Computing and Informatics, Vol. 33, 2014, 721-734

ISOMORPHISM BETWEEN LINEAR CODES
AND ARITHMETIC CODES FOR SAFE DATA
PROCESSING IN EMBEDDED SOFTWARE SYSTEMS

Peter RAAB, Stefan KRAMER, Jiirgen MOTTOK

Laboratory for Safe and Secure Systems

Regensburg University of Applied Sciences

Faculty of Electronics and Information Technology

Seybothstr. 2, D-93053 Regensburg, Germany

e-mail: peter.raab@extern.oth-regensburg.de,
{stefan.kraemer, juergen.mottok}@oth-regensburg.de

Vlastimil VAVRICKA

University of West Bohemia

Faculty of Applied Sciences

Univerzitni 8, 306 14 Plzen, Czech Republic
e-mail: vavricka@kiv.zcu.cz

Abstract. We present a transformation rule to convert linear codes into arithmetic
codes. Linear codes are usually used for error detection and correction in broadcast
and storage systems. In contrast, arithmetic codes are very suitable for protection
of software processing in computer systems. This paper shows how to transform
linear codes protecting the data stored in a computer system into arithmetic codes
safeguarding the operations built on this data. Combination of the advantages
of both coding mechanisms will increase the error detection capability in safety
critical applications for embedded systems by detection and correction of arbitrary

hardware faults.

Keywords: Coding theory, linear codes, arithmetic codes, code transformation,

residue error probability, Safely Embedded Software (SES)

Mathematics Subject Classification 2010: 94B05, 94B40, 11T71, 14G50

722 P. Raab, S. Kramer, J. Mottok, V. Vavricka

1 INTRODUCTION

The complexity and functionality of electronic controlled units have increased ever
more in several sectors of industry during recent years (e.g. automotive, aeronau-
tics). In addition, the requirements of these systems have become more demanding
in terms of safety, reliability and availability. In contrast to this progress, indus-
try demands a decrease in costs for electronics, while at the same time remaining
competitive. The use of inexpensive commodity hardware is the result. However,
the development of present micro-controllers follows the trend of decreasing feature
size that leads to less reliability; arbitrary hardware faults are more likely [1]. In-
creasing the fault tolerance of unreliable hardware is often a requirement in safety
critical applications. The consequence is the use of redundant hardware or of diverse
data [2, 3, 4]. The Laboratory for Safe and Secure Systems at the University of Ap-
plied Sciences in Regensburg developed, in collaboration with the TU Munich, the
Safely Embedded Software technique for the C programming language to safeguard
the execution of code on microprocessors [5, 6, 7, 8].

Modern broadcast and storage systems follow similar strict requirements for
reliability and safety. Disturbing influences can corrupt transmitted or stored data
in the same way they do during computation in a computer system. Techniques of
error detection and correction have been studied since Hamming researched codes
for increasing fault tolerance in storage systems for the first time [12]. Based on
this, a lot of improvements for error detection and correction were made: Cyclic
Linear Block Codes [13], Bose-Chaudhuri-Hocquenghem (BCH) codes [14] and Reed-
Solomon codes [15], just to mention the most important ones; but, linear codes are
not the optimal solution for coded data processing because they do not preserve the
code after arithmetic operations [11]. For an optimal error detection capability, code
transformations can be a possible solution for further improvements also in coded
data processing systems with memories and bus which have similar characteristics as
storage and transmission systems. For this reason, this article presents the required
background (Section 2) for a method to transform linear codes into arithmetic codes
(Section 3) and the performance in Section 4.

2 BACKGROUND

The ISO 26262 norm, “Road vehicles — Functional Safety”, recommends several
diagnostic techniques to detect possible occurring errors which are the state-of-
the-art. In Table ISO 26262-5, D.4 [16], only two techniques with high diagnostic
coverage (DC) are enumerated. Due to this norm, the highest DC is achievable
only with coded processing (like the SES framework) and reciprocal comparison by
software. The former executes the code in a transformed domain. Permanent errors
and transient errors are detected by a check of the validity of the code words. Based
on the normative approach, a closer look at coding techniques is valuable to get
deeper insights.

Isomorphism between Linear Codes and Arithmetic Codes 723

An important metric for comparison of different codes is the residual error prob-
ability. This is the probability that a received code word is corrupted but no errors
are detected by the decoding algorithm. This is the case when the erroneous bits
in the received code word itself form a valid code word [20]. Based on a binary
symmetric channel model (BSC, see Figure 1), the analysis of linear block codes
and arithmetic codes (so-called AN code) shows that the probability for undetected
errors is greater for AN codes than for linear codes with the same code rate [11].

“sent bit” “received bit”

@ :

Figure 1. The binary symmetric channel model describes the probability p that a single bit
changes its value or remains unchanged (1 — p). There is no dependency between
two nearby bits. In contrast, there are other channels with memory described
in [21].

The BSC model is valid for channels where the single bits have no influence on
others. Thus, linear codes are excellent for protecting single-bit errors in data storage
and transmission, whereas the underlying channel model for arithmetic operations
has a kind of memory. The carry bit propagation of an addition has a direct influence
on nearby bits of a code word. Figure 2 shows a simple model of a computing system.
It consists of a data storage unit and a transmission bus for which the BSC model
is valid. Otherwise the BSC model cannot be used for the arithmetic logical unit
(ALU). An applicable channel model for the ALU must be developed in future
work.

Remark. IBM developed a code, which is also called Arithmetic Code, for lossless
data compression [17]; but not to be confused, this arithmetic encoding is part
of entropy encoding whereas the described AN codes are an example of channel
encoding and error detecting codes.

2.1 Algebra of Codes

Algebraic structures are the background for most error detecting and correcting
codes. An algebraic structure consists of a set of objects (e.g. numbers) and at least
one operation applied to this set [22]. Two important codes are the linear codes and
arithmetic codes, which have different algebraic structures [11]. An arithmetic code

724 P. Raab, S. Kramer, J. Mottok, V. Vavricka

arbitrary HW fault

data storage & transmission data/processing
RAM /\/ /\/ Register Bank
— ¥ 1 —~__ /
o ‘ . . o g
= Arithmetic Logic Unit L
a
€
b Data Bus 5 (ALU) R15
c G sP
g \ c=flab)=a+b \
L~ = L~
“Linear Code” “Arithmetic Code”

Figure 2. Simplified CPU model that shows the hardware components propagating arbi-
trary hardware faults. Using an adequate code for the different channel models,
a transformation of the code is required.

is a set of code words which are the product of two integer numbers X (= original
number) and A (= constant generator).

Cuv i={A-X|AX €7} (1)

A finite set of numbers is more important for computer arithmetic because of the
limited register width of k bits in a micro-controller. The code words are out of
the set of all multiples of A, but smaller than the possible range of M = 2*. Such
a subset of integer numbers is called an ideal AZ,; in algebra. This finite subset
forms a ring under the two operations, addition and multiplication (AZns, +ar, ar)-
The sum and the product of two code words are divisible by the generator A and
the result is therefore a valid code word (see axiom of closure [22]). Linear codes use
other algebraic structure than arithmetic codes [19]. Instead of integer numbers, the
structure of linear codes consists of a more complex set of polynomials. A polynomial
is a different representation of a vector in a k-dimensional vector space [22]. The
coefficients of a polynomial are the digits of a number described by a positional
notation system. In a computer system, the number system is based on the finite
field of order two, the so-called Galois Field GF(2) or Z, := {0,1}. Thus an integer
number X is represented by the set of k£ binary digits in a computer system

r= (kahfksz, e $1,$0)
with z; € Zs, or in the polynomial representation:

A + XTp_o - 22

Isomorphism between Linear Codes and Arithmetic Codes 725

The set of polynomials with coefficients out of the finite field Zs

k-1

Lo[z] = {p(z) = sz 4

=0

€ GF(Q)} (3)

forms a ring of polynomials and under the two operations:

a(z) ®b(z) = c(z) (4)
with ¢; = (a; +b;) mod 2 and 0 <j <k

a(z) ©b(z) = c(2) (5)

J
with ¢; = <Z a; - bj_i> mod 2 and 0 < j < k.
i=0

Linear codes have a coding rule similar to that of arithmetic codes. Both codes are
generated by the multiplication based on their algebraic structure. This is the ordi-
nary integer multiplication for arithmetic codes and the polynomial multiplication
for linear codes.

Corc =A{9(2) ©2(2) | 9(2), 2(2) € Zy[z]} (6)
2.2 Systematic Codes

Systematic codes are known from linear codes in communication systems. They
consist of k bits of information that is separated into the n — k bits of parity in their
binary representation [19]. Arithmetic codes can also be in a systematic form (see
Figure 3).

information parity bits
T \ \ [T T T T
Xk-1 ‘Xk-z C X1 ‘ Xo pn-k-l‘pn-k-z‘ - Pz ‘ Po
code
. ‘c T T i T c T . with
" L2 " cmodA=0

Figure 3. The information of a systematic code word is separated into two segments. The
original number can be read directly from the code word. The parity bits are added
afterwards. The code word itself remains a multiple of A.

For systematic arithmetic codes, the code is not separable. The addition of
two systematic code words propagates possible carry bits into the information part.
The separated information of the result does not match the sum of both informa-
tion words (see Section 2.3). Systematic encoding is the basic principle for the

726 P. Raab, S. Kramer, J. Mottok, V. Vavricka

code transformation described in Section 3. Rao already showed parallels between
arithmetic codes and linear block codes (see Table 1) [18].

Linear Block Codes Arithmetic Codes

c(2)=g(2) @m(z) =21(2) 02" *@r(z) | C=A-Xo=X,-2"*+ R

with: with:

¢(z) : code polynomial C' : coded integer

g(z) : generator polynomial A : generator integer
21(%) : information polynomial X : information integer
r(z) : remainder polynomial R : remainder integer

n : length of code word in bits
k : length of information word in bits
n — k : number of redundant bits

Table 1. Comparison between systematic linear and arithmetic codes

When analyzing the coding rules (Table 1) for both codes, we can see that
X1 # X5 and 21(2) # x2(2). It is clear that X, must be greater than X; to fulfill
the equation. When coding a number, the terms X; and z;(z) represent the original
values. Therefore, Xs and x5(z) are not important and need not be considered.

2.3 Coded Operations

The transformation of one algebraic structure into another one is called homomor-
phism. In general, a homomorphism maps one algebraic structure into the other.
Let (G,+) and (H,®) be two algebraic structures and ¢ the map function of the
sets G — H, then it must be p(x + y) = ¢(x) @ ©(y). If there is a bijective ho-
momorphism between (G, +) and (H,@®), then both structures are isomorphic [22].
The addition of polynomials differs from that of an ordinary addition. A polyno-
mial addition must be enhanced in a way that the above rule for a homomorphism
is satisfied. The coefficients of the polynomial are elements out of the Galois Field
GF(2) and possible carry bits are ignored. This difference between the two opera-
tions results in different outcomes and makes a correction ¢(z) necessary. For the
addition of two integers, it is

pri X+Y = a(2) ©0y(z) ©c2). (7)

In [11], it was shown that the coded operation which is used for coded software
processing [6, 4] is a homomorphism. It defines operations of code words in such
a way that the result of this operation matches the coded result of the original
information word.

Example 1. For the addition of two arithmetic coded numbers,

te 104 (C1, Cy) = C1 4+ Cs (8)

Isomorphism between Linear Codes and Arithmetic Codes 727

for all C' € Csy. This means that no correction is necessary in the case of the
addition of two code words (in contrast to coded multiplication [11]). For systematic
encoded numbers, the sum of two coded numbers is also a systematic code word.

Ci+Cy, = X1 -2 "+ R +X,- 2%+ Ry
= (X1 4+ X2)-2"" 4+ (R, + Ry). (9)

With an ordinary adder unit in an ALU, there is the problem of an overflow of
the sum of the remainders R; and R;. The carry bit will be propagated into the
information X of a systematic code. The result will be a valid code word, because
the result remains a multiple of A, but this carry bit propagation changes the value
of the information X. A special version of an adder must be used. Both parts, the
information and the remainder, must be handled separately (Figure 4).

— > ¢ .)
/D X “information“
BN \ > X
Cr
) _ .
(+) “remainder”
BN BN > R

Figure 4. Special adder unit for addition of systematic arithmetic codes

When an overflow is detected in the remainder unit, the carry bit must not be
propagated to the information part; but then the remainder does not correspond
with the resulting information. The information number is not increased by the
propagated carry-bit.

Remark. Rao and previously Garner have described another form of systematic
codes. The so-called gAN code does not require special adders. For detailed infor-
mation see [18].

3 CODE TRANSFORMATION

In Section 2, we saw a close similarity between linear and arithmetic codes. Obvi-
ously, there is a simple rule to transform them to each other. This section shows
what the generator integer A and the polynomial g(z) must look like for a transfor-
mation. Let us begin with one important theorem from Rao [18].

Theorem 1. A systematic AN code has the form C = X; - 2" * + R = A - X, if
and only if R = (—X;-2"%) mod A with 2"=%"1 < A < 27k,

728 P. Raab, S. Kramer, J. Mottok, V. Vavricka

Following Theorem 1, the remainder of a systematic AN code can be generally
expressed as follows:

C = X, - 2" "+ R=A-X,
=R = A Xo— X, -2"F (10)

With X, = X7 + 1, the remainder R of a systematic code is
R=A-X,-(2" % - A). (11)

The term 2" % — A in Equation (11) is 1, if it is A = 2"% — 1. The remainder can
be simplified to
R=A-X,. (12)

The remainder is always positive (R = 0). Consequently, X; £ A and the range
of X; depends on A. If the generator A is of the form 2% — 1 (all bits are 1), the
remainder of the systematic code words are decreasing numbers beginning with A
(see example in Table 3).

Because of the homomorphism between the algebra of arithmetic codes and the
algebra of linear codes (see Section 2), the integer numbers and the operations of
Equation (11) are substituted as seen in Table 2:

R = r(z): polynomial of remainder
X1 = x1(2): polynomial of information word
A - a(z): polynomial of generator
X1—Xo — z1(2) ®a2(z) @ e(z): subtraction of polynomials
with ¢(z) describes the borrow bits
X1-Xo = z1(2) ©x2(2) ® c(2) : multiplication of polynomials

with ¢(z) describes the carry bits

Table 2. Transformation rules from integer numbers to polynomials

The three terms of Equation (11) are substituted step by step now:

1. The subtraction (2"* — A) causes a borrow bit in every consecutive digit. The
borrow bits ¢(z) are the same as a(z) but shifted by one to the left. The term
¢(z) can be replaced by a(z) ® z.

2. The multiplication X -(..) can be simplified. The subtraction within the brackets
always results in 1. A multiplication of a polynomial with 1 does not generate
any carry bits. The term ¢(z) for this multiplication can be ignored.

3. The last subtraction A — X - (..) is also a special case. If A =2""%— 1, then all
n — k coefficients of the polynomial a(z) are equal to 1. The subtraction of any
polynomials of the same or smaller order (that is, X < A, see definition above)
does not result in any borrow bits. Consequently, ¢(z) can be ignored, too.

It follows
=7r(2)=a(z)@r(2) 0 {Z" *@alz) @alz) © 2} (13)

Isomorphism between Linear Codes and Arithmetic Codes 729
Expanding the brackets and reordering Equation (13) leads to:

r(z) = a(2)®@x1(2) 02" F@r(2) ©alz) D ai(2) ®al(z) 2

r(z) = a(2)@x1(2) 2" F P a(z) ® 20 {21(2) © 27 @ x1(2)}. (14)
The term z1(2) ® 27! @ x1(2) of Equation (14) is the binary XOR operation of z;(z)
with itself but shifted by one bit to the right. If 23(2) = x1(2) ® 271 @ z1(2) and

x1, is the least significant bit of x1(z), then the term in brackets of Equation (14)
can be replaced by

11(2) @ 27 @ a1(2) = 22(2) Dy, © 27 (15)

The right shift of x1(z) removes the least significant bit out of the integer number;
but it must not be ignored and then

(z

with g¢(z

<

= a(2)®21(2) 02" F P a(z) ® 2O 1e(2) B alz) ® 2y,
= a(z) Oz
(2)
(2)

— — ~— ~—

=7(2) = a){1@2,} O 21(2) © 2" @© g(2) © 22(2)
=c(z) = g(z) ©x3(2)
= 51(2) 02" *@alz)® {1 @2} @r(2). (16)
—————
=1, if 1,=0
If the least significant bit 1, = 0, then a(z) is not reduced and it inverts the

remainder polynomial r(z) compared to R. Table 3 shows an example of this effect
of the isomorphism between linear block codes and arithmetic codes.

X1 R r(z)
00001 | 11110 | 11110
00010 | 11101 | 00010
00011 | 11100 | 11100
00100 | 11011 | 00100
00101 | 11010 | 11010
00110 | 11001 | 00110

ST W N

Table 3. Isomorphism between an arithmetic and linear (15, 10) code with A = 31 = 25—1
and g(2) = a(2) ©® z = 2° + 24 + 23 + 22 + 2. Every second remainder R is inverted
compared to r(z). With both codes, the information is extended by n — k = 5 bits.

4 PERFORMANCE ESTIMATION

In the following part of the paper, an estimation for resource consumption and error
performance of the given approach is presented.

730 P. Raab, S. Kramer, J. Mottok, V. Vavricka
4.1 Error Detection Capability

The error detection capability describes the performance of the code to detect bit
flips. The presented linear block code that is generated by the polynomial of the
form g(z) = a(z) ® z = 321771 1+ 27! results in a code with a minimum hamming
distance of only two. This means that only single bit errors can be detected but not
corrected. The polynomial of the described form is indeed an irreducible polynomial,
but not primitive [19]. Only primitive polynomials generate codes with a minimum
hamming distance greater than two.

The range of the information X is limited to A. The required bits for the
remainder R are the same as for the information part of the code. The code rate,
which is a metric for the redundancy of a code [23], is

R=—=—=05 (17)

for the example in Table 3. This means that only half of every code word represents
any information and the rest is redundancy. A comparison with rates of other codes
shows that the efficiency of this code is not ideal. There are codes with a rate of 0.5
which have a minimum hamming distance of more than two, and an error correction
is possible in this case.

4.2 Runtime Evaluation of Check

Verification of a code word is the evaluation of the remainder
R=C mod A

which must be zero in the case of no errors. The division operation in a micro-
controller consumes a lot of runtime. However, Rao [18] described a class of useful
codes for error detection when selecting A = 2% — 1. In this case, the evaluation of
the remainder can be simplified and the modulo operation is substituted by a more
simple addition.

Let ¢ = {¢y_1,¢n_2,-..c1,co} be the binary representation of a code word. These bits
are partitioned into [segments of length n — k. If these segments are B;_; ... By, By,
then the modulo A of the sum of all segments B; equals the modulo of the code

word C' with -

C mod A=) B; mod A. (18)
§=0
The length of one segment B, is n — k bits. The sum is also restricted to n — k bits.
A possible overflow must be added to the sum.

Example 2. Let C' = 219 be the corrupted systematic code word for X = 6 with
A =25 —1 = 31. The binary representation for C is 0011011011, and it follows

Isomorphism between Linear Codes and Arithmetic Codes 731

that there are two segments with By = 6 = 00110, and By = 27 = 11011,. If b
is the overflow bit of the sum of both segments By + By of size n — k bits each,
then By + By +b = 2 = 219 mod 31. The remainder is not equal to 0 and an
error is detected. Let C now be 217 without errors. Then By = 6 = 00110, and
By =25 =11001,. The sum is By + B; = 6 + 25 = 31 and equals the generator A.
In this case, the modulo is always zero and no errors have occurred. The evaluation
for errors is reduced to the sum Zé;t B; and a following comparison with 0 or A.

5 CONCLUSION

We saw that the generator A is of the form 2¢— 1, a simple transformation between
linear and arithmetic codes and vice versa is possible (see Section 3). Secondly,
the evaluation of error occurrence can be simplified to an addition instead of a divi-
sion. This makes the evaluation for an error more efficient compared to the standard
method with a modulo operation; but on the other hand, there are the disadvantages
of the error correction probability and the code rate. The approach of a transfor-
mation between linear and arithmetic codes introduced here results in a code rate
of 0.5 and a minimum hamming distance of only two. However, this type of code
required for the isomorphism is not as efficient as other codes. An improved error
performance is only possible when the same software is concurrently executed in
two redundant coded channels. As described in [10], one single fault can also be
corrected.

Furthermore, the transformation of codes can be useful in coded data processing.
According to [11], the simplified processor model consists of several channels with
different characteristics. BSC based operations like MOV or XOR match linear
codes and have a better residual error probability than comparable arithmetic codes
(see also [11]). In contrast, linear codes are not practical for arithmetic operations
like the addition (ADD) because of the missing carry-bit propagation [24]. Thus, the
presented code transformation has advantages for coded data processing if different
underlying error models are considered.

REFERENCES

[1] Dopp, P.E.—MASSENCILL, L. W.: Basic Mechanisms and Modeling of Single-
Event Upsets in Digital Microelectronics. IEEE Transactions on Nuclear Science,
Vol. 50, 2003, No. 3, pp. 583-602.

[2] ForiN, P.: Vital Coded Microprocessor Principles and Application for Various Tran-
sit Systems. In IFA-GCCT 1989, pp. 79-84.

[3] On, N.——MITRA, S.—MCCLUSKEY, E. J.: ED4I: Error Detection by Diverse Data
and Duplicated Instructions. IEEE Transactions On Computers, Vol. 51, 2002,
pp- 180-199.

[4] ScHIFFEL, U.—SCHMITT, A.—SUSSKRAUT, M.—FETZER, C.: ANB- and ANBD-
mem-encoding: Detecting Hardware Errors in Software. In Computer Safety, Reli-

732

[5]

(6]

(7l

8]
[9]

[10]

[11]

12]
13]
[14]
[15]
[16]
17]
18]
[19]
[20]
[21]

[22]
[23]

P. Raab, S. Kramer, J. Mottok, V. Vavricka

ability, and Security, Volume 6351 of Lecture Notes in Computer Science, Springer
2010, pp. 169-182.

MOTTOK, J.—SCHILLER, F.—VOLKL, TH.—ZEITLER, TH.: A Concept for a Safe
Realization of a State Machine in Embedded Automotive Applications. In 26*® Safe-
Comp Conference 2007, pp. 283288, ISBN 978-3-540-75100-7.

MoTTOK, J.: Safely Embedded Software — A Safety Framework for C++. In Em-
bedded Software Engineering Report, 2008.

MEIER, H.—SCHILLER, F.—STEINDL, M.—MOTTOK, J.—FRUCHTL, M.: Diskus-
sion des Einsatzes von Safely Embedded Software in FPGA-Architekturen. In Pro-
ceedings of the 2" Embedded Software Engineering Congress 2009.

STEINDL, M.: Safely Embedded Software (SES) im Umfeld der Normen fiir Funk-
tionale Sicherheit. Jahresriickblick 2009 des Bayerischen IT-Sicherheitsclusters, 2009.
BrowN, D. T.: Error Detecting and Error Correcting Binary Codes for Arithmetic
Operations. In IRE Trans. Electron. Comput. 1960, pp. 333-337.

RAAB, P.—KRAMER, S.—MOTTOK, J.—MEIER, H.—RACEK, S.: Safe Software
Processing by Concurrent Execution in a Real-Time Operating System. In Proceed-
ings of 16" International Conference on Applied Electronics 2011, pp. 315-319.
RAAB, P.—KRAMER, S.—MoOTTOK, J.: Cyclic Codes and Error Detection During
Data Processing in Embedded Software Systems. In Proceedings of the 4" Embedded
Software Engineering Congress 2011, pp. 577-590.

HaMmMING, R. W.: Error Detecting and Error Correcting Codes. Bell System Tech-
nical Journal, No. AFCRC-TN-57-103, April 1950.

PRANGE, E.: Cyclic Error-Correcting Codes in Two Symbols. Technical Report, Air
Force Cambridge Research Center 1957.

Bosge, R.C.—RAY-CHAUDHURI, D.K.: On a Class of Error Correcting Binary
Group Codes. In Information and Control, Vol. 3, 1960, No. 1, pp. 68-79.

REED, I. S.—So0LOMON, G.: Polynomial Codes over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics, Vol. 8, 1960, No. 2, pp. 300-304.
ISO: ISO/DIS 26262-5: Road Vehicles — Functional Safety, Part 5: Product Devel-
opment: Hardware Level. 2009.

RISSANEN, J. J.: Generalized Kraft Inequality and Arithmetic Coding. IBM Journal
of Research and Development, Vol. 20, May 1976, No. 3, pp. 198-203.

Rao, T.R.N.: Error Coding for Arithmetic Processors. Electrical Science Series,
Academic Press, New York and London 1974.

PETERSON, W. W.—BROWN, D. T.: Cyclic Codes for Error Detection. In Proceed-
ings of the IRE, Vol. 49, 1961, No. 1, pp. 228-235.

MORELOS-ZARAGOZA, R.H.: The Art of Error Correcting Coding. John Wi-
ley & Sons 2006.

OsMANN, C.: Bewertung von Codierverfahren fiir Einen Storungssicheren Daten-
transfer (Evaluation of Error-Correcting Codes Used for a Reliable Data Transfer).
Ph. D. thesis, Universitdt Duisburg-Essen, Campus Duisburg, 2001.
BEUTELSPACHER, A.: Lineare Algebra. Vieweg 1994.

BosserT, M.: Kanalcodierung. Teubner 1998.

Isomorphism between Linear Codes and Arithmetic Codes 733

[24] RaaB, P.—KRAMER, S.—MOTTOK, J.: Reliability of Data Processing and Fault
Compensation in Unreliable Arithmetic Processors. Submitted in Microprocessors
and Microsystems: Embedded Hardware Design (MICPRO).

Peter RAAB is experienced in the development of hardware and
software for embedded systems for more than 10 years in several
branches of industry. His responsibilities are the design, develop-
ment and test of embedded software. From 15 of August 2010 till
31t of July 2013, he was research assistant at the Laboratory for
Safe and Secure Systems (www.las3.de) for the research project
S30P with the research interests in coded processing, real-time
3 operating systems and reliability evaluations. In parallel, he
T ~ graduated the Ph.D. study program at the University of West
Bohemia Pilsen (Czech Republic). The thesis was “Model-Based

Reliability Evaluation of Data Processing in HW-Fault Tolerant Processor Systems”.

Stefan KRAMER is research assistant at the Laboratory for Safe
and Secure Systems (www.las3.de) working in the ZELOS? re-
search project on reliable multicore scheduling. He is a Ph.D.
student at the University of West Bohemia, Pilsen.

Jiirgen MOTTOK is since more than 20 years involved in the de-
velopment and assessment of safety critical automotive systems
at SIEMENS VDO Automotive AG, now Continental Automo-
tive GmbH. His responsibilities were architect and group leader
for software-intensive safety critical engine control unit develop-
ment. Also, he was responsible for safety assessments based on
TEC 61508 and MISRA standards. As senior software and system
architect he worked in the AUTOSAR consortium for architec-
ture and safety issues, in C++ standardization gremium and in
the MISRA C++ working group. Since 1st September 2004 he
is Professor for computer science at Regensburg University of Applied Sciences. He is the
Head of the Laboratory for Safe and Secure Systems (LaS?, www.las3.de). He lectures
on software engineering, programming languages, operating systems and functional safety.
His research area includes automotive software engineering, real-time systems and func-
tional safety, as well as automotive software engineering, real-time embedded systems and
automotive safety. Currently he manages the research projects DynaS?, VitaS3, S0P,
S’EMO, AMALTHEA, SAGE, S3CORE, ZeloS?, FraLa and Evelin which are arranged
with Research Master and Ph. D. students. The projects are performed in private public

734 P. Raab, S. Kramer, J. Mottok, V. Vavricka

partnership with Continental Corporation, former SIEMENS VDO Automotive AG, Tim-
ing Architects Embedded Systems GmbH and with INTENCE Automotive Electronics
GmbH. He is also involved as scientific consultant in AUTOSAR Architecture, Functional
Safety and Timing Models. He is a member of the Managing Board of the Bavarian IT-
Security and Safety Cluster, of the Advisory Board of the German Society of Computer
Science in Eastern Bavaria, of the German Society of Physicists, of the Férderverein ADA
Deutschland, of the Arbeitskreis Software-Qualitdt und — Fortbildung (ASQF) organisa-
tion, of Embedded4You, of the advisory board of the ASQF Safety group, head of the
Executive Committee of Learning of Software Engineering — Registered Association, and
organisator of the Workgroup Technical Didactics Software Engineering formed by Pro-
fessors of Universities of Applied Sciences. In 2010 he became the laureate of the reward
of excellent teaching appointed by the Bavarian State Ministry of Science, Research and
Culture. In 2014 he was nominated for the “Lehre hoch n” initiative by “Studienstiftung
des deutschen Volkes”.

Vlastimil VAVRICKA received the master’s degree in technical
cybernetics in 1974 and Ph. D. degree in electronic and computer
engineering in 1986 from College of Mechanical and Electrical
Engineering in Pilsen. He is currently an Associate Professor
in the Department of Computer Science and Engineering at the
University of West Bohemia. His research interests include com-
puter architectures, programmable logic and embedded systems
design. He supervises several research projects supported by
public funding in the field of embedded system design.

