
Computing and Informatics, Vol. 34, 2015, 254–274

IMPROVING THE PERFORMANCES
OF ASYNCHRONOUS SEARCH ALGORITHMS
IN SCALE-FREE NETWORKS USING
THE NOGOOD PROCESSOR TECHNIQUE

Ionel Muscalagiu

The “Politehnica” University of Timisoara
The Faculty of Engineering of Hunedoara, Revolutiei, 5, Romania
e-mail: ionel.muscalagiu@fih.upt.ro

Horia Emil Popa, Viorel Negru

The University of the West
The Faculty of Mathematics and Informatics
Timisoara, V. Parvan 4, Romania
e-mail: {hpopa, vnegru}@info.uvt.ro

Abstract. The scale-free graphs were proposed as a generic and universal model
of network topologies that exhibit power-law distributions in the connectivity of
network nodes. In recent years various complex networks were identified as having
a scale-free structure. Little research was done concerning the network structure
for DisCSP, and in particular, for scale-free networks. The asynchronous searching
techniques are characterized by the occurrence of nogood values during the search
for a solution. In this article we analyze the distribution of nogood values to agents
and the way how to use the information from the nogood; that is called the nogood
processor technique. We examine the effect of nogood processor for networks that
have a scale-free structure aiming to develop search algorithms specialized for scale-
free networks of constraints, algorithms that require minimum costs for obtaining
the solution. We develop a novel way for distributing nogood values to agents,
thus obtaining a new hybrid search technique that uses the information from the
stored nogoods. The experiments show that it is more effective for several families
of asynchronous techniques; we perform tests with the model running on a cluster
of computers. Also, we examine the effect of synchronization of agents’ execution
and of processing messages by packets in scale-free networks.

Improving the Performances in Scale-Free Networks Using Nogood Processor 255

Keywords: Agents, distributed constraint programming, asynchronous search
techniques, scale-free networks, nogood messages

Mathematics Subject Classification 2010: 68T42

1 INTRODUCTION

Constraint programming is a programming approach used to describe and solve
large classes of problems such as searching, combinatorial and planning problems.
Distributed constraint satisfaction problem (DisCSP) is a constraint satisfaction
problem in which variables and constraints are distributed among multiple agents.
This type of distributed modeling appeared naturally for many problems for which
the information was distributed to many agents (distributed resource allocation
problems, distributed scheduling problems, multi-agent truth maintenance tasks,
etc.) [17, 10]. The idea of sharing various parts of the problem among agents that
act independently and collaborate in order to find a solution by using messages has
led to a formal problem known as the distributed constraint satisfaction problem
(DisCSP) [17, 10]. DisCSPs are composed of agents, each has its local constraint net-
work. Variables in different agents are connected by constraints forming a network
of constraints. Agents must assign values to their variables so that all constraints
between agents are satisfied.

Distributed networks of constraints have proven their success when modeling
real problems. Many problems in the computer science area, engineering, biology
can be modeled efficiently as constraint satisfaction problems (or distributed CSP).
Some examples include: spatial and temporal planning, qualitative and symbolic
reasoning, diagnosis, decision support, hardware design and verification, real-time
systems and robot planning, protein structure prediction problem, DNA structure
analysis, timetabling for hospitals, industry scheduling, transport problems [5], etc.

There are complete asynchronous searching techniques for solving the DisCSP
in this constraints network, such as the ABT (asynchronous backtracking), AWCS
(asynchronous weak commitment) [17, 18], DisDB (distributed dynamic backtrack-
ing) [6], ABTDO (dynamic ordering for asynchronous backtracking) [10].

In recent years various complex networks have been identified as having a scale-
free structure [2, 3, 4]. Scale-free networks are abundant in nature and society,
describing such diverse systems as the Internet, a network of routers connected by
various physical connections, the chemical network of a cell, etc. Little research was
done concerning the behavior of the search techniques in networks of constraints
that have a structure of the scale-free networks type [16, 15]. Thus, few things are
known about choosing the optimal search technique for topological structures of the
scale-free network type. The purpose of the article is to develop search algorithms
specialized for scale-free networks of constraints, algorithms that require minimum
costs for obtaining a solution.

256 I. Muscalagiu, H. E. Popa, V. Negru

In the distributed constraint satisfaction area, the asynchronous weak commit-
ment search algorithm (AWCS) [17, 18] plays a fundamental and pioneer role among
algorithms for solving the distributed CSPs. The algorithm is characterized by
an explosion of the nogood values, but by dynamically changing the agents’ order
an efficient algorithm is obtained.

The occurrence of nogood values has the effect of inducing new constraints. No-
good values show the cause of failure and their incorporation as a new constraint will
teach the agents not to repeat the same mistake. The non-restriction for recording
the nogood values could become, in certain cases, impracticable. The main reason
is that the storing of nogood values excessively consumes memory and could lead
to lowering the memory that has been left. Another unfortunate effect of storing
a large number of nogood values is related to the fact that the verification of the
current associations in the list of nogood values that are stored becomes very expen-
sive; the searching effort removes the benefits brought by the nogood values storing.
These elements are analysed, aiming to see if this nogood processor technique brings
benefits in terms of efficiency.

In [1] the notion of a nogood processor is introduced for the first time. In [12]
we try to adapt the nogood processor technique for the AWCS technique. This
technique consists of storing the nogood values and further uses the information
given by nogoods in the process of selecting a new value for the variables associated
to agents.

In this paper we examine the effect of nogood processor for constraints networks
of the scale-free type. We develop a novel way for the distribution of nogood values
to agents, the experiments show that it is more effective for several families of
asynchronous techniques. Starting with the results from [12], this study tries to
adapt the version of nogood processor with the learning techniques in the purpose
of finding a solution that increases the performance of the AWCS technique. The aim
of these studies is to develop search algorithms specialized for scale-free networks.

The asynchronous search techniques can be characterized by the existence of
a very large number of elements that can be introduced, without affecting the com-
pleteness of the algorithm. For example, processing the messages in packets or
individual, storage or not of the nogood messages, message filtering, the priority
order of the agents or synchronization of the agents’ execution. All these elements
influence the behavior of the search techniques, for example, the increase or decrease
of the message flow, the quantity of constraints checked, etc. Thus, a correct evalua-
tion of the performances presumes also the analysis of these elements. In this article
we focus on two such elements in the case of the problems with a scale free network
structure: processing the messages by packets and the opportunity of synchronizing
the process of execution of the agents.

Specifically, it is interesting to investigate the opportunity of synchronizing the
agents in case of asynchronous techniques for topological structures of the scale-free
network type. The behaviors of several asynchronous techniques are investigated in
two cases: the agents execute asynchronously the processing of received messages
(the real-life situation) and the synchronous case where the agents’ execution is

Improving the Performances in Scale-Free Networks Using Nogood Processor 257

synchronized. In other words, the agents perform a computing cycle in which they
process messages (in packets) from a message queue in the synchronous case. After
that, a synchronization is done waiting for the other agents to finalize the processing
of their messages. Combining all these elements allowed the identification of a hybrid
search technique that has better performances for the problems with a scale-free
network structure.

Previous research [8, 13] shows that synchronization is beneficial for some tech-
niques, but increases the costs for others.

The evaluation of the performances of the AWCS technique is done using Net-
Logo. NetLogo is a programming environment with agents that allows the imple-
mentation of the asynchronous search techniques ([19], [20]). In order to make such
estimation, the AWCS technique with nogood processor is implemented in NetLogo,
using the models proposed in [11, 14], model named DisCSP-NetLogo. Implemen-
tation examples for the AWCS family can be found on the website [20]. For the first
time, the experiments are done with a large number of agents (500 and 1 000), using
a NetLogo model that runs on a cluster [14, 21].

2 THE FRAMEWORK

This section presents some notions related to the DisCSP modeling and AWCS
algorithm [17, 18, 10].

Definition 1. The model based on constraints – constraint satisfaction problem
(CSP), existing for centralized architectures, is defined by a triple (X,D,C), where:
X = {x1, . . . , xn} is a set of n variables; whose values are taken from finite domains
D = {D1, D2, . . . , Dn}; C is a set of constraints declaring those combinations of
values which are acceptable for variables.

The solution of a CSP implies to find an association of values for all the variables
that satisfies all the constraints.

Definition 2. A problem of satisfying the distributed constraints (DisCSP) is
a CSP, in which the variables and constraints are distributed among autonomous
agents that communicate by exchanging messages. Formally, DisCSP is defined by
a 5-tuple (X,D,C,A, φ), where X, D and C are as before, A = {A1, . . . , Ap} is a set
of p agents, and φ : X −→ A is a function that maps each variable to its agent.

In this article we will consider that each agent Ai has allocated a single vari-
able xi, thus p = n. Also, we assume the following communication model [17, 18]:

• Agents communicate by sending messages. An agent can send messages to other
agents iff the agent knows the addresses of the agents.

• Delay in delivering a message is finite, although random. For transmission be-
tween any pair of agents messages are received in the order in which they were
sent.

258 I. Muscalagiu, H. E. Popa, V. Negru

Asynchronous search algorithms are characterized by the agents using the mes-
sages during the process of searching for the solution. Typically, it uses two types
of messages:

• Ok message, which contains an assignment variable-value and is sent by an agent
to the constraint-evaluating-agent in order to see if the value is right.

• Nogood message, which contains a list (called nogood) with the assignments
wherefore a looseness was found, is sent in case the constraint-evaluating-agent
finds an unfulfilled constraint.

The ordering of agents is based on their priority, so that agents that are later
in the ordering are termed “lower priority agents” [6, 17, 10]. Orderings of agents
can be either static or dynamic. If agents are ordered before the start of the run of
the search algorithm and the order is not changed during the run of the algorithm,
it is called static. Some asynchronous search techniques use a static order among
agents (e.g. the lexicographic order), order that is fixed before the beginning of
the algorithm. Other asynchronous search techniques use a priority based order,
that can change during the algorithm runtime (AWCS, ABT-DO). For example, the
asynchronous weak commitment search (AWCS) algorithm implements a specific
dynamic ordering heuristic.

Definition 3. Two agents are connected if there is a constraint among the variables
associated to them. Agent Ai has a higher priority than agent Aj if Ai appears
before Aj in the total ordering. Agent Ai is the value-sending agent and agent Aj
the constraint-evaluating agent.

Definition 4. The agent-view list belonging to an agent Ai is the set of the newest
associations received by the agent for the variables of the agents to which it is
connected.

Definition 5. The nogood list is a set of associations for distinct variables for which
an inconsistency was found (an unsatisfied constraint). The agent-view list together
with the stored nogood values constitutes the working context of each agent, de-
pending on them the agent makes decisions.

Definition 6. The nogood list received by agent Ai is consistent for that agent, if
it contains the same associations as agent-view for all the variables of the parent
agents Ak connected with Ai.

The AWCS algorithm [17, 18] is a hybrid algorithm obtained by the combination
of ABT algorithm with WCS algorithm, which exists for CSP. It can be considered
to be an improved ABT variant, but not necessarily by reducing the nogood values,
but by changing the priority order. It deliberately follows to record all the nogood
values to ensure the completeness of the algorithm, but also to avoid some unstable
situations.

Improving the Performances in Scale-Free Networks Using Nogood Processor 259

The authors show in [17] that this new algorithm can be built by a dynamical
change of the priority order. The AWCS algorithm uses, like ABT, two types of ok
and nogood messages, with the same significance. There is a major difference in the
way it treats the ok message. In case of receiving the ok message, if the agent cannot
find a value to its variable that should be consistent with the values of variables that
have a greater priority, the agent not only creates and sends the nogood message,
but also increases the priority in order to be maximum among the neighbors.

3 SCALE-FREE NETWORK

The study of complex network topologies across many fields of science and techno-
logy has become a rapidly advancing area of research in the last few years. One of the
key areas of research is understanding the network properties that are optimized by
specific network architectures. The last few years have led to a series of discoveries
that uncovered statistical properties that are common to a variety of diverse real-
world social, information, biological, and technological networks.

In recent years various complex networks have been identified as having a scale-
free structure [2, 3, 4]. Scale-free networks are abundant in nature and society,
describing such diverse systems as the Internet, a network of routers connected by
various physical connections, SNS, the chemical network of a cell.

Not all nodes in a network have the same number of edges. The spread in
the node degrees is characterized by a distribution function P(k), which gives the
probability that a randomly selected node has exactly k edges. Since in a random
graph the edges are placed randomly, the majority of nodes have approximately the
same degree. One of the most interesting developments in understanding complex
networks was the discovery that for most of large networks the degree distribution
significantly deviates from a Poisson distribution. In particular, for a large number
of networks, including the World Wide Web, the Internet or metabolic networks,
the degree distribution follows a power-law for a large number of nodes [2, 3, 4].
Such networks are called scale free [3, 4].

A scale-free network is characterized by a power-law degree distribution as fol-
lows:

p(k) ∝ k−γ (1)

where k is the degree and γ is the exponent that depends on each network structure.
Scale-free networks have no scale because there is no typical number of links [3,
4]. The random network models assume that the probability that two nodes are
connected is random and uniform. In contrast, most real networks exhibit some
preferential connectivity.

260 I. Muscalagiu, H. E. Popa, V. Negru

4 IMPROVING THE PERFORMANCES OF ASYNCHRONOUS
SEARCH ALGORITHMS USING NOGOOD PROCESSOR

4.1 Nogood Processor in Scale-Free network

A DisCSP can be represented by a constraint graph G = (X,E), whose nodes
represent the variables and edges represent the constraints:

1. X = {x1, . . . , xn} is a set of n nodes/variables

2. E = {(x1, xj)} is a set of edges for which we have a constraint between variables
xi and xj.

In the scale-free networks a few nodes concentrate many more connections than
the rest which have just a few connections each. Starting from this observation we
define the notion of a hub:

Definition 7. A node is called hub if it has a larger number of connections than
a constant c ∈ N . Let H be set of hubs H = {xi | xi ∈ N, deg(xi) ≥ c} where
deg(xi) is the degree of node xi.

Let us show a simple example. A constraint network of a DisCSP having a scale-
free network structure, with 25 nodes and the minimal degree 2, is represented in
Figure 1 a). If we consider the constant c = 8, we can remark the existence of
a number of 4 hubs: H1 = 2 (degree 12), H2 = 0 (degree 10), H3 = 1 (degree 9)
and H4 = 3 (degree 8). For nodes H1, H2, H3, H4 we can remark that they have
many more connections compared to the rest, that have very few connections (see
also Figure 1 b)).

Definition 8. The nogood processor is a special agent associated to each agent Ai,
that stores the received nogood values. Such an agent is called each time when the
assignment of a new value is tried. Each nogood processor builds a database with
the received nogood values (nogood store).

Those values may or may not be shared with the other nogood processors. There
are two ways of sharing the values from the nogood store: through messages sent
by agents of the nogood processor type, or through accessing the shared memory.
Later, when an agent has found a candidate assignment for its variables, it con-
sults the nogood processor to make sure that its assignment along with any known
assignments of higher priority agents do not constitute a nogood.

In the AWCS algorithm when a nogood message is received by the agent Ai,
the agent adds the nogood value to its nogood store and executes a verification of
the inconsistencies for nogood. If the new nogood has also an unknown variable,
the agent needs to receive the value from the corresponding agent. Unfortunately,
the information from nogood is not completely used in the case of assigning a new
value for the variable associated to the agent. It is possible that the nogood values
contain a reference to this value, implying that the assignment has appeared before

Improving the Performances in Scale-Free Networks Using Nogood Processor 261

a)

b)

Figure 1. Constraint network representing a DisCSP which has a scale-free network struc-
ture: a) A scale-free network with 25 nodes, b) A scale-free network with 900 nodes

262 I. Muscalagiu, H. E. Popa, V. Negru

as inconsistent. The use of this information will be the basis of the nogood processor
technique construction.

In this paper it is considered that some agents have access to the results of their
own nogood processor. More, each agent sends (stores) nogood values that it has
received to the associated nogood processor. The information stored by each nogood
processor will be used in searching a new value for each variable cared for by the
agent. For this, each nogood processor will verify (asked by an agent) through its
subroutine check-inconsistent-value-nogood-processor, if the value selected by the
agent had no previous existence associated with the higher priority agents values.
In Figure 2 we present, in the NetLogo language, the function of type to-report that
returns certain values, for checking the inconsistency of a new value [12].

to-report check-inconsistent-value-nogood-processor [Ai]
foreach Nogood ∈ nogoods-store [

foreach x ∈ Nogood with the current priority from current-view
* bigger than the agent’s Ai [

pos←− position x in Nogood
if x != item pos current-value [

return consistent
]

]
if curent-value! = item Ai in Nogood [

return consistent
]

]
return inconsistent

end

Figure 2. The Function check-inconsistent-value-nogood-processor

Another question needing an answer was identifying how the nogood processors
are distributed. Practically, each agent, when receiving a nogood, sends this to
an associated nogood processor that stores it into a nogood-store list (nogood pro-
cessor only saves those new nogood values, eliminating the copies). The information
will be used later when searching for a new value. Therefore the check-agent-view
procedure will select a new value consistent with the agent view list and with the
nogood list stored by the nogood processor (the value will be selected if, comple-
mentarily, the check-inconsistent-value-nogood-processor subroutine will return the
consistent value).

The check-inconsistent-value-nogood-processor routine is used just for the higher
priority agents, priority considered at the moment of nogood value storing. To put
it differently, the identification of the agents with higher priority towards agent Ai,
is not made by using their actual priority (in current-view), but the priority stored
by the nogood processor.

Improving the Performances in Scale-Free Networks Using Nogood Processor 263

4.2 Messages Management – Processing Messages by Packets

The asynchronous techniques are characterized by the existence of some message
processing routines. We have treatment procedures for ok (info) messages, nogood
(back), add or remove. Those routines treat sequentially the existing messages from
the message queues. Usually, each agent extracts a message from its message queue,
identifies the message type and calls the appropriate processing routine.

In [17, 18] the AWCS technique is presented, without detailing the manner in
which the messages are processed, sequential or by packets, which is a protocol
defining the order in which the messages should be treated.

In this paper we analyze implementations of the AWCS family with complete
processing of messages: each agent treats entirely the existing messages in its mes-
sage queue. Two solutions for complete processing of the queues of messages are
evaluated. Figure 3 shows the new handle-message procedure, presented in the
NetLogo language.

to handle-message [msize]
set nrm 0

1 while [not empty? message-queue and nrm<= msize] or
1’ while [not empty? message-queue] ***
[

set msg retrieve-message
if (type msg = ”ok?”)
[Update agent-view with msg]
if (type msg = ”nogood”)
[handle-nogood-message msg]
. . .
set nrm nrm + 1

]
if (nrm!= 0)

[Check-agent-view]
end

Figure 3. The handle-message for the AWCS

The new handle-message procedure in Figure 3 is applied by each agent to
its message queue. The messages will be extracted in the order of arrival in the
structures of queue type associated to the agents and treated as follows:

1. In the case that the message is of the ok? type, the working environment is
updated with the received value, without checking the consistency of the existing
values or trying a new value.

2. If the message is of the nogood type, the nogood value is saved and the working
environment is updated with the values of the new agents unconnected initially
with the current agent.

264 I. Muscalagiu, H. E. Popa, V. Negru

After scanning and extracting the messages completely or partially, the check-agent-
view routine is called only once, for checking the consistencies from the agent-view
list and the selection (eventually) of a new consistent value.

Concerning the complete or partial processing of the messages, it can be done
by means of the msize variable or renouncing of the second condition of package
limitation (the line labeled with ***). That has a role to decide the number of
extracted and processed messages from the message queue. If msize is equal to the
number of elements from the message queue (msize = length(message-queue)) or if
that condition is missing, the procedure in Figure 3 allows the processing of all the
messages. But, if msize is 1, the sequential processing of the messages is obtained.

The first variant supposes the insertion of line 1 instead of line 1’. In that
case, each agent stops at the moment when either it has no more messages or msize
messages were processed. The second variant supposes the insertion of line 1’.
Message processing supposes an effort and thus a delay occurrence. It is possible
that other messages arrive beside those from the initial moment. In the case of the
second variant if later new messages appear, those are still treated thus surpassing
the number msize of messages allowed. In this paper we implement both variants.

4.3 The Synchronization of the Agents’ Execution

The asynchronous search techniques are search algorithms that run asynchronously
in distributed systems. In reality, the agents run concurrently and asynchronously,
each agent treating its messages from the messages queue in the arrival order, with-
out waiting for the finalization of computations from the other agents. The analysis
of experimental results shows that the AWCS techniques behave better in case of
synchronizing the agents’ execution [13].

In the majority of cases in which performances of search techniques were ana-
lyzed it was done on synchronous distributed systems. Because of simplicity reasons
these distributed systems are usually simulators [17, 18, 10]. A synchronous dis-
tributed system is one of possible distributed systems, where all processes (agents)
run their cycles synchronously. One cycle consists of activities so that all agents
read incoming messages, do their local computation, and send messages to relevant
agents. This article presents an opportunity for synchronizing the agents’ execu-
tion in case of the AWCS family, but identifies problems with a scale-free network
structure.

We investigate two variants of synchronization of the process of the agents’ exe-
cution. The first method of synchronization is based on NetLogo elements, using
the ask-concurrent command for executing the procedures for treating the agents
messages. This command performs a synchronization of the commands attached to
the agents so that the synchronization of the execution of agents is made automat-
ically. Of course, each agent works asynchronously with the messages, but at the
end of a command execution there is a synchronization of agents’ execution. The
simulated solution is based on the existence of a central agent (called in Netlogo
Observer) which performs the synchronization of the agents’ execution process.

Improving the Performances in Scale-Free Networks Using Nogood Processor 265

In reality, the agents run concurrently and asynchronously, each agent treating
its messages from the messages queue in the arrival order, without waiting for fina-
lization of computations from the other agents. There is no central agent that can
deal with the agents’ synchronization. Therefore a second method is investigated in
the context of using the nogood processor technique. The second solution from [13]
consists of synchronizing only the neighboring agents. Each agent will wait for
its connected neighbors to finish their computations which are placed before him
in a lexicographical order. That solution allows a partial synchronization of the
execution of agents. That second solution of partial synchronization is based on the
use of a synchronization message. This message is similar to a token that each agent
needs to receive in order to carry on with the execution of its computing cycle. For
that, each agent uses a second communication channel for receiving synchronization
messages (the first channel is used for receiving the ok or nogood messages).

The working protocol supposes for each agent the completion of two stages:

• each agent processes all the messages from its main communication channel
performing a computing cycle. The moment when the main message channel is
empty, it sends a message of the “synchronous” message type to the neighbouring
agents, that are before him in a lexicographical order.

• after each cycle, the agent checks if it has received the synchronization messages
from all of its neighbours, placed after him in a lexicographical order, and if not,
it waits until it receives all the messages.

5 EXPERIMENTAL RESULTS

In this section we will present our experimental results obtained by implementing
and evaluating the family of asynchronous techniques AWCS in NetLogo [19, 20].
The implementation and evaluation is done using the two models proposed in [11,
14]. The Netlogo implementations were run on a cluster of computers using RedHat
Linux. The cluster allowed running instances of 500 and 1 000 agents, with various
difficulties, without GUI, but with the synchronization of the agents’ execution.

In order to investigate the effect of the synchronization (compared with the real
situation of asynchronous running), several implementations were run, with GUI, on
a Red Hat Linux system, but with a much lower number of agents (nodes = 100).

In this paper, the Java program developed by Sun Microsystems Laboratories is
used as a scale-free network formation tool [7]. This program can generate scale-free
networks given the number of nodes and the minimal degree of each agent (md).
Scale-free networks are generated by the tool with the following parameters:

• nodes = 100, md = 16 and γ = 1.8

• nodes = 500, md = 4 and γ = 1.8

• nodes = 500, md = 16 and γ = 1.8

• nodes = 1 000, md = 2 and γ = 2.1.

266 I. Muscalagiu, H. E. Popa, V. Negru

We examine the performance of AWCS in scale-free networks. Specifically, we
implemented and generated in NetLogo both solvable and unsolvable problems that
have a structure of scale-free networks. Implementation examples for the scale-free
network instance generator (using scale-free networks from [7]) can be found on the
website [20]. We set the domain size of each variable to ten, i.e., domain = 10 which
means |Di| = 10. For the evaluations, we generate five scale-free networks. For each
network, the constraint tightness varies from 0.1 to 0.9 by 0.1. For each constraint
tightness, 200 random problem instances are generated. Thus, the results represent
averages of these 1 000 instances for each of the five networks. These problems have
a number of variables with a fixed domain. This creates problems that cover a wide
range of difficulty, from easy problem instances to hard instances (for each version
we are retaining the average of the measured values).

In order to evaluate the asynchronous search techniques, the message flow was
counted; i.e. the quantity of ok and nogood messages exchanged by agents, the num-
ber of checked constraints, i.e. the local effort made by each agent, and the number
of nonconcurrent constraints checks (defined in [10], noted with ncccs) necessary to
obtain the solution.

In the AWCS family there are many variants that are based on building of
efficient nogoods (nogood learning [9]) or on storing and using those nogoods in the
process of selecting values (nogood processor). Two families of AWCS techniques
are evaluated:

• basic variant proposed in [17] improved with the nogood learning technique
(noted with AWCS-nl)

• basic variant proposed in [17] improved with the nogood learning technique and
the nogood processor technique (noted with AWCS-nlng).

Four implementations are done corresponding to the obtained models:

• basic variant proposed in [17] improved with the nogood learning technique
(noted with AWCS-nl)

• variant based on the nogood processor distributed to each agent: AWCS-nlng1

• variant based on the nogood processor distributed only to the hub type agents:
AWCS-nlng2. This variant used the first method of message processing

• variant based on the nogood processor distributed only to the agents of the
hub type: AWCS-nlng3. This variant used the second solution of the message
processing.

In the first stage, we evaluate four implementations in the conditions of running
them on a cluster of computers using RedHat Linux. The methodology developed
in [14] to run NetLogo models in a cluster computing environment allowed only
running the model with synchronization based on the ask-concurrent command.
We utilize the Java API of NetLogo as well as LoadLeveler. The solution without
GUI allows to be run on a cluster of computers in the mode with synchronization,

Improving the Performances in Scale-Free Networks Using Nogood Processor 267

as opposed to the GUI solution that can be run on a single computer and allows
running in both ways: with synchronization or completely asynchronously.

The number of concurrent constraint checks (ncccs) allows to evaluate global
effort without considering that the agents work concurrently (informally, the number
of concurrent constraint checks approximates the longest sequence of constraint
checks not performed concurrently). Analysing the results from Figure 4 a), one
can remark that the method that distributes the nogood processors to the hub type
nodes reduces the global effort made by the agents (AWCS-nlng2 and AWCS-nlng3).
According to Definition 7, the number of hubs depends on the constant c. For the
problems of the scale-free network type evaluated in this article, we considered as
hub type nodes those having the degree over 60 % of the maximum degree. For
the constraints graphs chosen previously, the number of hubs is approximatively as
follows:

• nodes = 100, md = 16 and c = 5

• nodes = 500, md = 4 and c = 3

• nodes = 500, md = 16 and c = 15

• nodes = 1 000, md = 2 and c = 4

In case of instances with 1 000 agents, the four implementations had the same
behaviour, the version AWCS-nlng3 requiring the least effort for obtaining the solu-
tion.

In the case of the message flow (Figure 4 b)), one can notice almost equal efforts
for obtaining the solution for all 4 versions. Though, for problems with a high
difficulty (constraint tightness = 0.6) the AWCS-nlng3 variant requires slightly less
messages. Regarding the complete processing of the messages, experimental analysis
shows that the first solution that completely processes the messages (AWCS-nlng2)
is better.

Another set of experiments was made for instances of scale-free networks with
500 nodes, but for which md is 16. Such instances are characterized also by a higher
density of the constraints graph. Therefore, solving such instances presumes a much
higher flow of messages. The results are presented in Figure 5. Analyzing the
results from Figure 5, one can remark that the computing effort is pretty much the
same, even if the versions AWCS-nlng3 and AWCS-nlng2 had lower costs but not
significantly. A possible cause for that is the big number of hubs for the density of
the constraints graph. A message flow almost identical can be observed for all the
versions, the difference appearing only for the global effort (ncccs).

In the second stage we investigate the effect of the synchronization of the agents’
execution process. The experiments were performed in the manner with GUI, on
a single computer, with instances of 100 nodes. Seven implementations are done
corresponding to the obtained models (this variants used the first method of message
processing):

• variants based on synchronization with the aid of the “ask-concurrent” command
(complete synchronization): AWCS-nls, AWCS-nlngs, AWCS-nlnghubs

268 I. Muscalagiu, H. E. Popa, V. Negru

!

0!

1000!

2000!

3000!

4000!

5000!

6000!

7000!

8000!

0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9!

N
CC
Cs
$

Constraint$Tightness$

AWCS1nl!

AWCS1nlng1!

AWCS1nlng2!

AWCS1nlng3!

a)

!

0!
2000!
4000!
6000!
8000!
10000!
12000!
14000!
16000!
18000!
20000!

0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9!

M
SG
s%

Constraint%Tightness%

AWCS1nl!
AWCS1nlng1!
AWCS1nlng2!
AWCS1nlng3!

b)

Figure 4. Comparative study for the AWCS versions (scale-free networks), n = 500,
md = 4: a) the number of nonconcurrent constraint checks, b) total number of
messages

Improving the Performances in Scale-Free Networks Using Nogood Processor 269

!

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!
1000!

0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9!

N
CC
Cs
$

Constraint$Tightness$

AWCS1nl!

AWCS1nlng1!

AWCS1nlng2!

AWCS1nlng3!

a)

!

0!
2000!
4000!
6000!
8000!
10000!
12000!
14000!
16000!
18000!

0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9!

M
SG
s%

Constraint%Tightness%

AWCS1nl!
AWCS1nlng1!
AWCS1nlng2!
AWCS1nlng3!

b)

Figure 5. Comparative study for the AWCS versions (scale-free networks), n = 500,
md = 16: a) the number of nonconcurrent constraint checks, b) total number of
messages

270 I. Muscalagiu, H. E. Popa, V. Negru

• variants based on the asynchronous model: AWCS-nla, AWCS-nlnga, AWCS-
nlnghuba

• variant based on the second solution of synchronization (the partial synchro-
nization of the agents): AWCS-nlnghubp.

Results appear in Table 1, where we report the number of checked constraints
(Constr.) the number of nonconcurrent constraint checks (Ncccs) and the total
number of messages exchanged (Tmess), averaged over 1 000 executions.

n = 100 agents
md = 2 md = 16

p2 = 0.4 p2 = 0.6 p2 = 0.2

AWCS-nls

TMess 741 1 140 11 040
Constr. 2 100 3 156 5 480
Ncccs 643 752 15 002

AWCS-nla

TMess 758 1 198 8 980
Constr. 2 448 3 808 58 560
Ncccs 986 1 439 15 722

AWCS-nlngs

TMess 744 1 117 8 876
Constr. 2 163 3 150 59 965
Ncccs 673 732 15 332

AWCS-nlnga

TMess 734 1 150 8 725
Constr. 2 300 3 714 58 024
Ncccs 914 1 413 15 496

AWCS-nlnghubs

TMess 740 1 254 8 474
Constr. 2 096 3 330 46 188
Ncccs 646 765 15 006

AWCS-nlnghuba

TMess 745 1 248 8 546
Constr. 2 390 3 956 55 240
Ncccs 946 1 489 15 126

AWCS-nlnghubp

TMess 745 1 282 8 475
Constr. 2 120 3 950 46 188
Ncccs 724 776 15 117

Table 1. The results for AWCS versions (nodes = 100)

Analyzing the results from Table 1, one can notice that all seven implementations
had approximately the same message exchange. Concerning the local or global effort
of the agents, one can remark a difference between the asynchronous variants and
those with a complete or partial synchronization. Surprisingly, the variants with
synchronization required a lower effort.

In the case of problems with the high density (md = 16), the previous observa-
tions remain true.

The analysis of the first experiments shows that it is preferable to do a synchro-
nization of the execution. The intermediate solution applicable in practice is that
of the partial synchronization of the agents’ execution.

Improving the Performances in Scale-Free Networks Using Nogood Processor 271

6 CONCLUSIONS

In this paper we examine the effect of nogood processor for constraints networks
of the scale-free type. We have shown that the manner of distributing the nogood
values to agents depends on the number of connexions between agents in scale-free
networks, thus obtaining a new hybrid search technique that uses the information
from the stored nogoods.

We developed a novel way for the distribution of nogood values to agents, thus
obtaining a new hybrid search technique that uses the information from the stored
nogoods. The experiments show that it is more effective for several families of asyn-
chronous techniques. Also, in this paper we examine the effect of synchronization
of agents’ execution and of a messages processing by packets in scale-free networks.
The experimental analysis is performed in the situation of a model run on a cluster
of computers and on a single computer.

We analyzed more versions obtained by distributing the nogood values to more
nogood processors for each agent for constraints networks of a scale-free type.

The experimental analysis shows that the best way of distribution is that in
which the nogood processors are distributed to nodes of the hub type (that have
a very high degree, compared to other nodes). That variant requires the lowest
costs.

Concerning the processing of messages by packets, the most performance ver-
sions were obtained in the case of treating all messages from the queue without in-
clusion of those that appeared later. Concerning the opportunity of synchronization
of the agents’ execution, the experiments show that in the case of the systems with
synchronization the lowest costs were obtained. The compromise solution, called
a partial synchronization, applied in practice required a lower computing effort than
the solutions with entirely asynchronous running.

The combination of the analyzed elements (nogoods distribution, processing by
packets and partial synchronization of the agents’ execution) enabled us to identify
a hybrid search technique with better performances for the case of problems with
a free-scale network structure.

We believe that the combination proposed in this article could bring important
benefits to the performances of the asynchronous techniques, leading to the reduction
of an effort in finding the solution in the case of constraints networks of the scale-free
type. Also, we want to extend the experiments for an even greater number of agents
(n > 1 000) and for other classes of problems with a scale free network structure,
like for a random network.

REFERENCES

[1] Armstrong, A.—Durfee E.: Dynamic Prioritization of Complex Agents in Dis-
tributed Constraint Satisfaction Problems. Proceedings of the 15th IJCAI, Nagoya,
Japan, 1997, pp. 620–625.

272 I. Muscalagiu, H. E. Popa, V. Negru

[2] Albert, R.—Barabási, A. L.: Statistical Mechanics of Complex Networks. Rev.
Mod. Phys., Vol. 74, 2002, pp. 47–97.

[3] Barabási, A. L.—Albert, R.: Emergence of Scaling in Random Networks. Science,
Vol. 286, 1999, pp. 509–512.

[4] Barabási, A. L.—Ravasz, E.—Vicsek, T.: Deterministic Scale-Free Networks.
Physica A, Vol. 299, 2001, pp. 559–564.

[5] Barták, R.: Constraint Programming: In Pursuit of the Holy Grail. Proceedings of
the Week of Doctoral Students (WDS), June 1999, pp. 555–564.

[6] Bessiere, C.—Brito, I.—Maestre, A.—Meseguer, P.: Asynchronous Back-
tracking without Adding Links: A New Member in the ABT Family. Artificial Intel-
ligence, Vol. 161, 2005, pp. 7–24.

[7] Densmore, O.: An Exploration of Power-Law Networks. http://backspaces.net/
sun/PLaw/index.html, 2009.

[8] Fernandez, C.—Bejar, R.—Krishnamachari, B.—Gomes, K.: Communica-
tion and Computation in Distributed CSP Algorithms. Proceedings of the Principles
and Practice of Constraint Programming (CP-2002), Ithaca, NY, USA, July 2002,
pp. 664–679.

[9] Hirayama, K.—Yokoo, M.: The Effect of Nogood Learning in Distributed Con-
straint Satisfaction. Proceedings of the 20th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS-2000), 2000, pp. 169–177.

[10] Meisels, A.: Distributed Search by Constrained Agents: Algorithms, Performance,
Communication. Springer Verlag, London, 2008, pp. 105–120.

[11] Muscalagiu, I.—Jiang, H.—Popa, H. E.: Implementation and Evaluation Model
for the Asynchronous Techniques: From an Synchronously Distributed System to
a Asynchronous Distributed System. Proceedings of the 8th SYNASC Conference,
Timisoara, 2006, pp. 209–216.

[12] Muscalagiu, I.—Cretu, V.: Improving the Performances of Asynchronous Algo-
rithms by Combining the Nogood Processors with the Nogood Learning Techniques.
Journal “INFORMATICA”, Lithuania, Vol. 17, 2006, No. 1.

[13] Muscalagiu, I.—Vidal, J.—Cretu, V.—Popa, H. E.—Panoiu, M.: The
Efects of Agent Synchronization in Asynchronous Search Algorithms. Proceedings
of the 1st KES Symposium on Agent and Multi-Agent Systems – Technologies and
Applications, Springer-Verlag, LNAI, Vol. 4496, 2007, pp. 53–62.

[14] Muscalagiu, I.—Popa, H. E.—Vidal, J.: Clustered Computing with NetLogo for
the Evaluation of Asynchronous Search Techniques. 12th International Conference on
Intelligent Software Methodologies, Tools and Techniques, Budapest, Hungary, 2013.

[15] Muscalagiu, I.—Popa, H. E.—Negru, V.: The Impact of the “Nogood Proces-
sor” Technique in Scale-Free Networks. Proceedings of 7th International Symposium
on Intelligent Distributed Computing (IDC 2013), September 4–6, 2013, Prague,
Czech Republic, Springer, Studies in Computational Intelligence – Intelligent Dis-
tributed Computing VII, Vol. 511, 2013, pp. 163–173.

[16] Okimoto, T.—Iwasaki, A.—Yokoo, M.: Effect of DisCSP Variable-Ordering
Heuristics in Scale-Free Networks. Multiagent and Grid Systems, Vol. 8, 2012,
pp. 127–141.

Improving the Performances in Scale-Free Networks Using Nogood Processor 273

[17] Yokoo, M.—Durfee, E. H.—Ishida, T.—Kuwabara, K.: The Distributed
Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Transactions
on Knowledge and Data Engineering, Vol. 10, 1998, No. 5, pp. 673–685.

[18] Yokoo, M.—Hirayama, K.: Algorithms for Distributed Constraint Satisfaction:
A Review. Autonomous Agents and Multi-Agent System, Vol. 3, 2000, No. 2,
pp. 198–212.

[19] Wilensky, U.: NetLogo Itself: NetLogo. Available on: http://ccl.northwestern.
edu/netlogo/. Center for Connected Learning and Computer-Based Modeling,
Evanston, 1999.

[20] MAS NetLogo Models-a. Available on: http://discsp-netlogo.fih.upt.ro/.

[21] InfraGRID Cluster. Available on: http://hpc.uvt.ro/infrastructure/

infragrid/.

Ionel Muscalagiu received his M.Sc. degree in computer
science from the West University of Timisoara in 1992 and his
Ph.D. degree from the Politehnica University of Timisoara in
2008. He is working as Associate Professor in the Department of
Electrical and Industrial Informatics, Politehnica University of
Timisoara (Romania). Currently he is Head of the Department
of Electrical and Industrial Informatics, Politehnica University of
Timisoara. His areas of interest include distributed computing,
constraint programming and multi-agent systems (distributed
constraint satisfaction problem), and educational software. His

research interests are focused on the distributed constraint; he is particularly interested in
the issues of modeling, simulating and real execution of distributed constraints in NetLogo.
He is author and co-author of many publications in the field.

Horia Emil Popa received his M.Sc. degree in computer scien-
ce from the West University of Timisoara in 1992 and his Ph.D.
degree from the same University in 2009. He is working as Lec-
turer in the Department of Informatics, Faculty of Mathematics
and Computer Science of the West University of Timisoara (Ro-
mania). His areas of interest include recommendation systems,
distributed computing, constraint programming and multi-agent
system. His research interests are focused on the distributed con-
straint, he is particularly interested in the modeling, simulating
and real execution of distributed constraints in NetLogo.

274 I. Muscalagiu, H. E. Popa, V. Negru

Viorel Negru is Full Professor at the Computer Science De-
partment at the West University of Timisoara, Romania and
Prorector for Research at the West University of Timisoara. He
has published more than 130 papers in journals or conference
volumes, most of them on artificial intelligence. He received his
Ph.D. degree in computer science from the Babes-Bolyai Uni-
versity, Cluj-Napoca, Romania. His research interests include
artificial intelligence, intelligent systems, intelligent front-end
systems, multi-agent systems, data mining, and parallel and dis-
tributed computing.

