
Computing and Informatics, Vol. 33, 2014, 831–856

PRIVACY AWARE PARALLEL COMPUTATION
OF SKYLINE SETS QUERIES FROM DISTRIBUTED
DATABASES

Mohammad Shamsul Arefin

Graduate School of Engineering
Hiroshima University
Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
&
Department of Computer Science and Engineering
Chittagong University of Engineering and Technology
Chittagong-4349, Bangladesh
e-mail: sarefin 406@yahoo.com

Yasuhiko Morimoto

Graduate School of Engineering
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
e-mail: morimoto@mis.hiroshima-u.ac.jp

Abstract. A skyline query finds objects that are not dominated by another object
from a given set of objects. Skyline queries help us to filter unnecessary informa-
tion efficiently and provide us clues for various decision making tasks. However,
we cannot use skyline queries in privacy aware environment, since we have to hide
individual’s records values even though there is no ID information. Therefore, we
considered skyline sets queries. The skyline set query returns skyline sets from all
possible sets, each of which is composed of some objects in a database. With the
growth of network infrastructure data are stored in distributed databases. In this
paper, we expand the idea to compute skyline sets queries in parallel fashion from
distributed databases without disclosing individual records to others. The proposed
method utilizes an agent-based parallel computing framework that can efficiently
compute skyline sets queries and can solve the privacy problems of skyline queries
in distributed environment. The computation of skyline sets is performed simulta-
neously in all databases which increases parallelism and reduces the computation
time.

832 M. Sh. Arefin, Y. Morimoto

Keywords: Skyline sets, convex skyline, parallel computation, agent-based com-
putation, compromisable situations

1 INTRODUCTION

Given a k-dimensional database DB, a skyline query retrieves a set of skyline objects,
each of which is not dominated by another object. An object p is said to dominate
another object q if p is not worse than q in any of the k dimensions and p is better
than q in at least one of the k dimensions. Figure 1 shows a typical example of
skyline. The table in Figure 1 is a list of five hotels, each of which contains two
numerical attributes – “Price” and “Distance”. In the list, h2 and h5 are dominated
by h3, while others are not dominated by any other hotel. Therefore, the skyline of
the list is {h1, h3, h4}. Such skyline results are important for users to take effective
decisions over complex data having many conflicting criteria.

 Fig. 1.

ID Price Distance
h1 3 8
h2 5 4
h3 4 3
h4 9 2
h5 7 3

(a) Hotels

D
is

ta
nc

e

Price
(b) Skyline

• !

• !

• !

Skyline
h1

h2

h3 h5

h4

Figure 1. Skyline example

A number of efficient algorithms for computing skyline from a sole database
have been reported in the literature [1, 2, 3, 4, 5, 6]. With rapid growth of com-
puter networks, parallel and distributed skyline query processing has attracted at-
tention [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Recently, we need to be aware of individual’s privacy. In privacy aware environ-
ments, in general, we have to hide individual record values even though there is no
ID information. For example, in case of employees database of an organization, we
are not allowed to disclose the salaries and experiences of the employees to others.
The main limitation of all the previous works of the skyline query is that they have
to disclose exact values of each record to others. In addition, current skyline query
algorithms are not robust against data with outliers and are not stable with update
operation. Moreover, conventional skyline query algorithms do not provide any fa-
cility for group choice, although sometimes users are interested in group of objects
instead of individual objects.

Privacy Aware Parallel Computation of Skyline Sets 833

ID Pri Dis ID Pri Dis

h123 12 15 h145 19 13

h124 17 14 h234 18 9

h125 15 15 h235 16 10

h134 16 13 h245 21 9

h135 14 14 h345 20 8

•

•

•

•

•

h123 h125

h135

h124

h134

h145

h235

h234
h245

h345

Skyline

Pri

D
is

(a) Sets of 3 hotels

(b) Skyline of 3 hotels

Figure 2. Skyline of 3-set

To overcome the above limitations of conventional skyline queries, we have in-
troduced skyline sets queries [22, 23]. Let s be the number of objects in each set
and n is the number of objects in the dataset. The number of sets in the database
amounts to nCs. We proposed an efficient algorithm to compute skyline of nCs sets.

Figure 2 is a list of 3-sets, in which all of the combinations of three hotels are
listed. In Figure 2, “ID” denotes a set of three hotels and the attributes “Pri” and
“Dis” represent the sums of price and distance of three hotels of Figure 1, respec-
tively. In the example h123 denotes a set of three hotels {h1, h2, h3}. “Pri” and “Dis”
of h123 are the sums of the “Price” and “Distance” of hotels in the set, respectively.
The skyline of the combinations of three hotels are {h123, h135, h235, h234, h345} as
shown Figure 2. If a tourist wants to know the price of the cheapest hotel, she/he
can easily estimate that the price of the cheapest hotel is around 4 from the value
of the cheapest set h123. Similarly, if one prefers cheaper and closer one, she/he can
predict the best price and distance will be around 5.33 and 3.33, respectively from
the value of h235. Based on such skyline sets, the tourist can make an expenditure
plan for her/his accommodations. Note that in our skyline sets queries, each at-
tribute value of each record is not disclosed to preserve the privacy of individuals.
Instead, we disclosed aggregated values. Also observe that in the example of 3-sets
computation in Figure 2, we have used “sum” aggregation function. We can also
employ other aggregation functions such as “average” or “mean”. However, in either
case, the result will be the same as the result of “sum” aggregation function. For
example, after computing average price and distance for all combinations of three
hotels, the result of skyline 3-sets is {h123, h135, h235, h234, h345} that is the same as
the result obtained previously by using “sum” aggregation function.

Our work in [22] considered skyline sets queries from a centralized database.
Later in [23], we introduced a framework for skyline sets computation from dis-
tributed databases. In [23], we have considered simple pipeline execution. Though
it can be used in distributed databases, the computation time becomes slower if the
number of databases increases. Another limitation of this work is that in some situ-

834 M. Sh. Arefin, Y. Morimoto

ID a1 a2 ID a1 a2 ID a1 a2

o1 5 5 o6 1 3 o11 4 2

o2 1 6 o7 7 2 o12 8 4

o3 6 4 o8 7 9 o13 4 1

o4 9 7 o9 4 5 o14 8 7

o5 6 8 o10 6 7 o15 1 5

DB1 DB2 DB3

Figure 3. Three databases with the same schema

ations there are possibilities of disclosure of record values from some of aggregated
values.

ID a1 a2
R1 3 14

R2 15 5

R3 6 9

R4 9 6

Table 1. Results of skyline sets queries for s = 3 from the databases of Figure 3

In this paper, we proposed an efficient agent-based parallel computation frame-
work, where there is almost no performance degradation with the increase in the
number of databases. Moreover, in the proposed approach we solved the statistical
compromise problem, which is important in privacy aware environment.

1.1 Motivating Example

Our previous works in [22, 23] can compute skyline sets queries without disclosing
individual record values. However, there are several situations where users can
infer the individual record values from the skyline sets. Let us consider the three
databases with the same schema (ID, a1, a2) as shown in Figure 3. In this example,
we assume that value domain of both a1 and a2 is set to [1 . . . 10].

Skyline sets queries with s = 3 return the results as shown in Table 1 as the
skyline of 3-sets. Notice that the aggregated values in Table 1 are disclosed to the
public including database owners.

From the a1 of R1, any user can easily find that individual record value in a1
is 1 because the minimum value in a1 is 1. Therefore, the owner of DB1 can find
there are two records whose a1 is 1 in other databases. Similarly, the owner of DB2

and DB3 can find the fact.
From the value of a2 of R2, one can find that one of the three records contains 1

in a2 since aggregated value of 3 records is 5. Therefore, one can infer that the
remaining two records have values 1 and 3 or 2 and 2 in a2. In this case, the owner
of DB3 happens to know that one of others has 2 in a2 and no other has 1 in a2
since DB3 has 1 and 2.

Privacy Aware Parallel Computation of Skyline Sets 835

In this paper, we provide a framework for detecting such compromising sky-
line s-sets and propose a protection mechanism for such s-sets. We also introduce
an efficient agent-based parallel computation framework that improves the overall
computation performance significantly.

The rest of this paper is organized as follows. Section 2 gives the preliminaries
of the problems. In Sections 3, we detail the privacy aware parallel execution of
skyline sets queries. Section 4 presents the experimental results. Section 5 provides
a brief review of related works on skyline queries. Finally, we conclude and sketch
future research directions in Section 6.

2 PRELIMINARIES

We consider a database DB having k attributes and n objects. Let a1, a2, . . . , ak be
the k attributes of DB. Without loss of generality, we assume that smaller values
in each attribute are better and each attribute contains positive integer values.

2.1 Skyline Queries

Let p and q be objects in DB. Let p.al and q.al be the lth attribute values of p and q,
respectively, where 1 ≤ l ≤ k. An object p is said to dominate another object q, if
p.al ≤ q.al for all the k attributes al, (1 ≤ l ≤ k) and p.aj < q.aj on at least one
attribute aj, (1 ≤ j ≤ k). The skyline is a set of objects which are not dominated
by any other object in DB.

2.2 Skyline Sets Problem

Let |S| =n Cs = n!
s!(n−s)!

be the number of s-sets that can be composed from n ob-

jects. We assume a virtual database of S on the k dimensional space of DB. Each
object of the database is an s-set whose value of each attribute (dimension) is the
sum of s values of corresponding s objects. An s-set p ∈ S is said to dominate
another s-set q ∈ S, denoted as p ≤ q, if p.al ≤ q.al, 1 ≤ l ≤ k for all k attributes
and p.aj < q.aj, 1 ≤ j ≤ k for at least one attribute. We call such p dominant s-set
and q dominated s-set between p and q.

An s-set p ∈ S is said to be a skyline s-set if p is not dominated by any other
s-set in S.

2.3 Convex Skyline Sets

Each object in S is a point in k-dimensional vector space. Convex hull for the set
of S points is the minimum convex solid that encloses all of the objects of S. The
dotted line polygon of Figure 4 is an example of convex hull in two-dimensional
space. In Figure 4, O1 and O4 are the objects that have the minimum values of
attribute in a1 and a2, respectively. Notice that such objects must be in the convex

836 M. Sh. Arefin, Y. Morimoto

Fig. 4.

• !
• !• !

• !
• !

• !• !• !

O6

O1

D2

O2

O3
O4

O5

D1

Outside

Initial facet

• !

Figure 4. Convex hull and convex skyline

hull. We call the line between O1 and O4 “the initial facet”. Among all objects in
the convex hull, objects that lie outside of the initial facet are skyline objects and we
call such objects “convex skyline objects”. In k-dimensional space, we compute such
initial hyperplane surrounded by k objects as the initial facet. Then, we compute
convex skyline objects that lie in the convex hull and outside the initial facet.

The definition of convex skyline sets problem can be simplified as follows:
Given a natural number s, find all s-sets which lay in both the convex hull and

the skyline of S.

2.4 Algorithm for Computing Convex Skyline Sets

If we compute all of the s-sets from the original database and make a dataset con-
taining |S| records, the problem can be solved by conventional skyline query algo-
rithms. However, |S| is unacceptably large when the original database size is large.
Therefore, in [22] we proposed an efficient alternative.

Each s-set in S can be represented as a k-dimensional point x = (x1, x2, . . . , xk)
where xi, (1 ≤ i ≤ k) is the sum of the ith attribute value of the s objects in DB.
“Touching oracle” function proposed in [22] is a method to compute an s-set on the
convex hull without generating S. It computes the tangent object of the convex hull
of S and a (k − 1)-dimensional hyperplane directly from the original n records in
DB.

2.4.1 Touching Oracle

Assume there is a hyperplane whose normal vector is Θ. In order to find the tangent
point with the hyperplane and the convex hull without precomputing S, we compute
(Θ, o), i.e., inner products of the normal vector and each object o in the database.
We choose s objects whose inner products are the top s. These top s objects compose
the s-set of the tangent point. Consider the hotel example as shown in Figure 1.
There are five records in the original database DB as in Figure 1(a). Each of the five
records is represented as a two-dimensional point, which we call an atomic point.

Privacy Aware Parallel Computation of Skyline Sets 837

o (Θ1,o) (Θ2,o) (Θ1,2,o)

h1 -3 -8 -85
h2 -5 -4 -67
h3 -4 -3 -52
h4 -9 -2 -79
h5 -7 -3 -73

Table 2. Inner product with tangent lines

Now consider the line whose normal vector is Θ1 = (−1, 0). In order to find the
tangent point corresponding to the line with Θ1, we compute inner products of the
normal vector and each of the five atomic points as shown in the second column of
Table 2. Then, we choose the top three inner products, i.e., {h1, h2, h3} if s = 3.
These top three inner products compose the tangent point (12, 15), which is the
3-set, h123. Similarly, for a line with Θ2 = (0,−1), we can find {h3, h4, h5} as the
top three. Those three points compose the tangent point (20, 8).

As mentioned above, we can compute a tangent point, which is a point on the
convex hull, by giving the normal vector of a tangent line. In k-dimensional case,
we can find a tangent point with a tangent (k−1)-dimensional hyperplane by giving
the normal vector of the tangent (k − 1)-dimensional hyperplane.

The touching oracle function chooses the top-s points from n atomic points in
DB. Since s is a negligible small constant compared with n, we can compute the
tangent point by scanning n atomic points only once, which is O(n).

2.4.2 Convex Hull Search

First, we compute initial k tangent objects that can be computed by touching oracle
with initial k vectors Θx = (θ1, θ2, . . . , θk), where θi = −1 if i = x, otherwise θi = 0
for each x = 1, . . . , k. Note that those k initial tangent objects are on the horizon of
the initial facet ((k− 1)-dimensional hyperplane). Convex skyline s-sets are objects
which lie outside of the initial facet and are in the convex hull.

Next, we compute the normal vector of the initial facet. Using the computed
normal vector, we try to find new tangent point. The new tangent point expands
the initial facet into k facets. We recursively compute the touching oracle for
each of the expanded facets until we can find a new tangent object outside the
facet.

From Table 2, for example, we have obtained two initial tangent points p1 =
(12, 15) and p2 = (20, 8) with normal vectors θ1 = (−1, 0) and θ2 = (0,−1), respec-
tively. These two initial tangent points construct the initial facet. Using the facet
containing the two initial points, we can compute the normal vector of the facet as
θ1,2 = (−(15−8), (12−20)) = (−7,−8), which directs outside of the facet. Using this
normal vector, we can find new tangent point h235, which is (16, 10). The new tan-
gent point expands the initial facet into two facets, which are the facet surrounded
by p1 = (12, 15) and (16, 10) and the facet surrounded by (16, 10) and p2 = (20, 8).

838 M. Sh. Arefin, Y. Morimoto

We can apply this operation for higher k-dimensional space analogically using the
concept of [26].

2.5 Advantages of Skyline Sets

As we mentioned, in a privacy aware environment we cannot disclose individual
record values even if there is no ID information. In such an environment, we cannot
use conventional skyline query. Our skyline sets query can be a promising alternative
since we do not have to disclose values of each record in a skyline analysis.

In addition to the advantage of the privacy issue, the skyline sets query has
another significant advantage against conventional skyline query, which is “robust-
ness”.

ID a1 a2 ID a1 a2 ID a1 a2 ID a1 a2

o1 6 3 o6 7 8 o11 5 5 o16 8 3

o2 3 5 o7 8 3 o12 2 6 o17 9 4

o3 7 5 o8 4 9 o13 6 4 o18 6 3

o4 5 8 o9 3 7 o14 9 7 o19 7 6

o5 4 6 o10 8 5 o15 6 8 o20 6 6

DB1 DB2 DB3 DB4

ID a1 a2 ID a1 a2 ID a1 a2 ID a1 a2

o21 1 3 o26 3 5 o31 9 3 o36 9 8

o22 8 4 o27 4 1 o32 4 8 o37 3 4

o23 7 9 o28 7 2 o33 3 3 o38 6 6

o24 4 5 o29 2 8 o34 1 5 o39 4 2

o25 6 7 o30 5 3 o35 8 7 o40 6 7

DB5 DB6 DB7 DB8

Figure 5. Distributed database example

For example, if there are few outliers in a database, conventional skyline queries
tend to retrieve outliers as skyline objects. Such retrieved outliers often hide some
important skyline points, which is significant loss of information. Our proposed
skyline sets queries can reduce the effect of outliers.

If there is an outlier whose value is (1, 1) in the hotel example of Figure 1, any
conventional skyline query retrieves this outlier record as a skyline. If one wants
to know the cheapest hotel or the nearest hotel, she/he cannot find any clue from
conventional skyline query. On the other hand, the skyline set query can provide
better results for her/him. For example, if s = 3, she/he can find the price of the
cheapest 3-set is 8, which is 3 + 4 + outlier, and the distance of the nearest 3-set
is 6, which is 2 + 3 + outlier. Note that in an actual application the number of
records n in a database is very large and s is also larger than three. In such an
actual situation, the aggregated values of the skyline set query can soften the effect
of the noises, though these aggregated values include the noise of outliers.

Since skyline takes time to compute, we usually use precomputed skyline results
to answer a query quickly. If a record in a database is updated, we have to recompute

Privacy Aware Parallel Computation of Skyline Sets 839

Fig. 6.

Figure 6. Example of divide-and-conquer computation

the skyline results. However, if records in a database are frequently updated, we
cannot prepare the precomputed results in time. Assume that the cheapest hotel
h1 = (3, 8) in the example of Figure 1 is booked and is deleted. The precomputed
skyline {h1, h3, h4} is meaningless for users who are interested in the cheapest price
unless it is recomputed. This problem has been an important research issue of
skyline query. Skyline set query can soften the effects of the updates that may exist
until the next recomputation. For example, the cheapest 3-set h123 in Figure 2 has
valuable information for users who want to know the price of the cheapest hotel
even if h1 = (3, 8) of Figure 1 is no longer existing.

3 SECURE PARALLEL COMPUTATION OF SKYLINE SETS

3.1 Computing Convex Skyline Sets

We assume that there are m databases in a network. Let DB1,DB2, . . . ,DBm be the
databases. Each database has a view table whose schema has the following columns:
ID, a1, a2, . . ., ak, where ID is the primary key attribute and ai (i = 1, . . . , k) are
k-dimensional numerical attributes. Assume that we have to compute skyline sets
for the union of m such databases in such a way that the privacy of individual is
preserved. Figure 5 is an example of a distributed database that consists of eight
databases, DB1, DB2, . . . , and DB8, each of which lies in a different server.

840 M. Sh. Arefin, Y. Morimoto

3.2 Agent-based Parallel Computation

We assume there is a coordinator who is responsible for performing the convex hull
search, which is mentioned in Section 2.4. The coordinator computes the touching
oracle function, which is to find the top-s inner product values from distributed
databases, by the divide-and-conquer strategy.

Fig. 7.

Sub-coordinator

 IP a
1
 a

2

1
2
3

Θ1= (-1, 0)

ID a
1
 a

2
 IP

o
1
 6 3 -6

o
2
 3 5 -3

o
3
 7 5 -7

o
4
 5 8 -5

o
5
 4 6 -4

DB1

(2) Compute inner product
 for Θ1= (-1, 0)

ID a
1
 a

2
 IP

o
6
 7 8 -7

o
7
 8 3 -8

o
8
 4 9 -4

o
9
 3 7 -3

o
10

 8 5 -8

DB2

(2) Compute inner
 product for Θ1= (-1, 0)

(1) normal
 vector Θ1= (-1, 0)

!

 IP a
1
 a

2

1 -3 3 5 (o
2, 1)

2 -4 4 6 (o
5, 1)

3 -5 5 8 (o
4, 1)

Θ1= (-1, 0)

 IP a
1
 a

2

1 -3 3 5 (o
2
)

2 -4 4 6 (o
5
)

3 -5 5 8 (o
4
)

(3) top 3 values

To next DB

(1) normal vector
 Θ1= (-1, 0)

!

(3) top 3
values

 IP a
1
 a

2

1 -3 3 7 (o
9
)

2 -4 4 9 (o
8
)

3 -7 7 8 (o
6
)

 IP a
1
 a

2

1 -3 3 5 (o
2, 1)

2 -3 3 7 (o
9, 2)

3 -4 4 6 (o
5, 1)

Θ1= (-1, 0)

Generate agents and assign
normal vectors

Reports (i) normal vector (ii) top-s

Figure 7. Computation in group one of cluster one with Θ1 = (−1, 0)

The coordinator divides the distributed databases into several clusters and cre-
ates sub-coordinators for each cluster. For each cluster, the sub-coordinator com-
putes the “local” top-s among the databases in the corresponding cluster. After
computing all “local” top-s, the coordinator merges all the “local” top-s and finds
“global” top-s. During the process, agents are used to preserve privacy of all “local”
databases. Note that all the “local” computations are performed simultaneously.
Now, consider the secure computation of skyline 3-set query from the distributed
databases of Figure 5. For each cluster, the coordinator asks the sub-coordinator to
compute touching oracles for the two initial normal vectors, i.e., (−1, 0) and (0,−1).

Privacy Aware Parallel Computation of Skyline Sets 841

Fig. 8.

 Sub-coordinator

 IP a
1
 a

2

1
2
3

Θ2= (0, -1)

ID a
1
 a

2
 IP

o
6
! 7! 8! -8

o
7
! 8! 3! -3

o
8
! 4! 9! -9

o
9
! 3! 7! -7

o
10
! 8! 5! -5

DB2

(2) Compute inner product
 for Θ2= (0, -1)

ID a
1
 a

2
 IP

o
1
 6 3 -3

o
2
 3 5 -5

o
3
 7 5 -5

o
4
 5 8 -8

o
5
 4 6 -6

DB1

(2) Compute inner
 product for Θ2= (0, -1)

(1) normal
 vector Θ2= (0, -1)
!

 IP a
1
 a

2

1 -3 8 3 (o
7, 2)

2 -5 8 5 (o
10, 2)

3 -7 3 7 (o
9, 2)

Θ2= (0, -1)

 IP a
1
 a

2

1 -3 8 3 (o
7
)

2 -5 8 5 (o
10

)

3 -7 3 7 (o
9
)

(3) top 3 values

To next DB

(1) normal vector
 Θ2= (0, -1)
!

(3) top 3
values

 IP a
1
 a

2

1 -3 6 3 (o
1
)

2 -5 3 5 (o
2
)

3 -5 7 5 (o
3
)

 IP a
1
 a

2

1 -3 6 3 (o
1, 1)

2 -3 8 3 (o
7, 2)

3 -5 8 5 (o
10, 2)

Θ2= (0, -1)

Generate agents and assign
normal vectors

Reports (i) normal vector (ii) top-s

Figure 8. Computation in group one of cluster one with Θ2 = (0,−1)

3.2.1 Computation in Each Cluster

In order to minimize idle time, the sub-coordinator divides databases into several
groups. In general, the number of groups is the same as the number of different
normal vectors, which are in the process. However, if the number of databases in
a cluster is less than the number of normal vectors, we set the number of groups to
the number of databases. For example, if we are processing the two initial normal
vectors, databases of the cluster are divided into two groups as in Figure 6.

For each group, the sub-coordinator creates two agents one of which is for (−1, 0)
and the other is for (0,−1). Each agent has a normal vector and a priority queue,
also known as “heap data structure” that keeps the top-3 inner product values and
their corresponding record values.

Figure 7 shows the computation process of the agent with normal vector Θ1 =
(−1, 0) in group 1 of cluster 1. When an agent arrives at a database of a group, it
sends the normal vector of the database. Next, the database computes inner product

842 M. Sh. Arefin, Y. Morimoto

for each record of the database. Finally, the database pushes the local top-3 records
along with inner product values to the agent. Note that during this computation
the database cannot see the contents of the priority queue of the agent.

Fig. 9.

Sub-
Coordinator 1

 IP a
1
 a

2

1 -3 3 5 (o
2, 1)

2 -3 3 7 (o
9, 2)

3 -4 4 6 (o
5, 1)

 Θ1= (-1, 0)

 IP a
1
 a

2

1 -3 6 3 (o
1, 1)

2 -3 8 3 (o
7, 2)

3 -5 8 5 (o
10, 2)

 Θ2= (0, -1)

 IP a
1
 a

2

1 -2 2 6 (o
12, 3)

2 -5 5 5 (o
11, 3)

3 -6 6 4 (o
13, 3)

Θ1= (-1, 0)

 IP a
1
 a

2

1 -3 6 3 (o
18, 4)

2 -3 8 3 (o
16, 4)

3 -4 9 4 (o
17, 4)

Θ2= (0, -1)

 IP a
1
 a

2

1 -2 2 6 (o
12, 3)

2 -3 3 5 (o
2, 1)

3 -3 3 7 (o
9, 2)

Θ1= (-1, 0)

 IP a
1
 a

2

1 -3 6 3 (o
1, 1)

2 -3 6 3 (o
18, 4)

3 -3 8 3 (o
7, 2)

Θ2= (0, -1)

Coordinator

Group 2

Group 1

Top-3 in group 1

Top-3 in group 2

Top-3 in cluster 1

Figure 9. Merging process at cluster one

In the example of Figure 7, it is observed that DB1 pushes three triplets, i.e.,
inner product value (IP), a1 value, and a2 value, (IP, a1, a2) = ((−3, 3, 5), (−4, 4, 6),
(−5, 5, 8)) to the agent. Next, the agent goes to DB2. DB2 pushes (IP, a1, a2) =
((−3, 3, 7), (−4, 4, 9), (−7, 7, 8)) to the agent. After visiting all databases in the
cluster, agent with normal vector Θ1 = (−1, 0) contains (IP, a1, a2) = ((−3, 3, 5),
(−3, 3, 7), (−4, 4, 6)) in its priority queue and returns back to the sub-coordinator.
During the top-3 computation the agent keeps track about the owner of each of
the three objects. For example, we can see that two objects are from DB1 and one
object from DB2 in Figure 7.

Figure 8 shows similar computation in group 1 of cluster 1 with normal vec-
tor Θ2 = (0,−1). Here, in order to minimize idle time, the agent travels from

Privacy Aware Parallel Computation of Skyline Sets 843

Algorithm 1 ComputationWithinCluster

1: Input: Normal vectors θs, set size s
2: Output: Local top-s for each normal vector
3: begin
4: Let (θ1, θ2, . . . , θv) be the given v normal vectors, (DB1,DB2, . . . ,DBz) be
z databases in the cluster

5: if z < v then
6: Create z groups
7: else
8: Create v groups
9: end if

10: for each i (i = 1 to z) do
11: Assign DBi to group (i % v)
12: end for
13: for each group do
14: Create agents ag(θt), (1 ≤ t ≤ v) // Each ag(θt) is an agent with θt
15: With the help of ag(θt), compute top-s from the DBs of the group
16: end for
17: Send top-s of θt, (1 ≤ t ≤ v) for each group to the sub-Coordinator and compute

top-s of θt in the cluster at the sub-coordinator
18: end

DB2 and goes to DB1. After the computation, the agent contains (IP, a1, a2) =
((−3, 6, 3), (−3, 8, 3), (−5, 8, 5)) in its priority queue and goes to the sub-coordinator
and reports the results.

During these processes, the sub-coordinator computes the local top-3 in group 2
simultaneously. After the agent-based computation in two groups, the sub-coordi-
nator merges the local top-3 priority queues for each normal vector. Figure 9 shows
the merge process of cluster 1.

Algorithm 1 shows the procedure for local top-s computation within a clus-
ter. First, it creates necessary groups and divides the databases among the groups
(lines 5–12). Next, it computes top-s values for each normal vector from the groups
(lines 13–16). Finally, it calculates local top-s for the normal vectors in the cluster
(line 17).

3.2.2 Global Merging

After the computation of local top-s for a normal vector in a cluster, the result is
sent to the coordinator for global merging. In global merging, local top-s results
from the clusters are merged to obtain global top-s results. For example, local
top-3 results corresponding to each normal vector from two clusters of Figure 6
are merged into global top-3 as shown in Figure 10. These merge processes are
carried out among the agents so that the coordinator does not see the individual

844 M. Sh. Arefin, Y. Morimoto

record values of the agents. The agent then returns the aggregated values to the
coordinator.

Fig. 10.

From cluster 1

 IP a
1
 a

2

1 -2 2 6 (o
12, 3

)

2 -3 3 5 (o
2, 1

)

3 -3 3 7 (o
9, 2

)

 Θ1= (-1, 0)

 IP a
1
 a

2

1 -3 6 3 (o
1, 1

)

2 -3 6 3
(o

18,

4)

3 -3 8 3 (o
7, 2

)

 Θ2= (0, -1)

Coordinator

 IP a
1
 a

2

1 -1 1 3 (o
21, 5

)

2 -1 1 5 (o
34, 7

)

3 -2 2 8 (o
29, 6

)

 Θ1= (-1, 0)

 IP a
1
 a

2

1 -1 4 1 (o
27, 6

)

2 -2 4 2 (o
39, 8

)

3 -2 7 2 (o
28, 6

)

 Θ2= (0, -1)

From cluster 2

 IP a
1
 a

2

1 -1 1 3 (o
21, 5

)

2 -1 1 5 (o
34, 7

)

3 -2 2 6 (o
12, 3

)

 Θ1= (-1, 0)

 IP a
1
 a

2

1 -1 4 1 (o
27, 6)

2 -2 4 2 (o
39, 8)

3 -2 7 2 (o
28, 6)

 Θ2= (0, -1)

P1 = {o12, o21, o34} = (4, 14) P2 = {o27, o28, o39} = (15, 5)

Top-3 in cluster 1

Top-3 in cluster 2

Figure 10. Merging process at the coordinator

From the example of Figure 5, we get that 3-set corresponding to normal vector
(−1, 0) is {o12, o21, o34}, whose coordinate values in the two-dimensional space are
(4, 14) and that the 3-set corresponding to normal vector (0,−1) is {o27, o28, o39}
whose coordinate values are (15, 5).

The global merging procedure is given in Algorithm 2. The algorithm first
computes global top-s from local top-s of the clusters (lines 4–6). Next, it calculates
aggregated values of attributes of top-s and returns the result to the coordinator
(lines 7–10).

Privacy Aware Parallel Computation of Skyline Sets 845

Algorithm 2 GlobalMerging

1: Input: Local top-s of θt, (1 ≤ t ≤ v) for each cluster
2: Output: Aggregated values correspond to each θt, (1 ≤ t ≤ v)
3: begin
4: for each t (t = 1 to v) do
5: Compute “global” top-s of θt from “local” top-s for each cluster
6: end for
7: for each θt, (1 ≤ t ≤ v) do
8: Compute the summation of values of each dimension of top-s objects
9: return the aggregated values to the coordinator

10: end for
11: end

3.2.3 Facet Expansion

After receiving all surrounding points of a facet, the coordinator computes the nor-
mal vector of the facet by using the surrounding points. In the example, P1 = (4, 14),
which is found by normal vector θ1 = (−1, 0) and P2 = (15, 5), which is found
by normal vector θ2 = (0,−1), are two surrounding points of the initial facet
(line segment between P1 and P2). The coordinator computes the normal vector
θ1,2 = (−9,−11) = (−(14−5), (4−15)) from the facet as shown in Figure 11. Then,
the normal vector θ1,2 = (−9,−11) is sent to the sub-coordinator of each cluster
and the agent-based parallel touching oracle finds P1,2 = (9, 6), which is composed
of {o21, o27, o39}. This point expands the initial facet (line segment between P1

and P2) into two facets, which are the line segment between P1 and P1,2 and the line
segment between P1,2 and P2 as shown in Figure 11.

Fig. 11.

• !

• !

• !

Coordinator
 Θ1 = (-1, 0)

 P1 = (4, 14)

 Θ1, 2 = (-9, -11)

 P1, 2 =
 (9, 6) Θ2 = (0, -1)

 P2 = (15, 5)

 Θ1, 2 = (-9, -11)

 P1, 2 = (9, 6)

Figure 11. Facet expansion

We recursively compute tangent points for each of the expanded facets. If we
find a new point outside the facet, we expand the facet further. We continually

846 M. Sh. Arefin, Y. Morimoto

adopt the recursive operation while we can find new tangent point outside the facet.
Finally, we can find all the points of convex skyline s-sets.

3.3 Compromisable Situations in Skyline Sets Queries

Let us assume that domains of the numerical attributes are specified. Let min i

and max i be the minimum and maximum values of an attribute ai, (i = 1, . . . , k).
Let value i is the aggregated value of ai in an s-set. We can say that a skyline
s-set is a compromised s-set if it contains at least one aggregated value valuei
such that we can find exact ai’s value of a member record of an s-set from value i.
Formally, we can say that a skyline s-set is compromised if (value i−s∗min i) < s or
(s ∗max i− value i) < s, in an attribute ai, (i = 1, . . . , k). For example, assume that
s = 3 and min1 = 1. If we have an s-set whose value1 is 4, one can find that three
member values in a1 are 1, 1, and 2. Note that this example satisfies the condition
(value i − s ∗min i) < s. Similarly, if s = 4, max 1 = 5, value1 = 17, we can find that
there is at least one record whose ai value is 5 in the s-set.

ID a1 a2 ID a1 a2 ID a1 a2

o1 5 5 o6 1 8 o11 8 2

o2 1 9 o7 8 1 o12 8 4

o3 6 4 o8 9 2 o13 4 6

o4 9 7 o9 4 5 o14 8 7

o5 1 8 o10 8 5 o15 2 5

DB1 DB2 DB3

Figure 12. Example of three databases having compromisable 3-sets

ID a1 a2
Q1 3 25

Q2 25 5

Q3 14 11

Q4 18 8

Q5 4 21

Table 3. Some skyline 3-sets in the databases of Figure 12

Now, consider an example of three databases as shown Figure 12. We assume
that domain of a1 and a2 are [1 . . . 9], i.e., min1 = min2 = 1 and max 1 = max 2 = 9.
Table 3 shows partial results of skyline sets queries with s = 3. According to
the definition of compromised s-sets, we can find that skyline 3-sets Q1 = (3, 25),
Q2 = (25, 5), and Q5 = (4, 21) are compromised 3-sets. However, Q3 and Q4 are not
compromised 3-sets.

We considered a perturbation method to prevent the compromised skyline s-sets.
The coordinator performs the detection of compromised s-sets and perturbation of

Privacy Aware Parallel Computation of Skyline Sets 847

Algorithm 3 Perturbation

1: Input: Skyline s-sets
2: Output: Perturbed s-sets
3: begin
4: for each skyline s-set do
5: for each attribute ai do
6: if ((value i − s ∗min i) < s) then
7: return value i = (s+ s ∗min i)
8: else if ((s ∗max i − value i) < s) then
9: return value i = (s ∗max i − s)

10: else
11: return value i
12: end if
13: end for
14: end for
15: end

them using Algorithm 3. Algorithm 3 first checks whether there is any compromised
value (line 6 and line 8) in the corresponding skyline s-set. If the algorithm detects
a compromised value, it replaces the value with a new value (line 7 and line 9).

Now, consider compromised 3-sets Q1, Q2, and Q5 of Table 3. From Q1, we
can see that it has a value 3 at attribute a1 that satisfies line 6 of Algorithm 3.
So, Algorithm 3 replaces the value 3 with a value (3 + 3 ∗ 1) = 6 (line 7). Like
this, Algorithm 3 replaces any value value i that satisfies the condition of line 6 with
a value equal to (s+ s ∗min i).

We can further observe that the value 25 of Q1 at attribute a2 satisfies line 8 of
Algorithm 3. So, the algorithm replaces the value 25 with a value (3 ∗ 9 − 3) = 24
(line 9). Algorithm 3 performs the replacement of any such value with a value equal
to (s ∗max is). After such replacements Q1 has values 6 and 24 in its attributes a1
and a2, respectively. Note that after replacement, from Q1 no one can infer a member
value exactly. Similarly, after perturbation, Q2 and Q5 are modified to (24, 6)
and (6, 21), respectively and no one can exactly identify a member value from Q2

or Q5.

If we consider the distributed database example of Figure 5, we can find that
skyline 3-sets corresponding to normal vectors θ1 = (−1, 0) and θ2 = (0,−1) are
P1 = (4, 14) and P2 = (15, 5), respectively. We can see that both P1 and P2 are
compromised 3-sets. So, Algorithm 3 modifies the values of P1 and P2 to (6, 14) and
(15, 6), respectively. For preserving individual privacy, the coordinator sends the
perturbed 3-sets (6, 14) and (15, 6) to the user instead of original 3-sets (4, 14) and
(15, 5). The coordinator uses the original values of skyline s-sets for facet expansion.
For example, the coordinator uses (4, 14) and (15, 5) for facet expansion instead of
perturbed 3-sets (6, 14) and (15, 6).

848 M. Sh. Arefin, Y. Morimoto

4 EXPERIMENTS

We have implemented the proposed parallel computation of the skyline sets queries
in a distributed database using Java Agent Development Framework. We have
performed the experiment in a simulation environment of fifty databases created
by ten PCs running on Windows OS and connected by an Ethernet switch. Each
of the PCs has an Intel R© Core2 Duo, 2 GHz CPU, and 3 GB main memory. We
evaluate our proposed privacy preserving skyline sets queries algorithm in distributed
environment on synthetic datasets. As benchmark databases, we use the databases
proposed by Borzsonyi et al. [1], in which there are three types of synthetic data
distributions: “correlated”, “anticorrelated”, and “independent”. We consider data
dimensionality between 2 to 5.

We first evaluate the effect of set size. Figure 13 shows the results of 2D, 3D,
4D, and 5D cases for datasets with 2 500 k data distributed among fifty databases.
Databases are distributed among five clusters and each database contains around
50 k data. We observe that with the increases of s, query time also increases. This
is because as s increases, the number of sets in convex skyline also increases.

Fig. 13. Time varying set size

500!

1000!

1500!

2000!

2500!

3000!

2! 4! 6! 8! 10!

Ti
m
e%
(m

s)
%

Sets%Size%
a)%Correlated%

2D! 3D!
4D! 5D!

500!

1000!

1500!

2000!

2500!

3000!

2! 4! 6! 8! 10!

Ti
m
e%
(m

s)
%

Sets%Size%
b)%An56correlated%

2D! 3D!
4D! 5D!

500!

1000!

1500!

2000!

2500!

3000!

2! 4! 6! 8! 10!

Ti
m
e%
(m

s)
%

Sets%Size%
c)%Independent%

2D! 3D!
4D! 5D!

Figure 13. Time varying set size

Fig. 14. Time varying data size

500!

1000!

1500!

2000!

2500!

Ti
m
e%
(m

s)
%

Data%Size%
a)%Correlated%

2D! 3D!
4D! 5D!

500!

1000!

1500!

2000!

2500!

500k! 1000k!1500k!2000k!2500k!

Ti
m
e%
(m

s)
%

Data%Size%
b)%An56correlated%

2D! 3D!
4D! 5D!

500!

1000!

1500!

2000!

2500!

500k! 1000k!1500k!2000k!2500k!

Ti
m
e%
(m

s)
%

Data%Size%
c)%Independent%

2D! 3D!
4D! 5D!

Figure 14. Time varying data size

Privacy Aware Parallel Computation of Skyline Sets 849

Fig. 15. Time varying number of databases

1000!

1200!

1400!

1600!

1800!

2000!

2200!

10! 20! 30! 40! 50!

Ti
m
e%
(m

s)
%

Number%of%Databases%
a)%An56correlated%

2D! 3D!
4D! 5D!

1000!

1200!

1400!

1600!

1800!

2000!

2200!

10! 20! 30! 40! 50!

Ti
m
e%
(m

s)
%

Number%of%Databases%%
c)%Independent%

2D! 3D!
4D! 5D!

1000!

1200!

1400!

1600!

1800!

2000!

2200!

10! 20! 30! 40! 50!

Ti
m
e%
(m

s)
%

Number%of%Databases%
a)%Correlated%

2D! 3D!
4D! 5D!

Figure 15. Time varying number of databases

In the next experiment, we evaluate the effect of data size. We used data with
cardinality 500 k, 1 000 k, 1 500 k, 2 000 k, and 2 500 k. Same as in the previous expe-
riment fifty databases are distributed among five clusters and each cluster contains
ten databases. In case of 500 k, each database contains at least 10 k data. Similarly,
for datasets 1 000 k, 1 500 k, 2 000 k, and 2 500 k each database has at least 20 k, 30 k,
40 k, and 50 k data, respectively. In this experiment, we set s to 10. Figure 14 shows
the results. In this experiment, it is observed that response time increases with the
increase of data set size. It is also observed that response time gradually increases
if the dimension increases.

Fig. 16. Comparison between parallel and pipeline computation

1000!

1500!

2000!

2500!

3000!

3500!

4000!

10! 20! 30! 40! 50!

Ti
m
e%
(m

s)
%

Number%of%Databases%
a)%Correlated%

2D!(parallel)!!
2D!(pipeline)!
5D!(parallel)!
5D!(pipeline)!

1000!

1500!

2000!

2500!

3000!

3500!

4000!

10! 20! 30! 40! 50!

Ti
m
e%
(m

s)
%

Number%of%Databases%
a)%An5corelated%

2D!(parallel)!!
2D!(pipeline)!
5D!(parallel)!
5D!(pipeline)!

1000!

1500!

2000!

2500!

3000!

3500!

4000!

10! 20! 30! 40! 50!

Ti
m
e%
(m

s)
%

Number%of%Databases%
a)%Independent%

2D!(parallel)!!
2D!(pipeline)!
5D!(parallel)!
5D!(pipeline)!

Figure 16. Comparison between parallel and pipeline computation

Next, we conduct the experiment to examine the effect of the number of DBs in
the computation process. In this experiment, we distribute 2500k data to m = 10,
20, 30, 40, 50 databases. Here, we fix the number of clusters to five. For 10, 20, 30,
40, and 50 databases, each cluster contains two, four, six, eight, and ten databases,
respectively. In this experiment, we set s to 4 and examine 2D, 3D, 4D, and 5D
cases. Figure 15 shows the result. We find that the computation time is almost
independent of the number of databases.

850 M. Sh. Arefin, Y. Morimoto

Finally, we conduct an experiment to examine the comparative performance of
our method and pipeline computation method, a method where later agents need
to wait for the completion of tasks by earlier agents which dramatically reduces the
computation performance if there are many databases involved in the computation
process. Same as in the previous experiment, we distribute 2 500 k data to m = 10,
20, 30, 40, 50 databases. In this experiment, we set s to 4 and examine 2D and 5D
cases. From the result of Figure 16, it is found that when the number of databases
is relatively small the computation time is almost the same in our method and
pipeline computation method. However, as the number of databases increases, the
pipeline execution method becomes slower while our proposed parallel computation
method shows almost similar performance. The waiting delay of the later agents
for the completion of tasks by the earlier agents is one reason of slowing down the
computation. Another reason is that in pipeline execution approach many databases
become idle due to the lack of available normal vectors.

5 RELATED WORKS

5.1 Skyline Query

Borzonyi et al. [1] first introduced the skyline operator into database systems and
proposed Block Nested Loop (BNL), Divide-and-Conquer, and B-tree based algo-
rithms. As a variant of BNL, Chomicki et al. [2] improved BNL algorithm with the
help of a Sort-Filter-Skyline (SFS) algorithm. In SFS, data needs to be pre-sorted
using a monotone scoring function, which can simplify the selection of skyline ob-
jects. Tan et al. [3] proposed two progressive algorithms: Bitmap and Index. The
bitmap algorithm represents points in bit vectors and performs bit-wise operations.
On the other hand, the index approach uses data transformation and B+-tree in-
dexing. Kossmann et al. [4] proposed a Nearest Neighbor (NN) method. It selects
skyline points by recursively invoking R*-tree based depth-first NN search over dif-
ferent data portions. Papadias et al. [5] proposed a Branch-and-Bound Skyline
(BBS) method based on the best-first nearest neighbor algorithm. Godfrey et al. [6]
provided a comprehensive analysis of previous skyline algorithms without indexing
supports and proposed a new hybrid method with improvement.

5.2 Skyline Query in Distributed Environment

In [7], Wu et al. first address the problem of parallelizing skyline queries over
a shared-nothing architecture. They provided two mechanisms: recursive region
partitioning and dynamic region encoding for the execution of skyline queries. In
their approach, a server starts the skyline computation on its data after receiving
the results of other servers based on the partial order. It causes a waiting delay of
the servers. In our work, such problem is localized within the cluster. Park et al. [8]
introduced two parallel skyline algorithms in multicore architectures. The first one

Privacy Aware Parallel Computation of Skyline Sets 851

is a parallel version of BBS algorithm. The second one is known as pskyline, which is
based on skeletal parallel programming [24]. Gao et al. [9] proposed parallel compu-
tation of skyline queries in multi-disk environment using parallel R-trees. The core
of their scheme is to visit more entries simultaneously and to enable effective pruning
strategies. Cui et al. [10] introduced skyline queries in large-scale distributed envi-
ronments without the assumption of any overlay structures and propose PaDSkyline
algorithm. PaDSkyline is an algorithm that significantly reduces the response time
by performing parallel processing over site groups produced by a partition algorithm.
Within each group, it locally optimizes the query processing. It also improves the
network transmission efficiency by performing early reduction of skyline candidates.
Vlachou et al. [11] proposed an angle-based space partitioning scheme for parallel
computation of skylines of data points using the hyperspherical coordinates of the
data points. In their approach, data points are almost equally spread among the
partitions which increases the average pruning power of data points.

Huang et al. [12] considered a setting with mobile devices communicating via
an ad-hoc network (MANETs) and studied skyline queries that involved spatial
constraints. In this approach, queries are forwarded through the whole MANET
without routing information. They proposed a filtering based data reduction tech-
nique to reduce the data transfer among devices. However, in our work, we assume
a wired large-scale distributed environment in which query results from each clus-
ter are sent to the coordinator for computing skyline sets. In [13], Vlachou et al.
studied the problem of subspace skyline processing in a super-peer network. In this
approach, peers hold their data in an autonomous manner and collectively process
skyline queries on subspaces. Hose et al. [14] introduced relaxed skylines in Peer
Data Management Systems (PDMS). They proposed a strategy for processing re-
laxed skylines in distributed environments using distributed data summaries. For
efficient computation of skyline, Wang et al. [15] use the z-curve method to map
the multidimensional data to one dimensional values. The one-dimensional values
are then assigned to peers connected in a tree overlay like BATON [25]. In this
approach, the problem of load balancing arises. In particular, in their approach the
peers near the origin of the axes need to process most of the queries. Li et al. [16]
use a space partitioning method that is based on an underlying semantic overlay.
Their approach shares the same drawbacks as [15]. Balke et al. [17] addressed sky-
line operation over web databases where different dimensions are stored in different
data sites. Their algorithm first retrieves values in every dimension from remote
data sites using sorted access in round-robin fashion on all dimensions. This con-
tinues until all dimension values of an object, called the terminating object, have
been retrieved. Then, all non-skyline objects are filtered from all those objects with
at least one dimension value retrieved. In [18], Fotiadou et al. proposed a bitmap
approach for efficient subspace skyline computation in a distributed setting. The
bitmap approach computes extended skylines that includes all points necessary for
computing the skyline at any subspace. They presented an algorithm for comput-
ing extended skylines using a bitmap representation along with a storage efficient
bucket-based variation of bitmap representation. Rocha et al. [19] introduced an ef-

852 M. Sh. Arefin, Y. Morimoto

ficient execution plan for distributed skyline query processing. In this paper, the
authors proposed SkyPlan, a mechanism for querying servers consecutively. Their
approach reduces the amount of transferred data and the number of queried servers.

Most research papers on parallel and distributed skyline query processing so far
have the problem of load balancing. As a result few peers need to carry almost
all the processing burden, while most other peers remain idle. Moreover, there is
no consideration about individual privacy. In contrast, we introduce a parallelizing
mechanism in which every server takes part in the computation simultaneously and
preserves individual privacy.

5.3 Privacy Preserving Skyline Query

Although privacy of individual is an important issue in any computation, till now
there is very little consideration about preserving individual privacy during skyline
computation. As for the privacy issue, authors in [20] introduce Range to Ranges
Skyline Query (R2R Skyline Query) and Point to Ranges Skyline Query (P2R Sky-
line Query) methods to deal with the privacy problems for Location-Based Services.
This work is designed only for Location-Based Services and cannot be applied for
general numerical databases.

Su et al. [21] considered top-k combinatorial skyline queries. Their top-k com-
binatorial skyline problem is to compute the skyline of all s-sets (s = 1, . . . , k). Our
skyline s-sets are not a subset of their top-k combinatorial skyline. Their results
can preserve privacy in a sense if they eliminate combinatorial skyline objects with
small cardinality. However, their efficient algorithm is not suitable for privacy-aware
distributed databases since it is an incremental algorithm and requires individual
record values to prune unnecessary search.

Our previous works [22, 23] can compute skyline sets. In [22], we considered
skyline sets computation from a single database. Our work in [23] considered a dis-
tributed database where computation was carried out in pipeline fashion. Here,
the computation process becomes comparatively slower if there are large number of
servers in skyline computation. Both of our previous works also have the limitation
that there is no protection mechanism against compromisable situations.

Our work in this paper takes enough protection mechanism against compro-
misable situations. Moreover, due to proper parallelism, the computation time of
the propose algorithm in this paper is almost independent of the number of servers
involved in skyline sets computation.

6 CONCLUSIONS

In privacy aware environment in which we are only allowed to disclose aggregated
values of objects, skyline sets queries can be a promising alternative for analyzing
and making important decisions. With the rapid growth of network infrastructure,
distributed databases are becoming popular. In privacy aware environment, each

Privacy Aware Parallel Computation of Skyline Sets 853

owner of distributed databases does not want to disclose the attribute values of
her/his databases to others. Therefore, we proposed an agent-based algorithm for
computing skyline sets queries in a parallel manner from distributed databases in
this paper.

The proposed algorithm can efficiently calculate skyline sets from the distributed
databases. Experimental results demonstrate that the proposed algorithm for sky-
line sets queries is scalable enough to handle large and high-dimensional datasets.
The performance of our proposed approach is almost independent of the number of
databases involved in skyline sets queries. We have also proposed a privacy pro-
tection mechanism in which we detect compromisable sets and perturb such sets so
that individual records values cannot be identified.

In this work, we assume that all the attributes of the databases are numerical. In
future, we hope to develop parallel algorithms for skyline sets queries from databases
with categorical attributes and from spatio-temporal databases.

Acknowledgement

This work was supported by KAKENHI (19500123). Mohammad Shamsul Arefin
was supported by the scholarship of MEXT Japan.

REFERENCES

[1] Borzonyi, S.—Kossmann, D.—Stocker, K.: The Skyline Operator. Proceed-
ings of the 17th International Conference on Data Engineering, Heidelberg, Germany,
April 2–6, 2001, pp. 421–430.

[2] Chomicki, J.—Godfrey, P.—Gryz, J.—Liang, D.: Skyline with Presorting.
Proceedings of the 19th International Conference on Data Engineering, Bangalore,
India, March 5–8, 2003, pp. 717–816.

[3] Tan, K. L.—Eng, P.K.—Ooi, B.C.: Efficient Progressive Skyline Computation.
Proceedings of 27th International Conference on Very Large Data Bases, Roma, Italy,
September 11–14, 2001, pp. 301–310.

[4] Kossmann, D.–Ramsak, F.—Rost, S.: Shooting Stars in the Sky: An Online
Algorithm for Skyline Queries. Proceedings of 28th International Conference on Very
Large Data Bases, Hong Kong, China, August 20–23, 2002, pp. 275–286.

[5] Papadias, D.—Tao, Y.—Fu, G.—Seeger, B.: An Optimal and Progressive Al-
gorithm for Skyline Queries. Proceedings of ACM SIGMOD Conference, San Diego,
California, June 9–12, 2003, pp. 467–478.

[6] Godfrey, P.—Shipley, R.— Gryz, J.: Maximal Vector Computation in Large
Data Sets. Proceedings of 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30–September 2, 2005, pp. 229–240.

[7] Wu, P.—Zhang, C.—Feng, Y.—Zhao, B.Y.—Agrawal, D.—Abbadi, A. E.:
Parallelizing Skyline Queries for Scalable Distribution. Proceedings of 10th In-

854 M. Sh. Arefin, Y. Morimoto

ternational Conference on Extending Database Technology, Munich, Germany,
March 26–31, 2006, pp. 112–130.

[8] Park, S.—Kim, T.—Park, J.—Kim, J.—Im, H.: Parallel Skyline Computation
on Multicore Architectures. Proceedings of the 25th International Conference on Data
Engineering, Shanghai, China, March 29–April 2, 2009, pp. 760–771.

[9] Gao, Y.—Chen, G.—Chen, L.—Chen, C.: Parallelizing Progressive Computa-
tion for Skyline Queries in Multi-Disk Environment. Proceedings of International
Conference of Database and Expert Systems Applications (DEXA), Krakow, Poland,
September 4–8, 2006, pp. 697–706.

[10] Cui, B.—Lu, H.,—Xu, Q.—Chen, L.—Dai, Y.—Zhou, Y.: Parallel Distributed
Processing of Constrained Skyline Queries by Filtering. Proceedings of the 24th In-
ternational Conference on Data Engineering, Cancun, Mexico, April 7–12, 2008,
pp. 546–555.

[11] Vlachou, A.—Doulkeridis, C.—Kotidis, Y.: Angle-Based Space Partitioning
for Efficient Parallel Skyline Computation. Proceedings of ACM SIGMOD Confer-
ence, Vancouver, Canada, June 9–12, 2008, pp. 227–238.

[12] Huang, Z.—Jensen, C. S.—Lu, H.—Ooi, B.C.: Skyline Queries Against Mobile
Lightweight Devices in MANETs. Proceedings of the 22nd International Conference
on Data Engineering, Atlanta, GA, USA, April 3–7, 2006, pp. 66, 2006.

[13] Vlachou, A.—Doulkeridis, C.—Kotidis, Y.—Vazirgiannis, M.: SKYPEER:
Efficient Subspace Skyline Computation over Distributed Data. Proceedings of the
23rd International Conference on Data Engineering, Istanbul, Turkey, April 15–20,
2007, pp. 416–425.

[14] Hose, K.—Lemke, C.—Sattler, K.U.: Processing Relaxed Skylines in PDMS
Using Distributed Data Summaries. Proceedings of International Conference on In-
formation and Knowledge Management, Arlington, Virginia, USA, November 6–11,
2006, pp. 425–434.

[15] Wang, S.,—Ooi, B.C.—Tung, A.K.—Xu, L.: Efficient Skyline Query Process-
ing on Peer-to-Peer Networks. Proceedings of the 23rd International Conference on
Data Engineering, Istanbul, Turkey, April 15–20, 2007, pp. 1126–1135.

[16] Li, H.—Tan, Q.—Lee, W.C.: Efficient Progressive Processing of Skyline Queries
in Peer-to-Peer Systems. Proceedings of 1st International Conference on Scale Infor-
mation Systems, New York, NY, USA, 2006, pp. 26.

[17] Balke, W.T.—Guntzer, U.—Zheng, J.X.: Efficient Distributed Skylining for
Web Information Systems. Proceedings of 9th International Conference on Extending
Database Technology, Heraklion, Crete, Greece, March 14–18, 2004, pp. 256–273.

[18] Fotiadou, K.—Pitoura, E.: BITPEER: Continuous Subspace Skyline Computa-
tion with Distributed Bitmap Indexes. Proceedings of International Workshop on
Data Management in Peer-to-Peer Systems, Nantes, France, March 25–30, 2008,
pp. 35–42.

[19] Rocha, J. B.—Vlachou, A.—Doulkeridis, C.—Norvag, K. I.: Efficient
Execution Plans for Distributed Skyline Query Processing. Proceedings of 14th

International Conference on Extending Database Technology, Uppsala, Sweden,
March 21–24, 2011, pp. 271–282.

Privacy Aware Parallel Computation of Skyline Sets 855

[20] Qiao, Z.—Gu, J.—Lin, X.—Chen, J.: Privacy-Preserving Skyline Queries in
LBS. Proceedings of International Conference on Machine Vision and Human-
Machine Interface, Kaifeng, China, April 24–25, 2010, pp. 499–504.

[21] Su, I. F.—Chung, Y.C.—Lee, C.: Top-k Combinatorial Skyline Queries. Pro-
ceedings of 15th Database Systems for Advanced Applications (DASFAA), Tsukuba,
Japan, April 1–4, 2010, pp. 79–93.

[22] Siddique, M.A.—Morimoto, Y.: Algorithm for Computing Convex Skyline Ob-
jectsets on Numerical Databases. IEICE Transaction on Information and Systems,
Vol. E93-D, 2010, No. 10, pp. 2709–2716.

[23] Morimoto, Y.—Arefin, M. S.—Siddique, M.A.: Agent-Based Anonymous Sky-
line Set Computation in Cloud Databases. International Journal of Computational
Science and Engineering, Vol. 7, 2012, No. 1, pp. 73–81.

[24] Rabhi, F.A.—Gorlatch, S.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer-Verlag, 2003.

[25] Jagadish, H.V.—Ooi, B.C.—Vu, Q.H.: BATON: A Balanced Tree Structure for
Peer-to-Peer Networks. Proceedings of 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30–September 2, 2005, pp. 661–672.

[26] Morimoto, Y.—Fukuda, T.—Matsuzawa, H.—Yoda, K.—Tokuyama, T.:
Algorithms for Mining Association Rules for Binary Segmentations of Huge Cate-
gorical Databases. Proceedings of 24th International Conference on Very Large Data
Bases, New York City, USA, August 24–27, 1998, pp. 380–391.

Mohamad Shamsul Arefin received his B. Sc. in Engineer-
ing in Computer Science and Engineering from Khulna Univer-
sity, Khulna, Bangladesh in 2002, and his M. Sc. in Engineering
in Computer Science and Engineering in 2008 from Bangladesh
University of Engineering and Technology (BUET), Bangladesh.
He received his Doctor of Engineering Degree from Hiroshima
University with support of the scholarship of MEXT, Japan in
2013. He is a member of Institution of Engineers, Bangladesh
(IEB) and is currently working as an Associate Professor in the
Department of Computer Science and Engineering, Chittagong

University of Engineering and Technology, Chittagong, Bangladesh. His research interest
includes privacy preserving data mining, cloud privacy, multilingual data management,
semantic web, and object oriented system development.

856 M. Sh. Arefin, Y. Morimoto

Yasuhiko Morimoto is an Associate Professor at Hiroshima
University. He received B. E., M. E., and Ph. D. from Hiroshima
University in 1989, 1991, and 2002, respectively. From 1991 to
2002, he had been with IBM Tokyo Research Laboratory where
he worked for data mining project and multimedia database
project. Since 2002, he has been with Hiroshima University. His
current research interests include data mining, machine learning,
geographic information system, and privacy preserving informa-
tion retrieval.

