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Abstract. A neuronal tree is a rooted tree with n leaves whose each internal node
has at least two children; this class not only is defined based on the structure of
dendrites in neurons, but also refers to phylogenetic trees or evolutionary trees.
More precisely, neuronal trees are rooted-multistate phylogenetic trees whose size
is defined as the number of leaves. In this paper, a new encoding over an alphabet
of size 3 (minimal cardinality) is introduced for representing the neuronal trees
with a given number of leaves. This encoding is used for generating neuronal trees
with n leaves in A-order with constant average time and O(n) time complexity in
the worst case. Also, new ranking and unranking algorithms are presented in time
complexity of O(n) and O(n log n), respectively.
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1 INTRODUCTION

Many papers have been published earlier in the literature for generating different
classes of trees. For example, we can mention the generation of binary trees in [1,



Neuronal Trees Generation 1429

2, 3, 4, 5, 6, 7], k-ary trees in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], trees with
n nodes and m leaves in [19, 20], neuronal trees in [21, 22], AVL trees in [23], and
search tree in [24].

Typically, trees are encoded as strings over a given alphabet and then these
strings (called codeword) are generated. By choosing a suitable codeword to rep-
resent the trees, we can design efficient generation algorithm for these codewords.
Any generation algorithm imposes an ordering on the set of trees. The best known
orderings on trees are A-order and B-order [25]. The A-order definition uses global
information concerning the tree nodes and appear to be a natural ordering of trees,
whereas the B-order definition uses local information .

Neuronal trees are a type of trees which have n leaves and each internal node
has at least two children. These trees are known with regard to their number of
leaves [21]. The neuronal tree can be considered as a data structure for modeling the
“dendrites of a nerve cell” [21] and “phylogenetic trees” or “evolutionary trees” which
is based on branching diagram which shows the evolutionary relationships among
various biological species (species are the leaves and internal nodes are hypothetical
ancestors, as they cannot be directly observed) [26, 27, 28].

Generation of this type of trees is first studied by Pallo [21]. He introduced
an integer sequence codeword for these trees and presented a generation algorithm
for neuronal trees with n leaves in B-order with O(n) worst case time complexity
without ranking and unranking algorithms. An encoding of length n over six letters
for a neuronal tree with n leaves and a generation algorithm on this encoding in
A-order are given by Vajnovszki [22]. The presented generation algorithm has O(n)
time complexity in the worst case and O(log n) average time complexity. He also
presented an unranking algorithm with the time complexity of O(n2) but no ranking
algorithm was presented. It seems to be quite challenging to decrease the average
time complexity of generation algorithm and design a ranking algorithm for them
and also improve the time complexity of the unranking algorithm.

In this paper, we present a new encoding on three letters for the neuronal trees
with n leaves. The size of our encoding is equal to the number of nodes of the tree
(less than 2n and greater than n + 1). We also present a generation algorithm on
this encoding with constant average time, O(1), and O(n) time complexity in the
worst case. In this algorithm, the trees are generated in A-order. Due to the given
encoding, both ranking and unranking algorithms are also presented with O(n) and
O(n log n) time complexity, respectively.

2 DEFINITION

Here we assume that the reader is familiar to the definitions of graph, tree, node,
internal node, leaf, size, depth, child and subtree in trees, and generation, ranking
and unranking algorithms. However here we define some important concepts in
neuronal trees.
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According to the structure of neurons, dendrites of neurons have two or more
splits in the way that each branch in the splits is connected to at least two other
branches. Therefore, dendrite trees that are also called neuronal trees are defined as
trees in which each internal node has at least two children; in other words a neuronal
tree is a tree whose each node is either a leaf or has at least 2 children [21, 22].

Formally, a neuronal tree T is defined as a finite set of one or more nodes such
that:

1. T has a distinguished node r, called root of this tree, and if T has more than
one node, then r is connected to j ≥ 2 neuronal trees T1, T2, . . . , Tj and each
tree Ti (1 ≤ i ≤ j), is called the subtree of T .

2. The root of Ti (1 ≤ i ≤ j) is considered as a child of r.

3. T1 is the leftmost subtree, and its root is the leftmost child of r.

4. Tj is the rightmost subtree and its root is the rightmost child of r.

Recall from [21, 22]: in a tree, the degree of a node is equal to the number of
its children, and the degree of the tree is equal to maximum degree of its nodes.
An example of a neuronal tree with 9 leaves is shown in Figure 1.

Figure 1. An example of a neuronal tree with 9 leaves
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Let Sn be the cardinality of set of neuronal trees with n leaves; recalling from [22]
the following relations are presented:

S1 = S2 = 1,

nSn = 3(2n− 3)Sn−1 − (n− 3)Sn−2, for all n ≥ 3.

It is also proved in [22] that 5n < Sn for n > 57 and Sn < 6n for n > 1.
The number of neuronal trees is equivalent to the number of some important

combinatorial objects which are introduced below:

1. The number of “super-Catalan numbers” that is also called “generalized paren-
theses” or “little Schröder numbers”. This number is the number of ways to
insert parentheses in a string of n + 1 symbols such that the parentheses must
be balanced but there is no restriction on the number of pairs of parentheses,
except that the number of letters or sub-parentheses inside a pair of parenthe-
ses must be at least 2. Obviously parentheses enclosing the whole string are
ignored [29, 30, 31, 32].

2. The number of Schröder paths of semilength n− 1 (i.e. lattice paths from (0, 0)
to (2n − 2, 0), with steps H = (+2, 0), U = (+1,+1) and D(+1,−1) and not
going below the x-axis) with no peaks at level 1 [29].

Up to now, no generation algorithms have been presented for these combinatorial
objects and obviously the generation of neuronal trees is equivalent to the generation
of these combinatorial objects.

As mentioned, any generation algorithm imposes an ordering on the set of trees.
Two such natural orderings are A-order and B-order [3, 22, 25] which are defined as
follows.

Definition 1. Let T and T ′ be two neuronal trees and k = max{deg(T ), deg(T ′)};
we say that T is less than T ′ in B-order (T ≺B T ′), iff

• deg(T ) < deg(T ′), or

• deg(T ) = deg(T ′) and for some 1 ≤ i ≤ k, Tj =B T ′j for all j = 1, 2, . . . , i − 1,
and Ti ≺B T ′i

where deg(T ) is defined as the degree of root of the tree T .

Definition 2. Let T and T ′ be two neuronal trees and k = max{deg(T ), deg(T ′)};
we say that T is less than T ′ in A-order (T ≺A T ′), iff

• |T | < |T ′|, or

• |T | = |T ′| and for some 1 ≤ i ≤ k, Tj =A T ′j for all j = 1, 2, . . . , i − 1 and
Ti ≺A T ′i

where |T | (size of T ) is defined as the number of leaves in the tree T .
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As mentioned earlier, in most generation algorithms trees are encoded as strings
over a given alphabet and then these sequences are generated in specified order
such that their corresponding trees are in A-order or B-order. Our generation al-
gorithm, which is given in the next section, produces the sequences such that their
corresponding trees are in A-order.

3 THE ENCODING SCHEMA AND GENERATION ALGORITHM

The main point in generating trees is to choose a suitable encoding to represent
them, and instead of generating trees, their corresponding codewords are generated.
In this section, we give an encoding for neuronal trees on 3 letters and later we
present an algorithm that generates the successor sequence of a given codeword of
a neuronal tree with n leaves in A-order.

Based on what we mentioned earlier, Sn is the cardinality of set of neuronal trees
with n leaves and we know Sn < 6n. Clearly Sn < 32n and the number of nodes of
a neuronal tree with n leaves is less than 2n (it can be shown that total number of
nodes in a neuronal tree with n leaves is at least n+1 and at most 2n−1), therefore
it is desirable to encode these trees with 3 letters. Now, we prove that if the size
of codeword be less than the number of neuronal tree nodes, then the encoding of
neuronal trees with two letters is impossible.

Lemma 1. The minimum number of letters required for encoding the set of neu-
ronal trees with n leaves is 3, if the size of codeword be less than the number of
neuronal tree nodes.

Proof. It can be shown that the total number of nodes in a neuronal tree with n lea-
ves is at least n+ 1 and at most 2n−1, so the number of codewords over two letters
is at most equal to:

2n+1 + 2n+2 + . . .+ 22n−1 = 2n+1(2n−1 − 1) = 22n − 2n+1 < (2 + 2 + 1)n < 5n < Sn.

Consequently, we can deduce that the least size of alphabet for encoding neuronal
trees is 3. Obviously, a neuronal tree codeword over 2 letters has a length greater
than 2n. �

Regarding the above properties, we present our new encoding. For any neuronal
tree T with n leaves, the encoding over three letters {`,m, r} is defined as follows.
The root of T is labeled by ‘m’, the leftmost child of any internal node is labeled
by ‘`’, the rightmost child of any internal node is labeled by ‘r’, and the children
between leftmost and rightmost children (if exist) are labeled by ‘m’. This labeling
is proceeded in the same way for any internal node in each level recursively and
a preorder traversal of T will result in the codeword. This labeling is illustrated
in Figure 2 for a given tree T , and the codeword corresponding to this tree is
“m```mrr`rmm`mmrr”. Note that the 3-letter alphabet codeword corresponding
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Figure 2. An example of labeled neuronal tree

to the first and last neuronal tree with n leaves in A-order is respectively “m`mn−2r”
and “m`n−1rn−1”.

Now we prove the validity of a given string on three letters as a neuronal tree en-
coding (the one-to-one correspondence between the encoding and the tree). A valid
codeword is defined by the following definition and theorem.

Definition 3. Suppose that {`,m, r}∗ is the set of all sequences with alphabet of
`,m, r and let A be a proper subset of {`,m, r}∗; then we call the set A a “CodeSet”
iff A satisfies the following properties:

1. ε ∈ A (ε is a string of length 0),

2. ∀x1, x2, . . . , xi ∈ A, and i ≥ 2: `x1mx2mx3 . . .mxi−1rxi ∈ A.

Theorem 1. Let A be a “CodeSet”, δ be a string such that δ ∈ A and C be
a codeword obtained by the concatenation of the character ′m′ and δ (we show it by
mδ). There is a one-to-one correspondence between C and a unique neuronal tree.

Proof. It can be proved by induction on the length of C. Initially for a codeword
of length equal to 1 the proof is trivial. Assume each codeword obtained in the
above manner with length less than n encodes a unique neuronal tree. For any
given codeword with length n we have:

C = m`x1mx2 . . .mxj−1rxj, such that xi ∈ A, ∀1 ≤ i ≤ j.
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By induction hypothesis, each mxi for 1 ≤ i ≤ j is a valid codeword for a neuronal
tree; therefore with replacement of m with ` in mx1 and also m with r in mxj we
can produce the `x1 and rxj codewords. Thus they all are subtrees of a neuronal
tree whose codeword is C = m`x1mx2 . . .mxj−1rxj. This tree is shown in Figure 3.

m

m r

x
1

x
2

x j

l

Figure 3. The neuronal tree encoded by C = m`x1mx2 . . .mxj−1rxj

Reversely, we assume each neuronal tree T with size k < n has a unique code
in the form C = m`x1mx2 . . .mxj−1rxj. Now, we consider the tree T with size n
as shown in Figure 3. Employing the induction assumption, the codeword corre-
sponding to the first subtree of this tree (Figure 3) is equal to `x1 where x1 ∈ A and
the codeword corresponding to the second subtree is equal to mx2 where x2 ∈ A,
. . . , and the codeword corresponding to the jth subtree is equal to rxj where
xj ∈ A. With respect to the definition of A, the concatenation of these codewords
(δ = `x1mx2 . . .mxj−1rxj) belongs to A. Clearly C = mδ represents a codeword of
a tree composed of the above subtrees. �

Now, for generating the successor of a given codeword C corresponding to neu-
ronal tree T , the codeword C is scanned from right to left. Scanning the codeword C
from right to left, corresponds to reverse preorder traversal of labeled neuronal
tree T . During the scan, either one of the characters ′m′, ′`′ or ′r′ is visited, and on
the corresponding node to the visited character in tree T the following operations
are proceeded.

1. Visiting character ‘r’ means we have arrived to a rightmost node. This node can
not be extended individually. By passing this node we continue the scanning.

2. Visiting character ‘m’ means that we have arrived to a subtree in between.
Therefore this subtree can be extended. Definitely there exists a co-level leaf
which is previously scanned and can be added to the subtree of current node
(node corresponding to the visited character) and the scanning is terminated.
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3. Visiting character ‘`’ means that we have arrived to the leftmost subtree. In this
case, we know the right brother of the current node can not be labeled by ‘m’,
because scanning each visited character ‘m’, means that the successor had been
produced, so definitely its right brother must be labeled by ‘r’. Therefore it can
not be added to the subtree of the current node because the number of their
siblings will be one, and it is against the definition of neuronal tree. Now we
must connect both of them directly to their ascendants.

The pseudo code for this algorithm is presented in Algorithm 1.
In this algorithm, array C is a global array of characters holding the codeword

(the algorithm generates the successor sequence of this codeword), Size shows the
size of codeword and N is a local array of size |C| where N [i] shows the size of
subtree rooted by the node corresponding to C[i]. This array is computed implicitly
during the performance of the algorithm. The variable b shows the index of right
sibling and the variable w is a local variable for saving the value of N [i] during the
performance of the algorithm.

In order to generate all neuronal trees of size n, we start from “m`mn−2r” which
is the codeword corresponding to the first neuronal tree in A-order and we recall the
algorithm for Sn times.

Theorem 2. The algorithm Next presented in Algorithm 1 has a worst case time
complexity of O(n) and an average time complexity of O(1).

Proof. Worst case time complexity of this algorithm is O(n) because the sequence
is scanned just once. For computing average time, it should be noted that during
the scanning process every time we visit the character ‘m’, the algorithm will be ter-
minated, so we define Sni as the number of codewords of neuronal trees with n leaves
whose last character ‘m’ has distance i from the end. Obviously we have:

Sn =
2n−1∑
i=1

Sni .

Now, consider that for Sn+1
i we have two cases, the last character ‘m’ may be a leaf

or not. So obviously Sn+1
i is greater than just the first case and by removing the

character ‘m’ we have:

Sn+1
i ≥

2n−1∑
j=i

Snj .

We define Hn as the average time of generating all codewords of neuronal trees
with n leaves, so:

Hn ≤ (C/Sn)
2n−1∑
i=1

iSni ,

Hn ≤ (C/Sn)
2n−1∑
j=1

2n−1∑
i=j

Sni ,
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Algorithm 1 The Next algorithm

1: Function Next (Size: integer)
2: var w, i, b, k, j: integer;
3: begin
4: i := Size; N [i] := 1;
5: repeat
6: b := i; i := i− 1;
7: N [i] := 1;
8: while ((C[i] = `) and (C[b] = r) and (N [b] = 1)) do begin
9: i := i− 1; N [i] := N [i+ 1] + 1;

10: N [i+ 1] := 0; N [b] := 0; b := b+ 1;
11: end;
12: until (C[i] = m) or (i = 1) or ((C[i] = `) & (C[b] = r) & (N [b] > 1));
13: if (i = 1) then
14: return(false)
15: else
16: if ((C[i] = m) and (N [b] = 1)) then C[i] := C[b];
17: w := N [i]; N [i] := 0; i := i+ 1; C[i] := `;
18: for k := 1 to w − 1 do begin
19: i := i+ 1; C[i] := m;
20: end;
21: i := i+ 1; C[i] := r;
22: if N [b] > 1 then begin
23: for k := 1 to (N [b]− 2) do begin
24: i := i+ 1; C[i] := m;
25: end;
26: N [b] := 0;
27: i := i+ 1; C[i] := r;
28: end;
29: for j := b+ 1 to Size do begin
30: if N [j] > 0 then begin
31: for k := 1 to N [j]− 1 do begin
32: i := i+ 1; C[i] := m;
33: end;
34: N [j] := 0;
35: i := i+ 1; C[i] := r;
36: end;
37: end;
38: Size := i;
39: return(true);
40: end;
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Hn ≤ (C/Sn)
2n−1∑
j=1

Sn+1
j ,

Hn ≤ CSn+1/Sn,

Hn ≤ C × 6 = O(1)

where C is a constant value.
Finally, it should be mentioned that this constant average time complexity is

obviously without considering the consumed time for input and output. �

4 RANKING AND UNRANKING ALGORITHMS

By designing a generation algorithm in a specific order, the rank of a tree is its
position in the exhaustive generated list. Rank of a neuronal tree with respect to
some ordering is the number of neuronal trees that come before it in the ordering.
Unranking is as usual the inverse of the ranking. An unranking algorithm determines
the neuronal tree having a particular rank. In this section, ranking and unranking
algorithms for neuronal trees in A-order are given.

The following theorems and definitions help us in designing the rank algorithm
in A-order.

Theorem 3. Let Sn be the cardinality of neuronal trees with n leaves, then

Sn = 2
n−2∑
i=1

SiSn−i + Sn−1S1,

S1 = S2 = 1.

Proof. Let T be a neuronal tree with n leaves; we have two different cases (remember
that each internal node has at least two children):

1. T has just two children T1 with i leaves and T2 with n− i leaves. Obviously in
this case the total number of neuronal trees can be enumerated by the following
formula:

n−1∑
i=1

SiSn−i.

2. T has k > 2 children T1, T2, . . . , Tk such that T1 has i leaves and T2, T3, . . . , Tk
have all together n− i leaves. Since k > 2, if we ignore T1, a neuronal tree with
n − i leaves remains, and because the value of i can not be equal to n − 1, so
the total number of trees in this condition is:

n−2∑
i=1

SiSn−i.
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Now by summing up these cases we have:

Sn = 2
n−2∑
i=1

SiSn−i + Sn−1S1.

�

Theorem 4. Let Dn,i be the number of neuronal trees with n leaves whose first
subtree has at least 1 and at most i leaves. Then we have:

1. If i < n− 1 then Dn,i = 2
∑i

j=1 SjSn−j.

2. If i = n− 1 then Dn,i = 2
∑n−2

j=1 SjSn−j + Sn−1.

Proof. Let T be a neuronal tree with n leaves; we have two different cases:

1. If i < n− 1 then we have two cases again:

a) T has just two children T1 and T2. Obviously in this case the total number
of neuronal trees whose first subtree has at least 1 and at most i leaves can
be enumerated by the following formula:

i∑
j=1

SjSn−j.

b) T has k > 2 children T1, T2, . . . , Tk such that T1 has at least 1 and at most
i leaves and T2, T3, . . . , Tk have totally the remaining leaves. Since k > 2,
if we ignore T1, what remains is a neuronal tree too. So the total number of
trees whose first subtree has at least 1 and at most i leaves in this case is:

i∑
j=1

SjSn−j.

Now by summing up these cases we have:

Dn,i = 2
i∑

j=1

SjSn−j.

2. If i = n− 1 then we have two cases again:

a) T has just two children T1 and T2. Obviously in this case the total number
of neuronal trees whose first subtree has at least 1 and at most i leaves can
be enumerated by the following formula:

n−1∑
j=1

SjSn−j.
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b) T has k > 2 children T1, T2, . . . , Tk such that T1 has at least 1 and at most
i leaves and T2, T3, . . . , Tk have the remaining leaves. Since k > 2, it is
impossible that the first subtree has n − 1 leaves because T2, T3, . . . , Tk
totally have at least 2 leaves (each one has at least one leaf). In this case
again if we ignore T1, what remains is a neuronal tree too. So the total
number of trees whose first subtree has at least 1 and at most i leaves in this
case is:

n−2∑
j=1

SjSn−j.

Now by summing up these cases we have:

Dn,i = 2
n−2∑
j=1

SjSn−j + Sn−1.

Hence, the proof is complete. �

For ranking and unranking algorithms we need Sn and Dn,i that are defined and
computed earlier. We assume these values are computed and stored in arrays S[n]
and D[n, i]. The pseudo code given in Algorithm 2 constructs and stores them in
arrays S[n] and D[n, i] in O(n) and O(n2).

Algorithm 2 Algorithm for producing S[n] and D[n, i] arrays

1: Function produceSD (n: integer)
2: var i, j, k: integer;
3: begin
4: S[0] := 1; S[1] := 1;
5: for i := 2 to n do begin
6: for j := 1 to (i− 2) do
7: S[i] := S[i] + 2× S[j]× S[i− j];
8: S[i] := S[i] + S[i− 1];
9: end;

10: for i := 1 to n do begin
11: D[i, 0] := 0;
12: for j := 1 to (i− 2) do
13: for k := 1 to j do
14: D[i, j] := D[i, j] + 2× S[k]× S[i− k];
15: for k := 1 to i− 2 do
16: D[i, i− 1] := D[i, i− 1] + 2× S[k]× S[i− k];
17: D[i, i− 1] := D[i, i− 1] + S[i− 1];
18: end;
19: S[0] = 1/2; S[1] = 1/2;
20: end;
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Note that in Algorithm 2 initially we assign 1/2 to the S[0] and S[1] instead of 1
because in the following ranking formula the values of coefficient of S[0] and S[1] are
half of the other values; also remember that S[n] and D[n, i] arrays are computed
just one time before running the main “Rank” or “Unrank” algorithms.

Let T be a neuronal tree with n leaves whose subtrees are defined by T1, T2, . . . ,
Tj and for 1 ≤ i ≤ j : |Ti| = ni, and

∑j
i=1 ni = n. For computing the rank of T , we

have to enumerate the number of trees generated before T .
The number of neuronal trees with n leaves whose first subtree is smaller than

T1 is equal to:
D[n, n1 − 1] + 2(Rank(T1)− 1)S[n− n1],

and the number of neuronal trees with n leaves whose first subtree is equal to T1
but the second subtree is smaller than T2 is equal to:

D[n− n1, n2 − 1] + 2(Rank(T2)− 1)S[n− n1 − n2].

Similarly the number of neuronal trees with n leaves whose first (j− 1) subtrees are
equal to T1, T2, . . . , Tj−1 and the jth subtree is smaller than Tj is equal to:

D[n−
j−1∑
k=1

nk, nj − 1] + 2(Rank(Tj, nj)− 1).

Therefore, regarding the above enumeration we can write:

Rank(T, 1) = 1

Rank(T, n) = 1 +

j∑
i=1

(
D

[
n−

i−1∑
k=1

nk,

i∑
k=1

nk − 1

]

+ 2(Rank(Ti, ni)− 1)S

[
i∑

k=1

nk

])
.

For the rank of a codeword stored in array C, we need an auxiliary array N [i]
which keeps the number of leaves in the subtree whose root is labeled by C[i] and
corresponds to the ni in the above formula. This array is computed by the algorithm
given in Algorithm 3. In this algorithm “Beg” is a variable that shows the positions
of the first character in the array C, and “Fin” shows the position of last leave in
subtree whose root is labeled by C[Beg]. This algorithm is recursive and in each
call, for a codeword in global array C, the number of leaves of a subtree rooted at
C[Beg] with the last leaf in C[Fin] is calculated. This algorithm is performed just
once before calling the ranking algorithm.

The ranking algorithm is given in Algorithm 4.
In this algorithm, C is a global array which stores the codeword, N is global

array which stores the number of leaves (calculated by Algorithm 3), Beg is also the
variable that shows the positions of the first character in the array C whose rank is



Neuronal Trees Generation 1441

Algorithm 3 Algorithm for calculating the number of leaves in a subtree

1: Function CalculateN(Beg: integer)
2: var Fin, Sum, Cur: integer;
3: begin
4: if C[Beg + 1] 6= ` then begin
5: N [Beg] := 1;
6: return(Beg + 1);
7: end else
8: begin
9: Fin := Beg + 1; Sum := 0;

10: repeat
11: Cur := Fin;
12: Fin := CalculateN(Cur); Sum := Sum+N [Cur];
13: until (C[Cur] = r);
14: N [Beg] := Sum;
15: return(Fin);
16: end;
17: end;

being computed (Beg is initially set to 1), and Fin is the variable that returns the
position of the last characters of C.

Now the time complexity of this algorithm is discussed. Obviously the time
complexity of procedure “CalculateN” (presented in Algorithm 3) which computes
the number of leaves in each subtree is O(n). Since this algorithm is performed just
once before calling the ranking algorithm and it has no more time effects on ranking
algorithm, therefore we should calculate the time complexity of ranking algorithm.

Theorem 5. The ranking algorithm has the time complexity of O(n).

Proof. Let T be a neuronal tree with n leaves whose subtrees are defined by T1,
T2, . . . , Tj and for 1 ≤ i ≤ j : |Ti| = ni and

∑j
i=1 ni = n, and let T (n) be the time

complexity of ranking algorithm, then we can write:

T (n) = T (n1) + T (n2) + . . .+ T (nj) + αj,

where α is a constant and αj is the time complexity of the non-recursive parts of
the algorithm.

By using induction, we prove if β be a value greater than α then T (n) ≤ βn.
We have T (1) < β. We assume T (k) ≤ β(k − 1) for each k < n, therefore

T (n) ≤ β(n1 − 1) + β(n2 − 1) + . . .+ β(nj − 1) + αj,

T (n) ≤ β(n1 + . . .+ nj − j) + αj,

T (n) ≤ βn− βj + αj,

T (n) ≤ βn.
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So the induction is complete and we have:

T (n) ≤ βn =⇒ T (n) = O(n).

�

Before giving the description of the unranking algorithm we need to define two
new operators.

• If a and b are integer numbers then a div+ b is defined as follows:

– If b - a then a div+ b is equal to (a div b).

– If b | a then a div+ b is equal to (a div b)− 1.

• If a and b are integer numbers then amod+ b is defined as follows:

– If b - a then amod+ b is equal to (amod b).

– If b | a then amod+ b is equal to b.

Considering the above formulas the unranking algorithm is given in Algorithm 5.

Algorithm 4 Ranking algorithm

1: Function Rank(Beg: integer; Fin: integer)
2: var R, Point, PointFin, Leaves, n: integer;
3: begin
4: n := N [Beg];
5: if (n = 1) then begin
6: Fin := Beg;
7: return(1);
8: end
9: else begin

10: Point := Beg + 1; R := 0; Leaves := 0;
11: while (Leaves < n ) do begin
12: R := R +D[n− Leaves, N [Point]− 1]
13: + 2(Rank(point,PointFin)− 1)× C[n− Leaves−N [Point]];
14: Leaves := Leaves +N [Point];
15: if N [Point] = 1 then
16: Point := Point + 1
17: else
18: Point := PointFin + 1;
19: end;
20: return(R + 1);
21: end;
22: end;
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In this algorithm R is the input, Beg is the variable to show the position of
the first character in the global array C and initially is set to 1. The generated
codeword is hold in array C. The variable n is the number of leaves and Root stores
the character corresponding to the current node which we want to compute the
unrank of subtree rooted by this node and initially is labeled by ‘m’ (the label of
the root).

Obviously for determining the next character we have two possibilities for the
character of the root. If the root is ‘r’ then the next character (if exists) will be ‘`’.
If the root is ‘m’ or ‘`’ we have again two possible cases here: if all the leaves of the
current tree are not produced then the next character is ‘m’, otherwise in this case
all the leaves have been produced and then the next character will be ‘r’.

Theorem 6. The time complexity of the unranking algorithm is O(n log n).

Proof. Let T be a neuronal tree with n leaves whose subtrees are defined by T1,

Algorithm 5 Unrank algorithm

1: Function UnRank(R, Beg, n: integer; Root: char)
2: var Point, i, t: integer;
3: begin
4: if ((n = 0) or (R = 0)) then return(Beg− 1)
5: else
6: if (n = 1) then begin
7: C[Beg] := Root;
8: return(Beg);
9: end

10: else begin
11: C[Beg] := Root; Point := Beg + 1;
12: Root := `;
13: while (n > 0) do begin
14: i := 0;
15: repeat
16: i := i+ 1;
17: until (D[n, i] ≥ R);
18: R := R−D[n, i− 1];
19: if (n− i) = 0 then Root := ′r′;
20: t := 2C[n− i];
21: Point := UnRank((div+(R, t)) + 1,Point, i,Root) + 1;
22: R := mod+(R, t);
23: n := n− i; Root := ′m′;
24: end;
25: return(Point− 1);
26: end;
27: end;
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T2, . . . , Tj and for 1 ≤ i ≤ j : |Ti| = ni and
∑j

i=1 ni = n, and let T (n) be the
time complexity of unranking algorithm. With regard to the unranking algorithm,
the time complexity of finding j such that D[n, j] ≥ R for each Ti of T is O(log ni),
therefore we have:

T (n) = O(log n1 + log n2 + . . .+ log nj) + T (n1) + T (n2) + . . .+ T (nj).

We want to prove that T (n) = O(n log(n)). In order to obtain an upper bound for
T (n) we do as follows. First we prove this assumption for j = 2, then we generalize
it. For j = 2 we have T (n) = O(log(n1) + log(n2)) + T (n1) + T (n2). Let n1 = k;
then we can write the above formula as

T (n) = T (k) + T (n− k) +O(log(k) + log(n− k)) = T (k) + T (n− k) + C ′ log(n).

For proving that T (n) = O(n log(n)) we use an induction on n. We assume T (m) ≤
Cm log(m) for all m ≤ n, thus in T (n) we can substitute

T (n) ≤ C × k log(k) + C × (n− k) log(n− k) + C ′ log(n).

Let f(k) = C×k log(k)+C×(n−k) log(n−k), now the maximum value of f(k) with
respect to k and by considering n as a constant value can be obtained by evaluating
the derivation of f(k) which is f ′(k) = C× log(k)−C× log(n−k). Thus if f ′(k) = 0
we get k = (n− 1)/2 and by computing f(1), f(n− 2) and f((n− 1)/2) we have:

f(1) = f(n− 2) = C × (n− 2) log(n− 2),

f((n− 1)/2) = 2C × ((n− 1)/2)× log((n− 1)/2) < C × (n− 2) log(n− 2)

so the maximum value of (f(k)) is equal to C × (n− 2) log(n− 2) and therefore

T (n) ≤ C × (n− 2) log(n− 2) + C ′ × log(n).

It is enough to assume C = C ′; then

T (n) ≤ C × (n− 2) log(n) + C × log(n) ≤ C × n log(n).

Now, for generalizing the above proof and proving T (n) = O(n log n), we should
find the maximum of the function f(n1, n2, . . . , nj) =

∏j
i=1 ni. By the Lagrange

method we prove that maximum value of f(n1, n2, . . . , nj) is equal to
(
n
j

)j
. Then

δf
δj

=
(
n
j

)j (
ln
(
n
j

)
− 1
)

= 0, and

ln

(
n

j

)
− 1 = 0,

n

j
= e⇒ j =

n

e
,
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so the maximum value of f(n1, n2, . . . , nj) is equal to e
n
e . We know that:

T (n) = O(log n1 + log n2 + . . .+ log nj) + T (n1) + T (n2) + . . .+ T (nj),

so

T (n) = O

(
log

(
j∏
i=1

ni

))
+

j∑
i=1

T (ni),

T (n) < O
(
log
(
n

n
e

))
+

j∑
i=1

T (ni),

T (n) < O
(n
e

log e
)

= O(n) +

j∑
i=1

T (ni).

Finally by using induction, we assume that for each k < n we have T (n) < βn log n,
therefore

T (n) = O(n) +

j∑
i=1

T (ni),

T (n) < O(n) +

j∑
i=1

βO(ni log ni),

T (n) < O(n) + β log

(
j∏
i=1

(nni
i )

)
,

T (n) < O(n) +O(log(nn)),

T (n) = O(n log n).

Hence, the proof is complete. �

5 APPLICATIONS

Trees have many applications in circuit design, data compression, string matching,
and image processing [33, 34, 35]. For example in image processing, particular cases
of t-ary trees, quadtrees and octrees, are used for the hierarchical representation of
2- and 3-dimensional images, respectively [36]. Problems of interest are the efficient
construction of quadtrees and octrees from frame buffers, axial tomography scan
slices computation, parametric generation, and some other techniques. Efficient
encoding and decoding algorithms as well as an arithmetic which supports geometric
transformations and other relevant manipulations were recently developed [36, 37].
In this representation, graphical objects can be stored and transmitted on networks
using the minimum possible amount of data that is needed to rebuild the original
object [38, 39].
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As mentioned earlier, the class of neuronal trees is based on different biological
facts. Dendrites of nerve cell [21], Darwin tree of life [40] and phylogenetic trees
or evolutionary trees [26, 28, 41] modeling are some applications of neuronal trees.
To show how important are they, we focus on the most important one which is
phylogenetic trees.

Taxon is a group of one or more populations of organisms. For years there
have been no exact criteria for what belongs or does not belong to such a taxonomic
group. Today for scientists it is common to define a “good taxon” as one that reflects
evolutionary or phylogenetic relationships, which directly come from evolutionary
trees or phylogenetic trees [41]. By a phylogenetic tree on a set S of n taxa or
species we mean a tree without out-degree one nodes whose leaves are bijectively
labeled in S [28, 41]. Biologists use either unrooted (qualitative) or rooted (cladistic)
evolutionary trees. On a rooted-evolutionary tree, there is a common ancestor named
root that corresponds to the most ancient ancestor in the tree. Leaves of evolutionary
trees correspond to the existing species (taxa) while internal vertices correspond to
hypothetical ancestral species; but in the unrooted-evolutionary trees, we may not
claim about the position of evolutionary ancestors or root in the tree [26, 28, 41].

There is also another classification of evolutionary trees, evolutionary trees where
every internal node has exactly two children (two states) and evolutionary trees
whose internal nodes have two or more children (multistate) [26]. So the rooted-
multistate-evolutionary trees of n species is equivalent to the neuronal trees of size n
when the rooted-two states-evolutionary trees of n species are equivalent to binary
trees.

In the past, biologists relied on morphological features, like the number of legs
(for insects) or beak shapes (for birds) or the presence or absence of fins (for fishes) to
construct evolutionary trees; but today biologists use DNA sequences information
for reconstruction of evolutionary trees [42]. Considering a set of n species, each
species has some special information corresponding to its DNA, like genes. Biologists
prefer to build evolutionary trees based on these information (let’s call these genes
or information “characters”). So, biologists prefer to reconstruct evolutionary tree
based on a given n×m alignment matrix (n species and m characters); we call this
approach “character-based tree reconstruction method” [43, 44].

An intuitive score for a character-based evolutionary tree is the total number of
mutations (changing one character form a parent to a child) required to explain all
of the observed character sequences [45, 46]. The “parsimony approach” attempts
to minimize this score. Practically, the goal is to find the strings of characters
assigned to internal vertices when minimizing the parsimony score. This problem
is called “large parsimony problem” which assumes that neither the tree structure
nor the labels of its internal vertices are known and tries to minimize the parsimony
score [43, 47].

However, the number of topologies grows very fast with respect to n; to find
the best solution we need to search all possible topologies of evolutionary trees,
so biologists often use local heuristic searches or approximation algorithms. We
proposed a constant average time complexity algorithm to generate all neuronal
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trees of the same size. As these trees are equivalent to evolutionary trees, using this
method enables us to efficiently generate all topologies of evolutionary trees of the
same size (same number of taxa) for finding the one with the best score.

This work comes with all other trespassory algorithms like ranking, unranking
and complexity analysis which show that these algorithms are efficient and easy to
store, generate and use practically.

6 CONCLUSION

In this paper, we presented an efficient algorithm for the generation of neuronal
trees with n leaves in A-order with an encoding over three letters (an encoding with
minimum size of alphabet such that the length of each codeword is less than 2n).
Also, two genuine ranking and unranking algorithms were designed for this encoding.
The generation algorithm has O(n) time complexity in the worst case and O(1) in
an average case. The ranking and unranking algorithms have O(n) and O(n log n)
time complexity, respectively.
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