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Abstract. In this paper, the use of continuous mathematical models of an air-
craft in an aircraft simulator is described. The models are of lower degree and less
time-consuming for calculation. Computer implementation of the models capable
to work faster and more accurately and efficiently is also described. The suggested
approach allows to achieve the required precision at accelerated simulation speed
using the continuous mathematical models of an aircraft. Frequency of the com-
putation of continuous mathematical models of an aircraft is higher, reaching up
to 200 times per second. The main focus of the paper is designing continuous
mathematical models of an aircraft, their simulation and visualization in aircraft
simulators. Current mathematical models of a control of objects motion are based
on aircraft aerodynamics. In our approach, these models have impact on the quality
and completeness of simulation process and are crucial for computer modeling and
visualization of equations of the continuous mathematical models of an aircraft. In
the paper, creating continuous mathematical models of an aircraft and the way of
visualization of simulation results are described in detail. The main aim of com-
puter simulation of continuous mathematical models of an aircraft is pilots training.
Aircraft simulator plays a key role in the process of pilots training; it enables pi-
lots to control the aircraft and its equipment. Standard computer with a graphic
processing unit for the visualization results from continuous mathematical models
of an aircraft can be utilized.

Keywords: Analytical design, mathematical model, modelling, simulation, 3-di-
mensional virtual reality
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1 INTRODUCTION

A large part of science deals with designing mathematical models of aircraft, their
simulation and visualization. Each of these parts (mathematical models of aircraft,
simulation and visualization) has developed separately. Our attempt is to unite the
three parts in flight simulator. Analytical design contains a number of mathematical
approaches based on mathematical models description. Many types of outdated
aircraft employ mainly control systems for control in a longitudinal direction. Due
to this fact, designing aircrafts with desired stability and controllability properties
gains ever more attention.

Extending the interval limiting the flight values, picking up the speed, maximum
height and other parameters have created conditions under which current and next
piloted objects need to have very precise, accurate semi-automated and automated
control systems. All flight stages are automated; sequence of operations is designed
and comprises sequence of programmes [17]. Control of algorithm parameters of
these systems needs designing their mathematical models, by means of which users
can learn about their properties for using them.

The paper consists of the following parts: The Introduction offers essential char-
acteristics of aircraft, aircraft control, flight limits, modelling of these characteristics,
etc. Section 2 discusses a complex design of mathematical models written in differ-
ential equations; these models are employed in an analytical process of the aircraft
design. The system of equations representing the flight conditions and coefficient
calculations is discussed in Section 3. The results obtained in the process of visuali-
zation prove the suitability of the methods for practice; they are given in Section 4.

Our attention is focused on mathematical models design, input analysis, and
creating mathematical model of control, computer implementation and visualization.
The paper is aimed at connecting the process of simulation and visualization of
mathematical models of aircraft motion running in real time.

1.1 Mathematical Models of Aircraft

Simulators provide users with real flight conditions and training and learning experi-
ence. Most software developers have relied on the advances in hardware to increase
the speed of applications of mathematical models under the hood. Properties of
piloted aircrafts, as objects to be controlled automatically, are complex. This com-
plexity is due to unstable characteristics, aero elasticity impact, fuel density and
some other parameters. The latest facts on theory of control implemented by means
of computer technology, employing mathematical and combined (mathematical and
physical) modelling are needed to define them. In the process of pilots training
simulators are employed. Model designing substantially consists of structural analy-
sis of aircrafts, board control system and also frequency characteristics. Simulators
belong to the group of combined simulation abbreviated as Hardware in the Loop
(HL). This type of simulation is important as in the loop with a mathematical model
there is a part of real equipment connected to a simulation surrounding.
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In simulators the real equipment includes an aircraft pilot’s cockpit, loading
mechanism, real control lever etc. While intervening pilots control the object –
an aircraft; mathematical models interact with real equipment that responds to the
pilot’s interventions and in line with it they change mathematical models inputs;
data on the control panel are observed by the pilot. In analytical designing of
a mathematical model the criterion for control is functional of coordinates xi, i =
1, . . . , n of the object and necessary control values uj, j = 1, . . . , n. Applying the
analytical design methods is based on differential equations of the type [9]:

ẋi + fi(x1, . . . , xn, t) =
n∑
j=1

ϕij(x1, . . . , xn, t)uj, (i = 1, 2, . . . , n), (1)

defining the functional,

I = VE[x1(t2), . . . , xn(t2)] +

∫ t2

t1

Q(x1, . . . , xn, t) + 1/q

∫ t2

t1

n∑
j=1

(
uj
kj

)q
dt, (2)

where fi is the function describing the object, ϕij is the object characteristics. The
searched minimum of the functional (2), VE is the given function of the phase coor-
dinates, Q is the function of changing phase coordinates of the object, kj represents
the function of given influencing values in the final time t = t2, q > 1 is a defined
number where zq is an even function z. Control algorithm parameters are defined
by items uj(x1, . . . , xn, t) and minimize the functional (2) while controlling is opti-
mal. Finding optimal control parameters results in solving non-linear equations with
variables of time. In this case, the expression (1/p+ 1/q) = 1 holds for parameters.

Today there is no solution to non-linear objects of the quadratic equation of
optimal control parameters. For linear objects with quadratic functional (VE, Q
quadratic forms, p = q = 2) the solution aims at integration of ordinary differential
equations of Riccati type. The functional of the object given by (1) can be written
as follows:

I = VE[x1(t2), . . . , xn(t2)] +

∫ t2

t1

Q(x1, . . . , xn, t) +
1

q

∫ t2

t1

n∑
j=1

(
uj
kj

)q
dt

+
1

p

∫ t2

t1

m∑
j=1

(
kj

n∑
k=1

ϕjk
∂V

∂xk

)p

dt, (3)

where V represents the solution of the linear control in variables of time

∂V

∂t
−

n∑
i=1

fi
∂V

∂xk
= −Q, (4)

where the limiting condition is represented by Vt=t2 = VE. The optimal control
minimizes the functional (3)–(4) and referring to [9]:
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uj = −kpj

(
n∑
k=1

ϕjk
∂V

∂xk

)p−1

. (5)

Linearization of Equation (4) for the function V makes the task of finding the
equation root simpler and enables to show possible solving options that are identical
with those of solving linear ones and also of some general groups of large non-linear
objects. In this functional there are only VE and Q functions. The last item below
the functional integral (2) as a function of phase coordinates is defined by means of
solving Equation (4). Finding the coefficients of the given minimized functional is
considered to be an attempt to determine the link between the coefficient functionals
and corresponding characteristic values, e.g. roots of an equation characteristic for
a closed circuit.

Mathematical model is formed to define a given group of properties of real ob-
ject of control. In this case the same flying device, e.g. the object of control, can
be defined by means of different mathematical models depending on the purpose
of searching and the flight phase [2]. Furthermore, the mathematical models may
depend on conditions like intervals of coordinates changes, i.e. what interval param-
eters are needed for frequencies of changes and actuating signals under the analyzed
conditions. This is the reason why simple or simplified mathematical models defining
the control object are used.

1.2 Physical Basis of Mathematical Models

One of the physical basis of mathematical models is mass and its inertia defined by
Newton. According to Newton’s Law III, to every action there is always an equal
opposite reaction, or the mutual action of two bodies upon each other is always
directed to opposite parts. Another important term used in physical basis of math-
ematical models is moment of momentum in a system of mass points that describes
rotary inertia of the system in motion about an axis [3]. The moment of momentum
of a collection of particles is the sum of all moments of momentum of all mass points
within a system upon the origin point. These well-known laws are utilized in the
construction of mathematical models. Many tasks of controlled and uncontrolled
flights can be done on the basis of linear motion model.

The basic system of equations has the form [1]:

ẋı + fı(x1, . . . , xn, u1, . . . , um, ξ1, . . . , ξγ) = 0, (i = 1, 2, . . . , p) (6)

where x1, . . . , xn are object coordinates, u1, . . . , um are elements of control, ξ1, . . . , ξγ
are failure functions. In a vector form, Equation (6) has the form:

ẋ + f(x,u, ξ) = 0,
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where x, u, ξ are vectors and f is a vector function. Initial conditions are

x0 + x0(t), u0 + u0(t), (7)

where ξ = 0. Forced motion can have the form of [7]:

x = x0 + ∆(x), u = u0 + ∆(u), (8)

satisfying Equation (7) and ξ 6= 0. In this case:

∆ẋ+ f(x0 + ∆(x), u0 + ∆(u), ξ)− f(x0, u0, 0) = 0. (9)

Then the final equation has the form:

∆ẋ+

(
∂f

∂x

)
0

∆(x) +

(
∂f

∂u

)
0

∆(u) +

(
∂f

∂ξ

)
0

∆(ξ) = 0. (10)

Simulation of linear mathematical models is simpler than that of nonlinear math-
ematical models, stochastic mathematical models or models defined by partial dif-
ferential equations, etc. Simulation and synchronization of mathematical models on
computers is difficult and complicated from the point of view of computer power.
Simplification of mathematical models impacts software designers, enables to create
simpler interface and generate sufficiently accurate results. Many tasks of controlled
and uncontrolled flights can be done on the basis of linear motion model. Precision
is the difference between results of transient response of the nonlinear mathemati-
cal models if compared to linear mathematical models and represents only several
per cent. The steady-states in linear and non-linear models are represented only by
a small percentage, few tenth of per cent. From the point of view of human precision
this percentage can be neglected.

In a linear model of longitudinal motion, the following items seem to be the
weakest couples for flight height: aHx ∆H, aHy ∆H, aHmz∆H. The equation of longitu-
dinal motion model has the form [9]:

∆V̇ + aVx ∆V + aαx∆α + aθx∆θ = aδMx ∆δM

∆θ + aVy ∆V + aαy∆α + aθy∆θ = aδVy ∆δV

∆ω̇z + aVmz∆V + aαmz∆α + aα̇mz∆θ̇ + aωzmz∆ωz = aδVmz∆δV

∆υ̇ = ∆ωz,

∆υ = ∆θ + ∆α
(11)
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In a stationary case under initial values of reference Laplace’s transformation [1, 17],
the equation system (11) has the form:(

s+ aVx
)

∆V (s) + aαx∆α(s) + aθx∆θ(s) = aδMx ∆δM(s)

aVy ∆V (s) + aαy∆α(s) + (s+ aθy)∆θ(s) = aδVy ∆δV (s)

aVmz∆V (s) + (aαmz + aα̇mz(s))∆α + (s2 + aωzmz(s))∆$z = aδVmz∆δV (s)

∆α(s) + ∆θ(s)−∆υ(s) = 0. (12)

The characteristic equation corresponding with Equations (11) and (12) is of the
fourth order:

∆(s) =

∣∣∣∣∣∣∣∣∣∣

(
s+ aVx

)
aαx aθx 0

aVy aαy
(
s+ aθy

)
0

aVmz
(
aα̇mz(s) + aαmz

)
0

(
aα̇mz(s) + aαmz

)
0 1 1 −1

∣∣∣∣∣∣∣∣∣∣
. (13)

We do not need to express the ratio of roots of the characteristic equation, because
this ratio does not represent stability of the systems. The system stability is defined
by the magnitude and phase by vector in the s-plane, drawn from zeros and poles,
special real part of the roots (Root-locus technique). Stability of linear systems
is defined by compliance with the algebraic or frequency stability criterions. The
stability characteristics of a linear time-invariant system is determined from the
system’s characteristic equation. It will be better to modify this part in the following
way.

When the equation equals zero, then we get two pairs of complex compound
roots. Large roots (negative real parts) depend on coefficients a3, a2 defining the
oscillation of motion in longitudinal direction. The second pair – small roots – are
defined mainly by a1, a0 values. Coefficients a3, a2, a1, and a0 are denoted by the
following formulas:

a3 = aωzmz − aα̇mz + aVx + aθy − aαy ,

a2 = aαmz −
(
aθy ∗ aωzmz

)
+
(
aVx ∗ aωzmz

)
+
(
aVy ∗ aωzmz

)
+
(
aVx ∗ aθy

)
+
(
aVy ∗ aαx

)
+
(
aVy ∗ aθx

)
−
(
aVx ∗ aαy

)
,

a1 = aαmz ∗
[(
aVx ∗ aαy

)
+
(
aVy ∗ aθy

)
−
(
aVx ∗ aθy

)
−
(
aVy ∗ aαx

)]
+
(
aVx ∗ aθy ∗ aα

′

mz

)
−
(
aαx ∗ aVmz

)
−
(
aVy ∗ aθx ∗ aα

′

mz

)
+
(
aVx ∗ aαmz

)
+
(
aθy ∗ aαmz

)
,

a0 =
(
aαy ∗ aθx ∗ aVmz

)
+
(
aVx ∗ aαy ∗ aαmz

)
−
(
aαx ∗ aθy ∗ aVmz

)
−
(
aVy ∗ aθx ∗ aαmz

)
. (14)
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Strong couple coefficients are represented by aαy , aαmz, a
ωz
mz. These coefficients define

periodic vibrations of a short period and define longitudinal motion. The other
couple of roots defines periodic vibrations of long periods and defines longitudinal
aircraft motion.

2 MATHEMATICAL MODEL OF CONTROL

Complexity of mathematical models of objects of control and of the tasks defined
by them needs the systems design automation. In design, the general mathematical
models defined by systems of differential equations are difficult to employ in practice.
These models are employed in the analytical process of aircraft designing. Therefore
linear models of objects are of importance, as the parameters of equations define the
selected properties of objects. Linear models are used in the process of analysing
general processes which are determined by practical requirements and algorithms of
control algorithm parameters [5].

2.1 Mathematical Model in Longitudinal Motion

Figure 1. The relation between force components and angles of an aircraft

Equations of longitudinal aircraft motion comprise: an equation of forces projec-
tion into tangent and normal to the trajectory and an equation of moments directed
towards cross axis in an aircraft motion; they have the form:

mV̇ = P cosα−X −mg sin θ,

mV θ̇ = Y + P sinα−mg cos θ,

Izω̇z = Mz1,

(15)

where θ = υ−α is the angle of trajectory, P is thrust of engines, X is aircraft drag,
Y is lift (Figure 1). In standard conditions of atmosphere:
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P = P (V,H, δM),

X = X(V, α,H),

Y = Y (V, α,H),

Mz1 = Mz1(α, ωz, α̇, V,H, δV ).

(16)

The dependence of engines thrust P on the position of the throttle lever δM in the
equation of projections forces into normal towards the trajectory is neglected due
to its little influence. To get the linear model a standard methodology is employed.
We define equilibrium of general motion:

V = V0, H = H0, δV = δ0
V , δM = δ0

M , α = α0, θ = θ0. (17)

In line with Equation (12) we get [9]:

∆V̇ + aVx ∆V + aαx∆α + aθx∆θ + aHx ∆H = aδMx ∆δM

∆θ + aVy ∆V + aαy∆α + aθy∆θ + aHy ∆H = aδVy ∆δV

∆ω̇z + aVmz∆V + aαmz∆α + aα̇mz∆θ̇ + aωzmz∆ωz + aHmz∆H = aδVmz∆δV

∆Ḣ − sin(θ0)∆V − cos(θ0)V∆V = 0

∆υ̇ = ∆ωz

∆υ = ∆θ + ∆α. (18)

Four transfer functions define the outcome values of the model: ∆V is the speed
change, ∆α is the angle of attack displacement, ∆θ is the angle of trajectory dis-
placement, ∆υ is the angle of pitch displacement. In them, there are two inputs –
control values: ∆δM stands for throttle lever displacement of the engine, ∆δV is the
elevator displacement and they have the form [9]:

∆V (s) = −GδM/V (s)∆δM(s)−GδV /V (s)∆δV (s)

∆α(s) = −GδM/α(s)∆δM(s)−GδV /α(s)∆δV (s)

∆θ(s) = −GδM/θ(s)∆δM(s)−GδV /θ(s)∆δV (s)

∆υ(s) = −GδM/υ(s)∆δM(s)−GδV /υ(s)∆δV (s)

(19)
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GδM/V (s) = aδMx
∆11

∆
,

GδM/α(s) = aδMx
∆12

∆
,

GδM/θ(s) = aδMx
∆13

∆
,

GδM/υ(s) = aδMx
∆14

∆
,

GδM/V (s) = aδVy
∆21

∆
− aδVmz ∆31

∆
,

GδM/α(s) = aδVy
∆22

∆
− aδVmz ∆32

∆
,

(20)

GδV /θ(s) = aδVy
∆23

∆
− aδVmz ∆33

∆
,

GδM/υ(s) = aδVy
∆24

∆
− aδVmz ∆34

∆
,

(21)

where ∆ij is the sub-determinant of the ith column and the jth row. In our examples
the second equation of the system (19) is employed to describe the change of the
attack angle ∆α and also the equations describing displacement of the attack angle
depending on the displacement of throttle engine lever GδM/α(s) or the displacement
of the elevator GδV /α(s) are employed.

2.2 Calculation of Parameters of Mathematical Models
of Aircraft in Defined Surrounding

The given real data define a hypothetical ultrasound aircraft for which aerodynamic
coefficients for its properties are calculated. The considered flight of the aircraft
is steady and without any random interferences (wind, storm, or other outer inter-
ferences). Based on mathematical models some other decisions on control [13] are
done. Coefficients ci and ej represent aerodynamic parameters.

These parameters have numeric values in every flight phase; some parameters are
important in the “take off” phase, other parameters are important in the “landing”
phase, other parameters are important in the “climb” phase, etc. To illustrate
this some parameters dominant in certain flight phases are stable and non-variable.
This is the step for linearization of the defined mathematical models. Coefficient
c1 presents the dependence of the aircraft speed on the coordinate x, coefficient c2

presents the dependence of the aircraft angle of attack on the coordinate x, coefficient
c3 presents the dependence of the aircraft trajectory angle on the coordinate x
etc. [12].

To calculate the coefficients c1 = aVx , c1 = aαx , c3 = aθx, c4 = aVy , . . ., e1 = aδMx ,

e2 = aδVy , . . . in the flight phases the following data are given:

• mass m = 16 000 kg;

• thrust of engines P = 35 000 N;

• velocity M = 0.6; V0 = a ∗M = 330 ∗ 0.6 = 198 m.s−1;

• flight height H = 900 m;
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• wings area S = 34.5 m2;

• wingspan l = 14.3 m;

• standard mean chord bA of the wing = 2.1 m;

• air density ρ (at flight height H = 900 m) = 1.2 kg.m−3;

• moment of inertia around the z axis JZZ ≈ 1.6 · 104 N;

• in horizontal balanced flight deviation moment JXZ and also deviation moment
JY Z and JXY are not taken into consideration;

• longitudinal aerodynamic moment dependence angle speed ωz around axis z
mωz
z = −0.021 s−1;

• longitudinal aerodynamic moment dependence angle of attack α around axis z
mα
z = −0.054 s−1;

• longitudinal aerodynamic moment dependence control stick of elevator around
axis z mδV

z = −0.0038 s−1;

• aerodynamic drag coefficient cx = 0.032.

Coefficients define the aircraft position and are calculated in line with the fol-
lowing formula:

c1 = −m
ωz
z

Jzz

ρV

2
Sb2

A ≈ 0.105 [s−1]. (22)

The coefficient c2 can be calculated as follows:

c2 = −m
α
z

Jzz

ρV 2

2
SbA ≈ 0.202 [s−2], (23)

and also the coefficient c3 is calculated:

c3 = −m
δV
z

Jzz

ρV 2

2
SbA ≈ 0.301 [s−2]. (24)

The coefficient c4:

c4 =
cyα + cx
m

ρV

2
S ≈ 0.005 [s−1]. (25)

The coefficient c5 is calculated using the formula:

c5 = −m
α̇
z

Jzz

ρV

2
SbA ≈ 0.0112 [s−1]. (26)

According to similar dependencies other coefficients c7 − c9 can be calculated. The
coefficient e1 is calculated by means of the formula:

e1 = −ρSV
m

cx

{
1 +

cMy M

2cx
− P V

ρV Scx

}
≈ −0.097 [s−1]. (27)
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The coefficient e2 is calculated according to the formula:

e2 = −57.3ρS

m
cy

{
1 +

cMy M

2cy

}
≈ 0.014 [s−1]. (28)

The coefficient e3 can be calculated in line with the following equation:

e3 = −57.3

Jzz

[
mM
z

a
+ 2

(cx + cY RP sin(θ0)yR
V bA

]
ρV 2

2
SbA − P V

yR
≈ −0.015. (29)

The parameters calculated by means of the above Equations (22)–(29) are as follows:
c1 ≈ 0.105; c2 ≈ 0.202; c3 ≈ 0.301; c4 ≈ 0.005; c5 ≈ 0.0112; c6 ≈ 3.500; c7 ≈ 0.171;
c8 ≈ −0.314; c9 ≈ 0.077; e1 ≈ −0.097; e2 ≈ 0.014; e3 ≈ −0.015. Other given values
are: T ≈ 0.1; kSM ≈ 0.1. In other flight phases similar calculations are done.

2.3 Controlling Input

Impact of control stick and throttle displacement on the aircraft longitudinal motion
(see Figure 2) are discussed below.

Control 
Stick 

Mathematical Model for 
Stick Contrlol  

Value 
Adjusting 

Displacement  
of the Angle 

of attack  

Throttle Control 
Of Engine 

Mathematical Model for 
Throttle Control 

Value 
Adjusting 

Displacement  
of the Angle 

of attack 

Angle 
of attack 

Figure 2. Mathematical model control of the aircraft angle of attack

The control value is represented by displacement of the control stick and dis-
placement of the throttle. The values are adjusted according to the required ones
and are forwarded to the input of the mathematical model of the aircraft attack
angle control. Based on the realized analysis the mathematical model simulates dis-
placement of the aircraft angle of attack ∆α depending on control stick and throttle
displacement.

For the angle of attack displacement next equation is valid. The equation defines
the change in fuel supply or displacement of the angle of the aircraft elevator:

∆α(s) = −GδM/α(s)∆δM(s)−GδV /α(s)∆δV (s), (30)

where GδM/α(s) stands for mathematical model – transfer function for fuel supply,
∆δM(s) is the input function for fuel supply in Laplace transformation, GδV /α(s) is
mathematical model – transfer function for the aircraft elevator, ∆δV (s) stands for
the input function of the aircraft elevator in Laplace transformation.
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When we induce the computed specifications from Section 2.2 for aerodynamic
derivations into (12) we get the characteristic equation, that is used as numerator
in the mathematical model. According to (19) we compute ∆12 for the transfer
function, that means omitting the 1st column and the 2nd row. Making this change
we define the fuel supply expression, in radians [9]:

GδM/α(s) = 5
0.002s2 − 0.252s− 0.1

s4 + 1.134s3 + 62.798s2 + 28.659s+ 4.093
. (31)

From control theory the different ways of the transfer function notation of the sys-
tem in computer are known. To simulate the values of the mathematical models
the transfer function in the form of polynomial is used. The numerator and the
denominator are polynomials of variable s. For pole-zero of transfer function we
induce the computed specifications from Section 2.2 for aerodynamic derivations;
they are in the form

GδM/α(s) = −5
(s+ 0.3956)(s− 126.3956)

[(s+ 0.2292)2 + 0.11422] [(s+ 0.3378)2 + 7.89362]
.

According to (19) we compute ∆22 or ∆32 for a transfer function, that means omit-
ting the 2nd column and the 2nd row or omitting the 3rd column and the 2nd row.
After this arrangement we define the expression for the aircraft elevator mathema-
tical model, in radians [9]:

GδV /α(s)

=
(−0.11(−s3 + 0.866s2 + 0.012s− 2.453))− (0.42(−s2 − 0.414s− 0.025))

s4 + 1.134s3 + 62.798s2 + 28.659s+ 4.093
.

GδV /α(s) = −5
(s+ 2.7007) [(s+ 0.1156)2 + 0.96462]

[(s+ 0.2292)2 + 0.11422] [(s+ 0.3378)2 + 7.89362]
. (32)

In the aircraft mathematical model that expresses the dependence on the fuel sup-
ply – numerator of Equation (31) has zeros: −0.3956 and 126.3956. The poles of
this mathematical model can be seen in the denominator in (31) and they express:
1st pair of complex conjugated poles −0.2292± j0.1142 and the 2nd pair of complex
conjugated poles −0.3378 ± j7.8936. Comparing zeros and poles results in steady
state, that is defined by gain in the equation and it is 0.0244. This value must be
multiplied by the coefficient aδMx = −5, see systems of Equations (20) and (21); the
steady state value is 0.122. The time response to the unit-step function of input of
transfer function means fuel supply to the aircraft (see Figure 3).

In the aircraft mathematical model that expresses the dependence on the fuel
supply – numerator of Equation (32) has zeros: −2.7007 and the pair of complex
conjugated zeros −0.1156± j0.9646. The poles of this mathematical model can be
seen in the denominator in Equation (32); namely 1st pair of complex conjugated
poles −0.2292± j0.1142 and 2nd pair of complex conjugated poles 0.3378± j7.8936.
Comparing zeros and poles results in the steady state, that is defined by gain in
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Figure 3. Time response of the transfer function for unit-step function of elevator of the
aircraft angle of attack

the equation and it is 0.0685. This value must be multiplied by the coefficient
aδVy = −0.11 or aδVmz = −0.42, see Equations (20) and (21); the steady state value
is 0.0685. The time response to the unit-step function of input of transfer function
means angle of elevator to the aircraft (see Figure 4).

The oscillations are caused by two pairs of complex conjugated poles of the
characteristic equation, in accordance with Equation (13). Aircrafts are designed
to have these properties (oscillations) and due to a control circuit, tailplanes, auto-
mated devices, etc. the aircraft loses the above mentioned properties.

3 THE MATHEMATICAL MODEL SIMULATION
IN COMPUTER SYSTEMS

The system of equations can be represented with reference to initial or limiting
restrictions in the given flight phase, for which the aircraft motion is calculated [14].
Current development in computer technology with the available calculation output
meets the requirements for outputs to simulate mathematical models of control (see
Figure 3). The development is aided by object-oriented programming [11].
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Figure 4. Time response of the transfer function for unit-step function of fuel supply of
the aircraft angle of attack

3.1 Simulation

Simulation attempts to get the information on properties of a real system by means
of an experiment, the so-called simulation model [18]. Computer simulation is em-
ployed usefully as enlarging or replacing model systems for which a simple form of
analytical solution is impossible.

Simulation is employed in the process of examining dynamic properties of simu-
lators where in the simulation programme time factor in the form of simulation time
is employed explicitly and the conditions of the model are changed. There are two
different methods of dealing with simulated time that are reflected in the employed
programming technology [17]. The principle of this programme is partially analogical
with the activity of a camera as the conditions of the system in equidistant moments
are registered. This is the main reason why the method of variable time step has
been employed lately. If mathematical models of control simulated in simulators are
supposed to train pilots to react properly and in time, data in real time must be
available. A standard time step is employed in these situations.

The key factors indicating the quality of simulators are represented by precise
elements of mathematical models of control and modularity of designed applications
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on computer architecture. Some mathematical models can run independently on
separate computers to increase the computation performance of the system [4, 6].

Mathematical models of control are programmed in C++ programming lan-
guage. The basic class of languages CMmlBase is derived from the language class
CGssBaseObj ; the given class CMmlBase is a standard class and includes standard
methods and data on the aircraft. In the constructor of this class initiation data
are loaded by means of calling the method MmlInit. The basic class CMmmModel
is based on the class CGssBaseObj. The class CMmmModel is a standard class and
includes virtual methods and data on the engine. In the constructor of the class,
initial data on parameters of aircraft turbocompressor engine of the set Mmmdata
are loaded by means of calling the method of Motorinic.

INSTRUCTOR’S 
COMMANDS 

 

VIZUALIZATION 
GENERATOR 

 
PILOT’S 
CONTROL 

MATHEMATICAL 
MODEL OF 
AIRCRAFT 
CONTROL 

 

VIZUALIZATION  
PROCESS 
3D 
 

PROJECTION 
SYSTEM 

Figure 5. Principle of pilots activity and its visualization

To enable these programme codes to start in the computer in a sequence, mathe-
matical models of control must be transformed at the level of the resource code. The
needed mathematical models of control such as impact of the control stick on the
speed in the longitudinal direction, impact of the control stick on the angle of attack
of the aircraft, the impact of engine throttle lever on the speed in the longitudinal
direction must be ranked in a stable logic sequence. The sequence is constant and
in this way the resource code is compiled and calculations of created mathematical
models are done in this sequence.

3.2 Angle of Attack Displacement Depending on the Control Stick
Position

According to Equation (30) the first member represents transfer function (aircraft
mathematical model) of displacement angle of attack with dependence on the fuel
supply with “−” sign. In pole-zero format of transfer function we induce the follow-
ing form for transfer function of the computed attack angle of displacement from
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the fuel supply in radians [9]:

GδM/α(s) = 5
0.002s2 − 0.252s− 0.1

s4 + 1.134s3 + 62.798s2 + 28.659s+ 4.093
. (33)

If displacement of the attack angle is taken into account in Equation (35) this is
conditioned by the speed of change in fuel supply (unit speed). In Laplace Trans-
formation ∆δM(s) = A/s2, where A ∈ (0; 1), it is necessary to calculate the value of
GδM/α(s), which represents the mathematical model. If the input function is more
complicated, then it is necessary to modify the mathematical model of control and
to carry out the process of simulation accordingly.

3.3 Displacement of Angle of Attack Depending on the Throttle Position

According to Equation (30), the second member represents transfer function (aircraft
mathematical model) of displacement angle of attack with dependence on the angle
of elevator with “-” sign. In pole-zero format of transfer function we define the
following expression for transfer function of the computed displacement angle of
attack from the position of elevator in radians [9]:

GδV /α(s) =
−0.11(−s3 + 0.87s2 + 0.012s− 2.45)− 0.42(−s2 − 0.414s− 0.025)

s4 + 1.134s3 + 62.798s2 + 28.659s+ 4.093
.

(34)
If we consider displacing the angle of attack in Equation (30) depending on the
speed of displacement of the elevator (unit speed). In Laplace Transformation
δV (s) = A/s2, where A ∈ (0; 1), so it is necessary to calculate GδV /α(s), which
is the mathematical model. If the input function is more complicated, then the
mathematical model of control must be modified accordingly and then simulation
must be carried out. When the elevator position is assigned as shown in Figure 6,
then it is necessary to analyze the displacement as follows.
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Figure 6. Elevator position in mathematical model of control



1184 P. Kvasnica

In time t1 positive displacement of the elevator position is done by the value A1.
In time t2 the elevator is displaced by the value A2 in a negative way. Then in
time t3 the positive elevator displacement is done by the value A3 and in time t4 the
elevator is displaced by the value A4 in a negative way. According to (30) we have
the position change of the elevator (δV (s)); the positive value A1 = 0.3 is taken into
account in time t1 on the input of the mathematical model of control; it is simulated
and has the form:

∆α(s) = −GδV /α(s)∆δV (s) = −GδV /α(s)
A1

s
= −GδV /α(s)

0.3

s
. (35)

In Equations (36), (37) and (38) only the shape input function for aircraft elevator
position is modified. In line with Equation (30) negative value A2 = −0.2 is consid-
ered from time t2, mathematical model of control is simulated and has the following
form:

∆α(s) = −GδV /α(s)∆δV (s) = −GδV /α(s)
A2

s
= −GδV /α(s)

−0.2

s
. (36)

During time t3 positive elevator displacement is done by A3 = 0.5; since time t3
simulated mathematical model of control has the form:

∆α(s) = −GδV /α(s)∆δV (s) = −GδV /α(s)
A3

s
= −GδV /α(s)

0.5

s
. (37)

Then in t4 negative elevator displacement is done by A4 = −0.6; since time t4
mathematical model of control is simulated and has the form:

∆α(s) = −GδV /α(s)∆δV (s) = −GδV /α(s)
A4

s
= −GδV /α(s)

−0.6

s
. (38)

4 VISUALIZATION OF MATHEMATICAL MODEL OF CONTROL

The process of visualization is conditioned by the type of computer technology and
graphic cards, monitors and application software employed. The computer image is
artificial and is based on data stored in the memory and external memory device.
These data can be gained from a real surrounding or are interpreted mostly by
imaginative data and in this way they create artificial surrounding. In case of
3-dimensional data projection, an artificial 3-dimensional scene is created. In this
setting it is important to state what is presented and how it is presented.

4.1 3-dimensional System and Field of View

The MMI (Man Machine Interface) represents a virtual level of information exchange
between the operator and the machine; aircraft [15] plays a key role in simulator
systems. In the process of designing information exchange a very important task
must be fulfilled as the simulator is speedy, punctual, effective and not adjustable
in its activity. On the other hand the operator is slow, prone to making mistakes
and non-effective from the point of view of performance.
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To simulate optical, sound, motion and touch equipments controlled by computer
in interaction between the instructor and the artificial surrounding, it is important to
create a surrounding that is identical with real aircraft surrounding. In this process
methods of modelling and simulation along with the virtual reality (VR) systems
are employed [16]. To generate virtual flight surroundings in a 3-dimensional scene,
it is important to develop the necessary skills needed to run the training systems.

Visualization needs creating 3-dimensional models of objects employed in si-
mulators. In this process the object is represented by space (airports, buildings,
mountains) where an aircraft with its moving parts and all the equipment moves.
Another task to be fulfilled is the motion control of 3-dimensional objects in the scene
formed by the data of mathematical models of motion control of 6-degree freedom.
The objects are actuated by the throughput data of a mathematical model.

Figure 7. Hemispherical Projection System: 3D simulator visualization [VRM, 2000]

4.2 Stationary Aircraft Cockpit

Being dived means being completely surrounded by something and this condition of
being dived in space affects human’s perception, thus enabling people to create and
update the model of surroundings in pilot’s perception. To create the condition of
being dived into virtual reality, we need to be surrounded by elements stimulating
the imagination of flight control in pilot’s mind. That means that while turning our
head left, things placed on the left must be seen by us (Figure 7). Moving forwards
we approach objects placed in front of us, so they must change their position; this
is the basic feature of pilot’s perceptions [16].

Pilot – operator is placed in the focus of the hemispherical space, where objects
in 3-dimensional visualization are projected. The image of objects on hemispherical
screen is created by two projectors placed one above the other, thus generating one
channel (see Figure 8). These three channels create a surrounding for visualization
in aircraft-pilot simulator [10].

Supplying fuel by the pilot results in positive speed increase along the longitudi-
nal axis; the aircraft flies faster, at higher speed. It results in momentum displace-
ment around the transverse axis causing attack angle displacement of the aircraft
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and trajectory. The visualization system responds by changing the scene and the
aircraft position in a 3-dimensional space, enabling the pilot to feel the change of
the position in space.

Figure 8. Principle of projecting of one channel projection system in simulator

Lever control displacement by the pilot results in height control displacement,
attack angle displacement, change of the trajectory slope and aircraft coordinates
in the system. The cockpit position does not change, the image generated by VR
changes on the projection screen. The pilot perceives this real condition as a relative
aircraft motion in space.

4.3 Changing Scene in the Visualization System and Calculation
of Coordinates

In virtual 3-dimensional surrounding that is generated artificially according to Fig-
ure 7, the motion of an aircraft is relative in this surrounding. The pilot’s cockpit
does not move; it is stationary. The surrounding, the background projected on the
hemispherical screen changes, thus generating the pilot’s perception that he/she
moves, “flies” in 3-dimensional space (Figure 9). This perception is created and
achieved as the result of object position transformation via the converse matrix (39)
into virtual surrounding of the image generator [15]. In the figure, according to the
mathematical model throughout attack angle α is displaced by the value ∆α. The
desired effect of the visual image can be achieved when the virtual 3-dimensional
scene is displaced in the generated window at the horizontal level in the −∆α angle,
that means displacement in the reverse direction. The aircraft position defined by
simulating mathematical model of control comprising 6 degrees of freedom is given
by the following variables: x, y, z, h, p, r. The aircraft position defined by the co-
ordinates system of the visualization device has 6 degrees of freedom and is given
by the variables xv, yv, zv, αv, βv, γv. The input values of different types are loaded
into the model and the results are controlled in the point of “output”. Steady-state
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validation of the mathematical models as the basic level of the validation process,
in which values are compared, is discussed first.

Figure 9. Attack angle displacement visualisation in simulator

In continuous systems for the input of values various kinds of aperiodic functions
such as steps, ramps, or various periodic functions such as sine waves or square
waves are discussed first. We often make distinction between the transient and
steady-state characteristics of the system behaviour. The acceptor is the slot in the
experimental frame where conditions limiting the observation of behaviour, such as
steady-state versus transient, can be specified. The steady-state characteristics of
system behaviour are controlled by licensed pilots or by computing numerical values
by Newton’s motion laws. The transient characteristics of system behaviour are
controlled visually on the pilot’s devices and by changing 3D scene position.

The transducer processes the output values, where the postprocessing may range
from none at all to very different intervals when only certain features of interest are
extracted. In steady-state conditions, the final values reached may be of our interest.
The aircraft position image in 3-dimensional scene of VR needs the following form:


xv
yv
zv
αv
βv
γv

 =


0 0 −1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ∗


x
y
z
h
p
r

 (39)

Graphic results are presented and are compatible with the given mathematical form
and mathematical model simulation.
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5 CONCLUSIONS

Calculations and their results of visualization are considered to be a form of dis-
tributed calculations and are oriented towards a number of applied devices and
throughput visualisation systems, etc. [8]. The paper presents methods of creating
a mathematical model of control: model designing, linear model, model implementa-
tion and visualization. Current computer technology enables implementing advan-
tages of multi-core processors while simulating mathematical models and graphic
cards. The process of simulation is carried out on single-processor architecture with
its known limits and the options of parallel computing in the future are considered.

Calculation results in the mathematical model of control prove to be correct,
effective and are visualized precisely via VR. Simulation results conform to the
requirements defined for simulation of the real time mathematical model. The aim
of the paper is visualization of results of the mathematical model of control in
vertical plane. Most publications address design of mathematical models and their
simulation by means of computers and graphic presentation of results.

The results obtained in simulation of the mathematical models using real time
visualization in 3D scene environment created in a virtual reality are presented.
By means of changed input values of the mathematical models, different results
are obtained. Based on the results of diverse analyses of stability, transient states,
steady-states, precise simulation can be achieved. In this way, series of measurements
can be made.
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