task delay (0 = no)

.OSTCBStat task state (0 = ready)

.OSTCBStatPend Task task event-pending flag

.OSTCBPrio Control task priority

.OSTCBX Block precomputed values

.OSTCBY (TCB) to accelerate detection

.OSTCBBitX structure of the highest-priority

.OSTCBBitY ready/event-waiting task

.OSTCBDelReq store self-delete request

Table 1. List of µC/OS-II structures faults were injected to

no faults were introduced into the phase. We did so because we assumed that the
initialization phase was – due to its key role – designed to be sufficiently robust to
prevent errors.

3.4 Types of Experiments

During experiments related to the paper faults were injected into an RT system to
observe both the fault impact to the kernel-level behavior and the impact of their
propagation to the task (application) level. To the contrary to existing approaches,
various FT techniques were implemented to enhance the overall system dependabi-
lity.

During each of the experiments, CFC techniques were enabled in order to detect
CF errors in critical kernel/application parts; the kernel settings remain default and
the kernel was run in the underload conditions. Fault effects to an RT system
designed for FT were observed at the following levels:

Kernel level – the goal of the experiment was to study the relation among injected
faults, fault effects and FT techniques implemented in the system. For an illus-
tration, see Figure 9. The experiments were composed of two phases. In the first
phase, WDG tasks were disabled (non-greyed part of the figure); in total, there
were 20 tasks in the system divided into 5 groups, each composed of 4 tasks.
In each group, three tasks were designed to send their priority to the fourth
(receiver) task in the group – the Message-Box mechanism was utilized for the
purpose. In the second phase the WDG tasks (one per a communicating task
in a group) were enabled, so the total number of tasks was doubled (extra tasks
are greyed). On top of that, there was one extra central WDG task (one per the

772 J. Strnadel, F. Slimař́ık

53/71*-bit Fault injection structure (seed)

FAULT

transient (00)

permanent (01)

firmware (10)

[us]

type location

address

bit position

injection time

32 2 16+3

(32+5)*

time
00

01

10

RAM

Flash

OS/user data

OS kernel/firmware

memory cell bits

memory cell bits

Figure 8. Fault injection control structure (seed) and its relation to the area (RAM/Flash)
faults are injected to. A fault of the selected type is introduced into a given bit in
the addressed memory cell (values with/w.o. asterisk are valid for 8/32 bit MCU).

Ti1

Ti2

Ti3

Ti4MsgBox

Wi1

Wi2

Wi3

Wi4

Task group No. i,

 i=1,...,5

CWDG

central WDG task

PRIi1

PRIi2

PRIi3
wrsti4

wrsti3
wrsti2

wrsti1

system reset

group i reset

rsti1

rsti2

rsti3

rsti4

WDG task

WDG task

WDG task

WDG task

Figure 9. Illustration to the kernel-level experiments

system) utilized to check the functionality of WDG tasks. Each of the sender
tasks was delayed for 4 OSTime ticks after sending its message to the receiver
task. WDG timeout values were set to 6 OSTime ticks, so there were 2 ticks to
reset the WDG before it overflows.

Task level – the goal of the experiment was to study the relation between

1. the ratio of faults propagated to the task level and

2. FT techniques implemented both in the kernel and task levels.

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 773

In the experiment, sorting problem was solved at the task level; FT was realized
by means of the techniques described in Sections 3.2.1 and 3.2.2. Two sub-
experiments were performed: in the first, WDG tasks were enabled with timeout
set to 5 OSTime ticks.

In the second, WDG tasks were disabled. New data to sort were generated each
3 ticks of OSTime. The data were classified as correct if they were sorted both
correctly and on time.

FT Total memory Overhead
mechanism [bytes] [%]

No 52 757 0
CFCSS 59 312 12.42
ECCA 61 922 17.37

WDGT 56 439 6.87
All 75 834 43.74

Table 2. Memory overheads w.r.t. implementing FT mechanisms

Implementation overheads related to implementation of FT mechanisms are
summarized in Table 2. Total memory is the sum of program and data memory
sizes needed for the implementations.

4 EXPERIMENTAL RESULTS

In this section, results of experiments described in Section 3.4 are presented. The
following fault effects were observed during the experiments:

no error (effectless) – impact of faults was not detected,

system crash – sudden collapse of the system,

scheduler error – tasks are scheduled in conflict with the specification,

time management error – change in behavior of the system timing (i.e., OSTime
processing subsystem),

task delay error – malfunction of OS timing services such as OSTimeDly(),

control-flow error – an error was detected by the CFC mechanism,

inter-process communication (IPC) error – message delivery error,

data error – wrong result was produced.

4.1 Kernel-Level Experiments

For better readability, results of the experiments are decomposed into Figures 10, 11
and 12. In Figure 10, it can be seen that for a given fault model, the effectless ratios
observed at the kernel level are not affected much by the WDG task technique.

774 J. Strnadel, F. Slimař́ık

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

F
a

u
lt
 O

c
c
u

re
n

c
e

 R
a

ti
o

 [
%

]

Fault effect

Effectless System
crash

Scheduler
error

Time
management

error

Task
delay
error

Control
flow
error

IPC error Data error

Faults under WDG tasks disabled: Transient

72

11
8.7

5 3.3
0 0 0

Permanent
71.3

7.3

12.7

7.3

1 0.3 0 0

Object-code

88

10

0 0 0 1 0.3 0.7

Faults under WDG tasks enabled: Transient

69

4.7
7 6

12

0.7 0.7 0

Permanent

68.8

10 11.7
7

2.7
0 0 0

Object-code

85.3

8.7

0 0
4

1.3 0.3 0.3

Figure 10. Distribution of kernel-level fault effects

 0

 5

 10

 15

 20

 25

 30

TransF., WDGs off

TransF., WDGs on

PermF., WDGs off

PermF., WDGs on

FirmWF., WDGs off

FirmWF., WDGs on

F
a
u
lt
 O

c
c
u
re

n
c
e
 R

a
ti
o
 [
%

]

Experiment details

System crash
Scheduler err.

Time manag. err.
Task delay err.

Control-flow err.
IPC err.

Data err.

Figure 11. Histogram of fault effects at the kernel-level (w.o. effectless)

 0

 20

 40

 60

 80

 100

PermF.
WDGs off

PermF.
WDGs on

FirmF.
WDGs off

FirmF.
WDGs on

C
ra

s
h

 e
rr

o
rs

 [
%

]

Experiment setup

Wrong memory access
Entering infinite loop

Illegal instruction opcode
Other

a)

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 775

 0

 20

 40

 60

 80

 100

TransF.,
WDGs

off

TransF.,
WDGs

on

PermF.,
WDGs

off

PermF.,
WDGs

on

S
c
h

e
d

u
lle

r
e

rr
o

rs
 [

%
]

Experiment setup

Task is released earlier than planned
Task is not scheduled anymore

Task is scheduled in each OS time tick
WDG task is reset repeatedly

b)

 0

 20

 40

 60

 80

 100

WDGs off WDGs on

T
im

in
g

 e
rr

o
rs

 [
%

]

Experiment setup

Task release err. <= 1 tick
Task release err. >> 1 tick
Singular task release err.

c)

Figure 12. Histograms related to a) the System crash, b) Scheduler and c) Timing errors

In Figures 10 and 11, it can be seen that there are four high-ratio effect groups:
System crash, Scheduler error, Time management error and Task delay error which
are detailed in the following text and whose structure is presented in Figure 12.

System crash: In Figure 10, it can be seen that the number of system crashes
due to transient faults dropped from 11 % (WDGs disabled) to 4.67 % (WDGs
enabled); but this is because the number of tasks is doubled when WDGs are
on, so the probability of starting a non-created task (major cause of the crashes)

776 J. Strnadel, F. Slimař́ık

is reduced – mainly at the price of a delay implying from (re)starting the faulty
task. Details to the effects can be seen in Figure 12 a).

Scheduler error: In Figures 10 and 11, it can be seen that the effect ratio was
greater for the permanent faults than for the transient faults, so the permanent
faults represent a greater problem in that sense. Firmware fault effects of this
type remain unobserved, but they manifest themselves as effects belonging to
the remaining groups such as System crash, Timing Error or Effectless. Finally,
in Figure 12 b) the “task unscheduling” effect can be seen as problematic too. It
can be concluded that the distributions are very similar across the fault models,
so it is very difficult to soften impacts of the errors; but, the effect ratio is the
lowest for the transient faults and WDG tasks enabled (Figure 11).

Timing error: While in the non-WDG version a faulty task is typically delayed
until it exceeds its response deadline (such an error is classified as the scheduler
error; similarly, it holds for the permanent and firmware faults), in the WDG
version each such task is restarted by its WDG to meet its response deadline
(but, the task execution is delayed because of the restart).

In Figure 11, it can be seen that the Task delay error ratio is greater if WDG
tasks are enabled. On the contrary, Figure 12 c) shows that WDG tasks con-
tribute to elimination of the greatest task release errors (i.e., those with the
error >> 1 OSTime tick) significantly.

4.2 Task-Level Experiments

In Figures 13 and 14 results related to the task-level experiments are presented. Dur-
ing the experiments, combination of all the FT techniques presented in Section 3.2
was implemented and the sorting problem was solved at the task level as described
in Section 3.4.

If the low effect ratio is taken as a criterion then it can be concluded that the N-
version programming is the best FT technique to prevent transient and permanent
fault effects (Figures 13, 14). Similar results can be achieved by the Primary backup
technique – however, its application leads to an extra response delay, which could
be unacceptable for some RT application classes. WDG tasks seem to be the most
efficient if they are applied along with N-Version or Primary backup techniques.
Such a combination can lead to further decrease of effects from System crash and
Time management groups.

Like the kernel level experiments, the firmware fault effects are very difficult to
recover from the task level. The most frequent fault effects related to this experiment
are summarized below:

System crash: The most common cause of crashes was an incorrect memory ac-
cess. While the N-version programming and Primary backup techniques could
prevent the crashes by a task separation on the basis of the design/data diver-
sity, the mere application of WDG tasks appears to be insufficient on the basis
of the results.

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 777

 0

 5

 10

 15

 20

T
ra

n
sF

., W
D

G
s o

n
P

e
rm

F
., W

D
G

s o
n

F
irm

w
F

., W
D

G
s o

n
T

ra
n
sF

., N
V

e
r.

P
e
rm

F
., N

V
e
r.

F
irm

w
F

., N
V

e
r.

T
ra

n
sF

., B
a
cku

p
P

e
rm

F
., B

a
cku

p

F
irm

w
F

., B
a
cku

p
T

ra
n
sF

., W
D

G
s+

N
V

e
r.

P
e
rm

F
., W

D
G

s+
N

V
e
r.

F
irm

w
F

., W
D

G
s+

N
V

e
r.

T
ra

n
sF

., W
D

G
s+

B
a
cku

p
P

e
rm

F
., W

D
G

s+
B

a
cku

p
F

irm
w

F
., W

D
G

s+
B

a
cku

p
F

a
u
lt
 o

c
c
u
re

n
c
e
 r

a
ti
o
 [
%

]

Experiment details

System crash
Scheduler err.

Time manag. err.
Task delay err.

Control-flow err.
IPC err.

Data err.

Figure 13. Histogram of fault effects at the task-level (w.o. effectless)

 80
 82
 84
 86
 88
 90
 92
 94
 96

Watchdog tasks

(WDGT)

N-version program.

(NVPROG)

Primary Backup

(BACKUP)

WDGT+NVPROG

WDGT+BACKUPE
fe

c
tl
e

s
s
 f

a
u

lt
 r

a
ti
o

 [
%

]

Implemented FT mechanisms

Transient f.
Permanent f.

Firmware f.

Figure 14. Histogram of fault effects at the task-level (effectless only)

Data and Task delay errors: The largest percentage of delay/data errors was
caused by a fault in the shared memory access mechanism.

This could occur if a task locked the mutex controlling access to the shared
memory, but never unlocked it afterwards. As a result, it led to the data error
arising from the fact that other tasks are not able to access the memory until
the superior task (voter/switch) recognizes the problem and initiates a recovery
action (e.g., switching to the backup task). However, the action is typically
connected with an extra overhead. The overhead is significant in the Primary
backup case, where it is manifested as the Task delay error – see Figure 13.
Almost in all cases, the delay was 1 OSTime tick long, which could be tolerated
in many soft-RT applications.

778 J. Strnadel, F. Slimař́ık

5 CONCLUSION

In the paper, the impact of FT techniques implemented into various SW parts
of an RT system to distribution of fault effects in the system was summarized to
check whether and how much the effects can propagate from the lowest system levels
(firmware, kernel) to the task (application) level. In relation to that, we have verified
the observations presented in the previous works, i.e., that SEs have strong impact
to behavior of an RT system. On top of that, we have extended the observations
and achieved similar results also for the permanent and firmware faults; we have
also analyzed the relation between fault effects and FT techniques present in the
system.

It is troublesome that up to 17 % of fault effects bypassed FT mechanisms and
were propagated up to the task level. Especially from the hard-RT point of view, it
can be said that the most problematic is the System crash effects class. It is because
the crash leads to the device reset, which can return the device back to the error-free
state, but for the price of system reaction delay and loss of stimuli occurred during
the reset time. In the worst case, the system can crash repeatedly, so task deadlines
can be missed.

The second group of the most problematic effects includes the effects resulting
from the firmware faults. In Figure 13, it can be seen i) that these faults significantly
contributed to the increase in the percentage of system crashes and ii) that the
increase was almost independent of the FT techniques implemented w.r.t. the paper.
It can be concluded that the firmware faults must be avoided as they represent at
least the same problem for the dependability as the transient faults (but, it was
shown that the transient as well as the permanent fault effects can be softened by the
above-mentioned FT techniques). However, it should be said that the firmware faults
are rare if the flash operating conditions are met. As the on-chip flash controllers and
protocols are designed to be robust enough to resist faults such as false reprogram
attempts, random bit changes etc., flash memories can be considered to be reliable
by the design. This implies a special attention must be paid both to the correctness
of data going to be programmed into the flash (e.g., an incorrect piece of data
can lead to an incorrect instruction opcode or operand typically resulting in the
device reset) and to reliability of the communication channel and interface utilized
to program the flash. In this sense, we have extended our future research plans.

Further research perspectives can be seen mainly in the area of parallelization
and/or distribution, replication, (partial) dynamic reconfiguration etc. of the cru-
cial system components (e.g., voters or kernel structures) and in the development
of firmware checking techniques designed to increase overall dependability of the
system.

Acknowledgment

This work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence (project No. ED1.1.00/02.0070), the National

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 779

(MSMT) COST project Methodologies for Fault Tolerant Systems Design Develop-
ment, Implementation and Verification (No. LD12036) and the internal Brno Uni-
versity of Technology project Architecture of Parallel and Embedded Computer
Systems (No. FIT-S-14-2297).

REFERENCES

[1] Alkhalifa, Z.—Nair, V. S. S.—Krishnamurthy, N.—Abraham, J. A.: De-
sign and Evaluation of System-Level Checks for On-Line Flow Control Error Detec-
tion. IEEE Transactions on Parallel and Distributed Systems, Vol. 10, 1999, No. 6,
pp. 627–641.

[2] Aydin, H.: Exact Fault-Sensitive Feasibility Analysis of Real-Time Tasks. IEEE
Transactions on Computers, Vol. 56, 2007, No. 10, pp. 1372–1386.

[3] Barbosa, R.—Karlsson, J.: Experiences from Verifying a Partitioning Kernel
Using Fault Injection. In: Proceedings of the European Workshop on Dependable
Computing 2009.

[4] Bushnell, M. L.—Agrawal, W. D.: Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal Circuits. Springer 2000.

[5] Cabodi, G.—Murciano, M.—Violante, M.: Boosting Software Fault Injection
for Dependability Analysis of Real-Time Embedded Applications. ACM Transactions
on Embedded Computing Systems, Vol. 10, 2010, No. 2, pp. 24:1–24:32.

[6] Candea, G.—Kawamoto, S.—Fujiki, Y.—Friedman, G.—Fox, A.: Micro-
reboot – A Technique for Cheap Recovery. In: Symposium on Operating Systems
Design and Implementation 2004, pp. 31–44.

[7] Cheng, A. M. K.: Real-Time Systems, Scheduling, Analysis, and Verification. John
Wiley & Sons 2002.

[8] Cottet, F.—Delacroix, J.—Kaiser, C.—Mammeri, Z.: Scheduling in Real-
Time Systems. John Wiley & Sons 2002.

[9] Denning, P. J.: Fault Tolerant Operating Systems. ACM Computing Surveys,
Vol. 8, 1976, No. 4, pp. 359–389.

[10] Farazmand, N.—Fazeli, M.—Miremadi, S. G.: FEDC: Control Flow Error De-
tection and Correction for Embedded Systems without Program Interruption. In:
Proc. of Int. Conference on Availability, Reliability and Security 2008, pp. 33–38.

[11] Geffroy, J.-C.—Motet, G.: Design of Dependable Computing Systems. Kluwer
Academic Publishers 2002.

[12] Gorla, A.—Pezzè, M.—Wuttke , J.—Mariani, L.—Pastore, F.: Achieving
Cost-Effective Software Reliability Through Self-Healing. Computing and Informat-
ics, Vol. 29, 2010, No. 1, pp. 93–115. Available at http://www.cai.sk/ojs/index.

php/cai/article/view/75.

[13] Ignat, N.—Nicolescu, B.—Savaria, Y.—Nicolescu, G.: Soft-Error Classifi-
cation and Impact Analysis on Real-Time Operating Systems. In: Proceedings of the
Conference on Design, Automation and Test in Europe 2006, pp. 182–187.

780 J. Strnadel, F. Slimař́ık

[14] Izosimov, V.—Eles, P.—Peng, Z.: Value-Based Scheduling of Distributed Fault-
Tolerant Real-Time Systems with Soft and Hard Timing Constraints. In: IEEE Work-
shop on Embedded Systems for Real-Time Multimedia 2010, pp. 31–40.

[15] Johansson, R.: On Single Event Upset Error Manifestation. In: European Depend-
able Computing Conference, Springer-Verlag 1994, pp. 217–231.

[16] Labrosse, J. J.: MicroC OS II: The Real Time Kernel. 2nd ed., CMP 2002.

[17] Laplante, P. A.: Real-Time Systems Design and Analysis. John Wiley & Sons 2004.

[18] Liao, J.: A New Concurrent Checkpoint Mechanism for Embeded Multi-Core Sys-
tems. Computing and Informatics, Vol. 31, 2012, No. 3, pp. 693–709. Available at
http://www.cai.sk/ojs/index.php/cai/article/view/1015.

[19] Lifa, A.—Eles, P.—Peng, Z.—Izosimov, V.: Hardware/Software Optimization
of Error Detection Implementation for Real-Time Embedded Systems. In: Proceed-
ings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis 2010, pp. 41–50.

[20] Louise, S.—Lemerre, M.—Aussagues, C.—David, V.: The OASIS Kernel:
A Framework for High Dependability Real-Time Systems. In: Proc. of the 13th

IEEE International Symp. on High-Assurance Systems Engineering (HASE) 2011,
pp. 95–103.

[21] MCF51QE128 Demonstration Board Product Summary Page. Accessible from
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=

DEMOQE128&fsrch=1&sr=9.

[22] Micrium Inc. Accessible from http://www.micrium.com.

[23] Neishaburi, M. H.—Kakoee, M. R.—Daneshtalab, M.—Safari, S.: HW/SW
Architecture For Soft-Error Cancellation in Real-Time Operating System. IEICE
Electronics Express, Vol. 4, 2007, No. 23, pp. 755–761.

[24] Nicolescu, B.—Ignat, N.—Savaria, Y.—Nicolescu, G.: Analysis of Real-
Time Systems Sensitivity to Transient Faults Using MicroC Kernel. IEEE Transac-
tions on Nuclear Science, Vol. 53, 2006, No. 4, pp. 1902–1909.

[25] Oh, N.—Shirvani, P. P.—McCluskey, E. J.: Control Flow Checking by Software
Signatures. IEEE Transactions on Reliability, Vol. 51, 2002, No. 2, pp. 111–122.

[26] Pardo, J.—Campelo, J. C.—Serrano, J. J.: Reliability Study of an Embedded
Operating System for Industrial Applications. GI Jahrestagung 2004, pp. 83–88.

[27] Silva, D.—Poehls, L. B.—Semiao, J.—Teixeira, I. C.—Teixeira, J. P.—
Valdes, M.—Freijedo, J.—Rodriguez-Andina, J. J.—Vargas, F.: : IP Core
to Leverage RTOS-Based Embedded Systems Reliability to Electromagnetic Inter-
ference. In: Proceedings of the 8th Workshop on Electromagnetic Compatibility of
Integrated Circuits (EMC Compo 2011), pp. 119–124.

[28] Pop, P.—Izosimov, V.—Eles, P.—Peng, Z.: Design Optimization of Time-
and Cost-Constrained Fault-Tolerant Embedded Systems with Checkpointing and
Replication. IEEE Transactions on Very Large Scale Integration Systems, Vol. 17,
2009, No. 3, pp. 389–402.

Impact of Software Fault Tolerance to Fault Effects in OS-Driven RT Systems 781

[29] SafeRTOS – An Independently Certified Kernel For Safety Critical Ap-
plications. Accessible from http://www.freertos.org/FreeRTOS-Plus/Safety_

Critical_Certified/SafeRTOS.shtml.

[30] Slimarik, F.: Mechanisms for Dependability Enhancement of Real-Time Embedded
Systems. Brno University of Technology 2010, Diploma work [in Czech only].

[31] Shirvani, P.—Saxena, R.—McCluskey, E. J.: Software-Implemented EDAC
Protection Against SEUs. IEEE Transaction on Reliability, Vol. 49, 2000, No. 3,
pp. 273–284.

[32] Skarin, D.—Barbosa, R.—Karlsson, J.: Comparing and Validating Measure-
ments of Dependability Attributes. In: Proc. of the European Dependable Computing
Conference 2010, pp. 3–12.

[33] Strnadel, J.—Slimarik, F.: On Distribution and Impact of Fault Effects at Real-
Time Kernel and Application Levels. In: Proc. of the 15th Euromicro Conf. on Digital
System Design, Architectures, Methods and Tools, IEEE CS 2012, pp. 272–279

[34] Strnadel, J.: Task-Level Modeling and Design of Components for Construction of
Dependable Time-Critical Systems Implemented by Means of RT Kernel. In: Pro-
ceedings of 33th International TD-DIAGON Conference, UTB 2010, pp. 99–104.

[35] Tanenbaum, A. S.—Herder, J. N.—Bos, H.: Can We Make Operating Systems
Reliable and Secure? IEEE Computer Vol. 39, 2006, No. 5, pp. 44–51.

[36] Tarrillo, J.—Bolzani, L.—Vargas, F.: A Hardware-Scheduler for Fault Detec-
tion in RTOS Based Embedded Systems. In: Proceedings of the Euromicro Confer-
ence on Digital System Design/Architectures, Methods and Tools 2009, pp. 341–347.

[37] Vargas, F.—Piccoli, L.—de Alecrim Jr., A. A.—Moraes, M.—Gama, M.:
Summarizing a Time-Sensitive Control-Flow Checking Monitoring for Multitask
Systems-on-Chip. In: Proceedings of the IEEE International Conference on Field
Programmable Technology 2006, pp. 249–252.

782 J. Strnadel, F. Slimař́ık

Josef Strnadel received his M. Sc. and Ph. D. degrees (in 2000
and 2004) from Brno University of Technology, Czech Republic.
Now he works as an Assistant Professor at the Department of
Computer Systems of the Faculty of Information Technology,
Brno University of Technology. His main research interests in-
clude dependability of embedded and real-time systems.

Frantǐsek Slima�r��k received his M. Sc. degree (in 2010) from
Brno University of Technology, Czech Republic. Considerable
implementation and experimental work w.r.t. this article was
done within his M. Sc. thesis Mechanisms for Dependability En-
hancement of Real-Time Embedded Systems. Now he works as
the 2nd level Unix Administrator at IBM.

