
Computing and Informatics, Vol. 33, 2014, 1356–1376

ADVANCED INFORMATION SYSTEM
FOR SAFETY-CRITICAL PROCESSES

Štefan Kozák, Slavomı́r Kajan, Ján Cigánek
Viktor Ferencey, Igor Bélai

Institute of Automotive Mechatronics
Institute of Robotics and Cybernetics
Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava
Ilkovičova 3
812 19 Bratislava, Slovakia
e-mail: stefan.kozak@stuba.sk, slavomir.kajan@stuba.sk

Abstract. The paper deals with the design and implementation of an intelligent
modular information system (IMIS) for modeling and predictive decision making
supervisory control of some important critical processes in a nuclear power plant
(nuclear reactor) using selected soft computing methods. The developed IMIS en-
ables monitoring critical states, safety impact analysis and prediction of dangerous
situations. It also recommends the operator possibilities how to proceed to ensure
safety of operations and humans and environment. The proposed complex IMIS
has been tested on real data from a nuclear power plant process primarily used as
supervisory information for decision making support and management of critical
processes. The core of the proposed IMIS is a general nonlinear neural network
mathematical model. For prediction of selected process variables an artificial neu-
ral network of multilayer perceptron type (MLP) has been used. The effective
Levenberg-Marquardt method was used to train the MLP network. Testing and
verification of the neural prediction model were carried out on real operating data
measurements obtained from the NPP Jaslovské Bohunice.

Keywords: Information system, soft computing methods, neural model, multilayer
perceptron (MLP), training methods, critical processes, nuclear reactor

Mathematics Subject Classification 2010: 00-A71

Advanced Information System for Safety-Critical Processes 1357

1 INTRODUCTION

In many industrial processes there are important activities whose failure can lead to
disasters with huge impact on human life, health and environment (air and water
pollution, contamination, etc.). Such safety critical processes can be found in power,
chemistry, gas, and transport industries, they include processes with accumulation,
distribution and transformation of different kinds of energy (heat, electricity, en-
ergy, nuclear, etc.), raw materials processing (production of pulp and paper, steel,
gas processes, chemical production, heat processes, electricity and water production,
thermal and nuclear power plants, etc.) and all processes where unexpected and un-
controlled change in the on-going dynamics due to disturbances can be dangerous
for a normal running operation. In such processes, human failure in the management
and decision-making can cause irreparable damages to living organisms, technolo-
gies and materials, and even threaten the human existence for a long time. To
avoid such adverse situations it is necessary to develop procedures, methods and
algorithms to be able to timely identify critical situations and conditions in differ-
ent processes, and select appropriate strategies and management practices to lead
the critical state to operational and safe state. Because industrial processes are
complex ones with many inputs, outputs and state variables, optimal decision in
critical situations is not trivial, and has to be based on scientific approaches from
mathematical modelling that enable to design optimal structure and parameters
of the mathematical model. Decision support in critical situations can be based
on conventional techniques using deterministic and stochastic modelling methods
and measured process data. Conventional approaches are based on modelling and
prediction [15] of critical processes primarily based on regression techniques and
methods, while newer methods of modelling critical processes used today are based
on much more precise techniques and artificial intelligence (fuzzy, neuro-fuzzy, artifi-
cial neural networks and genetic algorithms) that can model the static and dynamic
processes with high accuracy, and thus provide a more exact estimate of unexpected
situations.

Determination of accurate mathematical models from observations of physical
processes is an integral part of the general scientific methodology in modeling and
control [16]. The use of methods for approximating the behavior of general nonlinear
dynamic systems has a long history. Conventional models (e.g. Hammerstein, Walsh,
Voltera and Wiener models) played their very important roles during the past twenty
years. The emergence of the neural network (NN) paradigm as a powerful tool for
learning complex mappings from a set of examples has generated a great deal of
excitement in using neural network models for identification and control of dynamical
systems with unknown nonlinearities [7, 3]. Due to NN approximation capability as
well as their inherent adaptivity features, artificial neural networks offer an appealing
representation appropriate for modeling and control of nonlinear static and dynamic
systems [5, 6, 8, 10].

Artificial neural networks consist of many simple interconnected nonlinear sys-
tems called neurons or processing elements.

1358 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

Definition 1. The neuron denotes the map f(U)→ Y , where U is the input and Y
is the output set. Figure 1 shows the structure of the neuron – a typical processing
element.

Figure 1. Internal structure of a neuron

The weighted sum of all input signal is the input signal to a nonlinear activation
function which generates the network output. The map in Figure 1 can be simply
expressed by the equation y = f(u,w, θ) where u is the input vector, w is the
weight vector, θ is the bias vector, and f is a nonlinear function that determines
the type of neuron and topology of the network. The activation signal in each
processing element is the weighted sum of outputs of the previous layer plus the
bias.

According to Figure 1 the activation signal for each layer can be expressed as:

si =
m∑
j=1

wjiuj + θi (1)

and output signal from the ith neuron is expressed

yi(u, v, θ) = f(si) = f

 m∑
j=1

wjiuj + θi

 (2)

where θi is the bias, and m is the number of inputs to the ith neuron.

Definition 2. Any function can be approximated by a three-layer neural network
(NN). The neuron output variable is defined as y = f(

∑m
k=1wkuk + θ) where f

is a transient function, m is the number of neuron inputs, wk is a given neuron
parameter (weight) and uk are neuron inputs.

There are various ANN structures characterized by a network structure, connec-
tion patterns (weights), neural activation properties and status-updating or learning
rules that modify the weights of the processing elements (neurons). Based on the
connection patterns, ANN can be classified in two categories:

Advanced Information System for Safety-Critical Processes 1359

• feed-forward networks in which neurons have no loops;

• recurrent (feedback) networks in which loops occur due to feedback connections.

Many combinations of artificial neurons result in a useful sub-class of neural
network systems.

A multilayer perceptron (MLP) is a feedforward artificial neural network model
that maps sets of input data onto a set of appropriate output. An MLP consists of
multiple layers of nodes in a directed graph, with each layer fully connected to the
next one. Except for the input nodes, each node is a neuron (or processing element)
with a nonlinear activation function. MLP utilizes a supervised learning technique
called backpropagation for training the network. MLP is a modification of the
standard linear perceptron and can distinguish data that is not linearly separable.
A multilayer perceptron (MLP) with a recurrent structure with three layers and
adjustable weights is depicted in Figure 2.

Figure 2. Multilayer neural network structures

In this paper we consider the problem of approximating of nonlinear discrete-
time dynamic processes using ANN structure. For single-input single-output (SISO)
discrete-time, time invariant nonlinear dynamic system it is expressed by the differ-
ence equation

y(k) = f(y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)) (3)

where k ∈ T is the discrete time, u(k) ∈ R1, y(k) ∈ R1 are the input and output,
at time k, respectively, and f : Rny × Rnu → R1 is an unknown smooth mapping
defined on an open set Rny ×Rnu .

Positive integers ny and nu denote the maximum lag in the system output and
input, respectively. For notational convience, let nz = ny + nu and

z(k − 1) = [y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)]T ∈ Rnz . (4)

1360 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

In the network formulation, the variable z ∈ Rnz is the input to the ANN
network and w ∈ Rw is a set of adjustable parameters (weights) in the vector form.

As f is an unknown nonlinear function, the objective is to approximate f(z) us-
ing some appropriate type of network approximator NA(z, w). By changing weight-
ing parameters w, it is possible to change the input/output time response of the
ANN. The training process can run on-line or off-line, i.e. during the control process
or prior to it.

Multilayer neural networks are nonlinearly parametrized approximators. The-
oretical works [5] have shown that such networks can uniformly approximate any
function f ∈ C(z) to any degree of accuracy provided n is sufficiently or equivalently
large, provided the network has a sufficient number of neurons.

For the training of neural network we used of one modified Levenberg-Marquard
method [5, 12, 9]. The Levenberg-Marquardt algorithm [12, 11] provides a numerical
solution to the problem of minimizing a nonlinear function. It is fast and has stable
convergence. In the artificial neural-networks field, this algorithm is suitable for
training small- and medium-sized problems.

The Levenberg-Marquardt algorithm blends the steepest descent method and
the Gauss-Newton algorithm. Fortunately, it inherits the speed advantage of the
Gauss-Newton algorithm and the stability of the steepest descent method. It is
more robust than the Gauss-Newton algorithm, because in many cases it can con-
verge well even if the error surface is much more complex than the quadratic situ-
ation. Although the Levenberg-Marquardt algorithm tends to be a bit slower than
Gauss-Newton algorithm (in convergent situation), it converges much faster than
the steepest descent method.

The basic idea of the Levenberg-Marquardt algorithm is that it performs a com-
bined training process: around the area with complex curvature, the Levenberg-
Marquardt algorithm switches to the steepest descent algorithm, until the local cur-
vature is proper to make a quadratic approximation; then it approximately becomes
the Gauss-Newton algorithm, which can speed up the convergence significantly.

Let us introduce some commonly used indices for Levenberg-Marquardt weights
training algorithm:

• i is the index of patterns, from 1 to N , where N is the number of patterns,

• j is the index of outputs, from 1 to M , where M is the number of outputs,

• i and j are the indices of weights, from 1 to N , where N is the number of weights,

• k is the index of iterations.

Sum square error (SSE-criterion) is defined to evaluate the training process.
For all training patterns and neural network output, it is calculated by quadratic
criterion

E(x,w) = 0.5
N∑
i=1

M∑
j=1

e2(i, j) (5)

where u is input vector, w is the weight vector, e(i, j) is the training vector at

Advanced Information System for Safety-Critical Processes 1361

output j applying pattern i and it is defined e(i, j) = yp(i, j)− yM(i, j) where yp is
measure output vector, yM is actual output ANN model vector.

For the computation of weights we use the iterative recursive form of algorithm
in the form

wk+1 = wk −H−1
k gk (6)

where gk is the gradient

gk =
∂E(x,w)

∂w
=

[
∂E

∂w1

∂E

∂w2

. . .
∂E

∂wN

]T
(7)

and matrix H is Hessian matrix

H =

∂2E
∂w2

1

∂2E
∂w1∂w2

. . . ∂2E
∂w1∂wN

∂2E
∂w2∂w1

∂2E
∂w2

2
. . . ∂2E

∂w2∂wN

.
∂2E

∂wN∂w1

∂2E
∂wN∂w2

. . . ∂2E
∂w2

N

 (8)

In order to make sure that the approximated Hessian matrix JTJ is invertible,
Levenberg-Marquardt algorithm [13, 3] introduces another approximation to Hessian
matrix:

H ∼= JTJ + µI (9)

where µ is always positive, called combination coefficient and I is the identity matrix.
From Equation (9), one may notice that the elements on the main diagonal

of the approximated Hessian matrix will be larger than zero. Therefore, with this
approximation it can be sure that matrix H is always invertible.

Levenberg-Marquardt iterative algorithm can be expressed as

wk+1 = wk − (JT
k Jk + µI)−1Jkek. (10)

2 NUCLEAR REACTOR PROCESS DESCRIPTION

Using artificial neural network (ANN), measured data for modeling are collected
from the technology of the nuclear power plant (NPP) (Figure 4). The main object
of modeling is a nuclear reactor, in which fission of the nuclear fuel (most commonly
used is the isotope of uranium – 235U) is running. In fission, energy is released and
most of it is converted into heat. This energy is transported into the heat exchanger
(steam generator) using heat transfer medium (for example H2O, CO2). The hot
water circulation circuit (HCC) provides heat removal from their act ort of the
steam generator and conversely, the cold water circulation circuit (CCC) together
with the main coolant pump (MCP) provides reactor cooling. The steam generator
is a heat exchanger that uses energy released from the reactor for the production
of saturated steam. The produced steam is supplied into the separator and steam

1362 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

Figure 3. Block diagram for training using Levenberg-Marquardt algorithm (wk is the
current weight, wk+1 is the next weight, Ek+1 is the current total error, and Ek is
the last total error)

heater to reduce moisture, and is further preheated to a temperature above the
temperature of saturation to increase effectiveness of the work cycle. Then, the
steam is supplied to the turbine that drives a synchronous generator and produces
electricity.

For modeling the nuclear reactor using ANN, the measured output process vari-
ables are neutron flux and output water temperature in HCC. Measured temperature
of the cooling water inflow in CCC, pressure within the core and differential pressure
in MCP are process input variables.

Figure 4. Functional scheme of electricity production in nuclear reactor

Advanced Information System for Safety-Critical Processes 1363

3 MODELING OF PROCESSES IN NUCLEAR REACTOR

Recently, ANN have been used increasingly in various application areas dealing with
modeling of nonlinear processes [1]. Due to very good approximation properties of
a multilayer perceptron (MLP) networks, the neural models can be successfully
applied for modeling of nonlinear processes. Using neural models for nuclear reactor
process modeling enables to predict behavior of parameters of the reactor which are
important for its safety [2].

One of the main functions of ANN is to predict future outputs [17] based on
past measured inputs and outputs. Neural networks can learn to perform a varie-
ty of predictive tasks. Network training is performed by repeating the following
procedure. Each step of the training procedure consists of the following steps:

1. Provide input data values to nodes of the input layer.

2. Propagate the presented input values towards the output layer (forward process).

3. Compare the values of output nodes with the actual training data values.

4. Correct the differences of outcome and propagate towards the input layer (back-
ward process).

Normally, training data records are to be applied many times before the network
is actually used. Network training is a repetitive process. At the beginning, networks
are trained roughly. Then, they are refined by repeated application of input data.
After the network reaches a certain maturity level, they are used or deployed for
value prediction.

For modeling and prediction of variables in the nuclear reactor, a neural model
based on multilayer perceptron network was created, whereby the neural model
represents a MIMO system with 3 inputs and 2 outputs. The ANN approximates
dynamics of the modeled system and is described by following nonlinear difference
equation:

[y1(k), y2(k)] = f(y1(k − 1), . . . , y1(k − n1), y2(k − 1), . . . , y2(k − n2),

u1(k − d1), . . . , u1(k − d1 −m1), u2(k − d2), . . . ,
u2(k − d2 −m2), u3(k − d3), . . . , u3(k − d3 −m3))

(11)

where k = t/Tvz is discrete time (Tvz is sampling time), yj(k) are outputs of the
modeled system, ui(k) are inputs of the modeled system, ni are orders of outputs
yj(k), mi are orders of inputs ui(k), di are time delays of inputs ui(k), f(. . .) is
unknown nonlinear function.

The proposed neural model of the nuclear reactor will be implemented off-line
using measured data. A block scheme of the ANN process model with one input
and one output is depicted in Figure 5, where the neural model is located in parallel
to the process, and the prediction error is used as the network training signal for
the learning algorithm. The Levenberg-Marquardt learning method has been used

1364 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

PPrroocceessss

model

yp

ym

+

-

u

LLeeaarrnniinngg

algorithm

perturbance

input output

error

e

ANN

Figure 5. Block scheme of process modeling and learning using ANN

for training the MLP network. The modeling process was implemented in MAT-
LAB [4] using measured process data. The neural model structure for the system
with 3 inputs and 2 outputs is shown in Figure 6. Table 1 shows a description of
inputs and outputs of the neural model, whereby the variables were normalized to
range within (−1, 1).

u3(k-1)

u3(k-m3)

u2(k-m2)

y1(k-1)

MLP

neural

network

y1(k-n1)

y2(k-1)

y2(k-n2)

u1(k-1)

u1(k-m1)

u2(k-1)

y1(k)

y2(k)

Figure 6. Structure of MLP network for process modeling

Advanced Information System for Safety-Critical Processes 1365

Name and type
of the variable

Description Unit Range

Output y1 NEUTRON FLUX FROM AKR-02R
1.CHANNEL

A (5.8e−5,
6.8e−5)

Output y2 TEMPERATURE IN HCC 1/TPGN1/1 ◦ C (290, 300)

Input u1 TEMPERATURE IN CCC 1/TPCHN1/1 ◦ C (265, 270)

Input u2 PRESSURE IN ACTIVE AREA MPa (12, 12.2)

Input u3 DIFFERENTIAL PRESSURE IN MCP MPa (0.43, 0.45)

Table 1. Description of measured input and output variables of the nuclear reactor

4 MODELING AND PREDICTION OF PROCESSES
IN NUCLEAR REACTOR

For implementation of the ANN prediction model of the nuclear reactor processes
a modular intelligent program system was created in Matlab-Simulink. The block
structure is shown in Figure 7. After starting the program, the main window (Fi-
gure 8) is opened. The program system consists of the following modules: data
collection module, dynamic models module, prediction module, parameter settings
module and the module of recognition of critical states.

Data

collection

module NN dynamic

model module

Model

prediction

module

Database

module
Critical states

recognition module

Parameters

setting

module

Indication

of critical

states

Measured

data

Figure 7. Modular intelligent information system for modeling and prediction of critical
states in nuclear reactor processes

The data collection module has to collect and preprocess the measured data for
modeling and prediction. The module of dynamic models contains the MLP neural
network trained on measured data from the reactor. The prediction module predicts
future outputs in defined forward steps on the basis of past models inputs and
outputs. Based on prediction of reactor variables from the neural model, the module
for recognition of critical states indicates the state variables and their exceeding of
technical and safety limits.

1366 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

Figure 8. Main window of the Reactor Model program for modeling and prediction of nu-
clear reactor processes

The program system processes the measured data in the program through the
Data menu (Figure 9), enabling loading, saving, filtering, normalizing and displaying
measured data.

Figure 9. Data menu of the main window of the ReactorModel program

Measured input and output variables of the model (according to Table 1) are
shown in Figures 10 and 11. For neural model training, 2 500 measured data samples
were selected (from 50 501 to 53 000 samples) previously smoothed by averaging
filter, and normalized to range (-1,1). Training data used for modeling are shown in
Figure 10. For model verification, the full range of measured data has been used.

For model parameters setting, saving into and loading from a file, training and
testing of model, the Model menu of the ReactorModel program can be used (Fi-
gure 9).

For setting prediction horizons of inputs and outputs, and for model prediction,
the menu Prediction was created.

Advanced Information System for Safety-Critical Processes 1367

0 1 2 3 4 5 6 7 8 9

x 10
4

5.8

6

6.2

6.4

6.6

x 10
-5

y
1

-
N

e
u
tr

o
n

fl
u
x

[A
]

0 1 2 3 4 5 6 7 8 9

x 10
4

292

294

296

298

y
2

-
T

e
m

p
e
ra

tu
re

H
C

C
[C

]

Time [s]

Figure 10. Measured output variables data of the neural model (y1-neutron flux, y2-tem-
perature in HCC)

0 1 2 3 4 5 6 7 8 9

x 10
4

267

268

269

u
1

[C
]

0 1 2 3 4 5 6 7 8 9

x 10
4

12

12.1

12.2

u
2

[M
P

a
]

0 1 2 3 4 5 6 7 8 9

x 10
4

0.43

0.435

0.44

u
3

[M
P

a
]

Time [s]

Figure 11. Measured input variables data of the neural model (u1-temperature in CCC,
u2-pressure AZ, u3-dif. pressure in MCP)

1368 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

0 500 1000 1500 2000 2500
-0.5

0

0.5

1
Neutron flux

y
1

0 500 1000 1500 2000 2500
-0.4

-0.2

0

0.2

0.4
Temperature HCC

y
2

Samples

0 500 1000 1500 2000 2500
-1

0

1
Temperature CCC

u
1

0 500 1000 1500 2000 2500
-1

0

1
Pressure AZ

u
2

0 500 1000 1500 2000 2500
-1

0

1
Diff. pressure in MCP

u
3

Samples

0 500 1000 1500 2000 2500
-0.5

0

0.5

1
Neutron flux

y
1

0 500 1000 1500 2000 2500
-0.4

-0.2

0

0.2

0.4
Temperature HCC

y
2

Samples

0 500 1000 1500 2000 2500
-1

0

1
Temperature CCC

u
1

0 500 1000 1500 2000 2500
-1

0

1
Pressure AZ

u
2

0 500 1000 1500 2000 2500
-1

0

1
Diff. pressure in MCP

u
3

Samples

Figure 12. Training data (input and output variables) of the neural model

Figure 13. Model menu of the main window of program ReactorModel

Advanced Information System for Safety-Critical Processes 1369

5 NEURAL MODEL IMPLEMENTATION: SIMULATION RESULTS

The neural model was created using MLP NN network with one hidden layer which
contains 15 neurons with the tansig type activation function. Previous samples of
individual variables were used as input data to the neural model; in total, the neural
model has 16 inputs and 2 outputs. Setting parameters of the neural model structure
is shown in Figure 14.

Figure 14. Window for setting of neural model structure

The MLP network was trained on training data from Figure 12 with set pa-
rameters from Figure 14. Comparison of outputs from the neural model and the
process for training data is shown in Figures 15 and 16. Testing of neural model
was realized using all measured data; comparison of outputs from the neural model
and the process for training data is shown in Figures 17 and 18. The comparison
shows that the model output for neutron flux fits measured data very well. The
HCC temperature model output also fits the temperature dynamics; however errors
occur in some measurement intervals due to disturbance variables not included in
the model. Numerical evaluation of errors between measured and model outputs are
provided in Table 2.

The neutron flux prediction was tested using the created neural model, and com-
pared with the measured data. Testing was performed on a data set of N = 30 000
samples (Figure 19). Errors for prediction horizons (Np) 5, 7 and 10 are recorded in
Table 3. Figure 19 and Table 3 show that the predictive model follows the dynamics
of the process very well, only in a few intervals small deviations between the output

1370 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

0 500 1000 1500 2000 2500

6.3

6.4

6.5

6.6
x 10

-5 Process output y1 - Neutron flux

y
1
-p

ro
c
e
s
s

0 500 1000 1500 2000 2500

6.3

6.4

6.5

6.6
x 10

-5 NN model output

Samples

y
1
-m

o
d
e
l

Figure 15. Comparison of outputs from the neural model and the process (neutron flux –
training data)

0 500 1000 1500 2000 2500

294

295

296

Process output y2 - Temperature HCC

y
2
-p

ro
c
e
s
s

0 500 1000 1500 2000 2500

294

295

296

NN model output

Samples

y
2
-m

o
d
e
l

Figure 16. Comparison of outputs from the neural model and the process (temperature in
HCC – training data)

Advanced Information System for Safety-Critical Processes 1371

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

x 10
4

6.3

6.4

6.5

6.6
x 10

-5 Process output y1 - Neutron flux
y
1
-p

ro
c
e
s
s

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

x 10
4

6.3

6.4

6.5

6.6
x 10

-5 NN model output

Samples

y
1
-m

o
d
e
l

Figure 17. Comparison of outputs from the neural model of the neutron flux and the
process (testing data)

Model testing Training data Training data Testing data Testing data
criterion for y1, for y2, for y1, for y2,

N = 2 500 N = 2 500 N = 70 000 N = 70 000

SSE (sum
of squared errors)∑N

k=1(yp − ym)2 0.0034 0.0366 0.7014 6.9957

MSE (mean
squared error)
1
N

∑N
k=1(yp−ym)2 0.0136e−4 0.1467e−4 0.01e−3 0.5285e−3

Table 2. Numerical evaluation of neural model errors

and the process model occurred. The model errors increase with prediction horizon
increasing Np.

The results obtained by numerical simulation have shown a high accuracy and
high model quality in the use of MLP ANN models and improved learning Levenberg-
Marquardt methods. The deviation between the measured and modeled output
variables is ranged up to 10−3. To determine the optimal structure, the authors of the
proposed paper developed a new algorithm for optimal ANN structure determination
directly from the measured data, which can be significantly improve quality modeling
and realization of modeling in the real time operation.

1372 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

x 10
4

294

295

296

Process output y2 - Temperature HCC

y
2
-p

ro
c
e
s
s

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

x 10
4

294

295

296

NN model output

Samples

y
2
-m

o
d
e
l

Figure 18. Comparison of outputs from the neural model of HCC temperature and the
process (testing data)

Testing data for y1, Np = 3 Np = 5 Np = 7 Np = 10
N = 30 000

SSE 10.305 79.315 348.205 1 045.37

MSE 0.343e−3 2.645e−3 11.611e−3 34.862e−3

Table 3. Numerical evaluation of prediction errors using neural model

6 CONCLUSIONS

The paper deals with the design of an intelligent modular complex information sys-
tem for modeling of selected critical processes in a nuclear reactor. Testing and
verification of the developed program system using the neural prediction model was
performed in Matlab-Simulink using real data measured from the nuclear power reac-
tor. The obtained graphical and numerical results confirm high quality of modeling
highly nonlinear processes. The developed complex information system is elaborated
in most general form and can be used for identification and prediction of critical si-
tuations and states in a wide class of industrial processes. Intelligent and interactive
programming system (IMIS) has a modular interactive structure and can be applied
as supervisory control systems for managing of critical processes by operators and
process managers.

Advanced Information System for Safety-Critical Processes 1373

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

6.2

6.4

6.6

x 10
-5 Process output y1 - Neutron flux

y
1
-p

ro
c
e
s
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

6.2

6.4

6.6

x 10
-5 Prediction from NN model

Samples

y
1
-m

o
d
e
l

Figure 19. Comparison of the model prediction and the process output (neutron flux with
prediction horizon N = 3)

Acknowledgement

We thank for the support of the European Operating Program Reasearch and Deve-
lopment project ITMS code 26240220060, of the VEGA project No. 1/0937/14 and
of the Slovak Research and Development Agency under grant No. APVV-0772-12.

REFERENCES

[1] Jadlovská, A.: Modelling and Control of Dynamic Processes Using Neuron Net-
works. FEI TU Košice, 2003, ISBN 80-8894122-9 (in Slovak).

[2] Kajan, S.—Hypiusová, M.: Application of Artificial Neural Network in Modelling
and Simulation a Power Engineering Process. Control of Power and Heating Systems
2006, Zĺın 2006.

[3] Hagan, M. T.—Menhaj, M. B.: Training Feedforward Networks with the Mar-
quardt Algorithm. IEEE Transactions on Neural Networks, Vol. 5, 1994, No. 6,
pp. 989–993.

[4] The Mathworks. Neural Network Toolbox, User’s Guide, 2002.

[5] Hornik, M.—Stinchcombe, M.—White, H.: Multilayer Feedforward Networks
Are Universal Approximators. Neural Networks, Vol. 2, 1989, No. 5, pp. 359–366.

1374 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

[6] Lippmann, R. P.: Pattern Classification Using Neural Networks. IEEE Communi-
cations Magazine, Vol. 27, 1989, pp. 47–64.

[7] Rumelhart, D. E.—Hinton, G. E.—Williams, R. J.: Learning Representations
by Back-Propagating Errors. Nature, Vol. 323, 1986, pp. 533–536.

[8] Siegelmann, H. T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhauser, Boston 1999.

[9] Andersen, T. J.—Wilamowski, B. M.: A Modified Regression Algorithm for Fast
One Layer Neural Network Training. World Congress of Neural Networks, Washing-
ton, DC, USA, July 17–21, 1995, Vol. 1, pp. 687–690.

[10] Werbos, P. J.: Back-Propagation: Past and Future. Proceedings of International
Conference on Neural Networks, San Diego, CA, USA, 1988, Vol. 1, pp. 343–354.

[11] Levenberg, K.: A Method for the Solution of Certain Problems in Least Squares.
Quarterly of Applied Mathematics, Vol. 2, 1944, No. 2, pp. 164–168.

[12] Marquardt, D.: An Algorithm for Least-Squares Estimation of Nonlinear Param-
eters. SIAM Journal on Applied Mathematics, Vol. 11, 1963, No. 2, pp. 431–441.

[13] Valo, R.—Kozák, Š.: Effective Application of Levenberg-Marquardt Teaching.
In: Kozák, Š., Kozáková, A., Rosinová, A. (Eds.): Kybernetika a informatika.
Medzinárodná konferencia SSKI SAV, STU Bratislava, 2012, pp. 107–111 (in Slo-
vak).

[14] Ionescu, M.—Sburlan, D.: Some Applications of Spiking Neural P Systems. In
Computing and Informatics, Vol. 27, 2008, No. 3, pp. 515–528.

[15] Korenčiak, D.—Gutten, M.: Opportunities for Integration of Modern Systems
Into Control Processes in Intelligent Buildings. Przeglad Elektrotechniczny, Electrical
Review, Vol. 88, 2012, No. 2, pp. 266–269, ISSN 0033-2097.

[16] Kashif, Z.—Rauf, A.—Rauf, B.: Multiple Route Generation Using Simulated
Niche Based Particle Swarm Optimization. Computing and Informatics, Vol. 32, 2013,
No. 4, pp. 697–721.

[17] Korošec, P.—Šilc, J.: Using Stigmergy to Solve Numerical Optimization Prob-
lems. Computing and Informatics, Vol. 27, 2008, No. 3, pp. 377–402.

Advanced Information System for Safety-Critical Processes 1375

Štefan Koz�ak obtained his M. Sc. degree from the Slovak Uni-
versity of Technology in Bratislava in 1970 and the Ph. D. degree
in technical cybernetics from the Slovak Academy of Sciences in
1978. He worked at the Institute of Technical Cybernetics in the
field of control algorithms design and was a leader of a research
team at the Institute of Applied Cybernetics in Bratislava. Since
1984 he had been with the Department of Automatic Control
Systems at the Faculty of Electrical Engineering and Informa-
tion Technology in Bratislava (between 1998 and 2006 he lead
the department). Currently, he is with the Institute of Automo-

tive Mechatronics at the Faculty of Electrical Engineering and Information Technology,
STU in Bratislava. His research interests include system theory, linear and nonlinear con-
trol methods, numerical methods and software for modeling, control, signal processing
and embedded intelligent systems. He published over 250 research papers in conference
proceedings and international journals, and organized four IFAC events held in Slovakia.

Slavomı́r Kajan received his diploma and Ph. D. degree in automatic control from the
Faculty of Electrical Engineering and Information Technology, Slovak University of Tech-
nology (FEI STU) in Bratislava, in 1997 and 2006, respectively. He is now an Assistant
Professor at the Institute of Control and Industrial Informatics, FEI STU in Bratislava.
His research interests include servo-systems, soft-computing control methods and robust
control.

Ján Cig�anek received his diploma and Ph. D. degree in au-
tomatic control from the Faculty of Electrical Engineering and
Information Technology, Slovak University of Technology (FEI
STU) in Bratislava, in 2005 and 2010, respectively. He is now
an Assistant Professor at the Institute of Automotive Mecha-
tronics, FEI STU in Bratislava. His research interests include
optimization, robust control design, computational tools, and
hybrid systems.

Viktor Ferencey is now a Full Professor at the Institute of Au-
tomotive Mechatronics, Faculty of Electrical Engineering and In-
formation Technology in Bratislava. His research work includes
optimization of energy sources and of power systems for electric
drives. He conducts research in energy intensity for fuel cells
in the capacity of power source for an electric vehicle. In pe-
dagogical work, he focuses on teaching of mechatronics systems
for engines and managing the dynamics of movement of elec-
tric vehicles. In cooperation with automotive industry, he ad-
dresses issues of research and development of hybrid and electric

propulsion systems for different types of vehicles. He is author of three monographs, four
university books, several textbooks and over 150 scientific and professional publications.

1376 Š. Kozák, S. Kajan, J. Cigánek, V. Ferencey, I. Bélai

Igor B�elai graduated in electronic computers from Faculty
of Electrical Engineering, Slovak University of Technology in
Bratislava, Slovakia. He completed doctoral studies in automa-
tion and control. He is currently an Assistant Professor at the
Institute of Automotive Mechatronics, FEI STU in Bratislava.
His research interests include control of electrical drives and in-
dustrial communication systems.

