
Computing and Informatics, Vol. 34, 2015, 23–44

PASSIVE FAULT-TOLERANCE MANAGEMENT
IN COMPONENT-BASED EMBEDDED SYSTEMS

Lúıs Nogueira

CISTER/INESC-TEC Research Centre
School of Engineering, Polytechnic Institute of Porto, Portugal
e-mail: lmn@isep.ipp.pt

Jorge Coelho

LIACC Research Centre – University of Porto
School of Engineering, Polytechnic Institute of Porto, Portugal
e-mail: jmn@isep.ipp.pt

Abstract. It is imperative to accept that failures can and will occur even in metic-
ulously designed distributed systems and to design proper measures to counter
those failures. Passive replication minimizes resource consumption by only acti-
vating redundant replicas in case of failures, as typically, providing and applying
state updates is less resource demanding than requesting execution. However, most
existing solutions for passive fault tolerance are usually designed and configured
at design time, explicitly and statically identifying the most critical components
and their number of replicas, lacking the needed flexibility to handle the runtime
dynamics of distributed component-based embedded systems. This paper proposes
a cost-effective adaptive fault tolerance solution with a significant lower overhead
compared to a strict active redundancy-based approach, achieving a high error cov-
erage with a minimum amount of redundancy. The activation of passive replicas
is coordinated through a feedback-based coordination model that reduces the com-
plexity of the needed interactions among components until a new collective global
service solution is determined, hence improving the overall maintainability and ro-
bustness of the system.

Keywords: Component-based systems, embedded real-time systems, coordination
model, fault-tolerance, passive replication

Mathematics Subject Classification 2010: 68M15



24 L. Nogueira, J. Coelho

1 INTRODUCTION

The possibility of partial failures is a fundamental characteristic of distributed ap-
plications [22], even more so in open environments where the mix of independently
developed applications and their aggregate resource and timing requirements are
unknown until runtime. This becomes evident at the moment when services are no
longer accessible due to faults or, even worse, when faulty results are provided to
users [8, 11, 48].

A sub-domain of reliability, fault tolerance aims at allowing the system to survive
in spite of faults, i.e. after a fault has occurred, by means of redundancy. Replica-
tion is an effective way to achieve fault tolerance for such type of failure [37, 27]
and has some advantages over other fault tolerance solutions in distributed envi-
ronments, providing the shortest recovery delays, it is less intrusive with respect to
execution time, it scales much better, and is relatively generic and transparent to
the application domain [19, 49].

In fault-tolerant real-time systems using active replication schemes, where se-
veral replicas run simultaneously, has been common [36]. Even if errors are detected
in some of the replicas, the non-erroneous ones will still be able to produce results
within deadlines. On the negative side, running several replicas simultaneously is
costly and can be infeasible or undesirable in distributed embedded systems [7].
Embedded systems, unlike most general-purpose computing systems, often perform
computations subject to various constraints, such as processor speed, amount of
memory, power consumption, and reaction time [39].

Passive replication [6] minimizes resource consumption by only activating redun-
dant replicas in case of failures, as typically, providing and applying state updates is
less resource demanding than requesting the execution. As such, passive replication
is appealing for soft real-time embedded systems that cannot afford the cost of main-
taining active replicas and tolerate an increased recovery time [4]. Nevertheless, it
may still be possible to tolerate faults within deadlines, thus improving the system
reliability without using a more resource consuming fault-tolerance mechanism [47].

Furthermore, passive replication can be implemented without the use of complex
replica consistency protocols [41, 9] and, in practice, a passive scheme has a simple
structure and has no controller switching associated transients. Therefore, the ad-
ditional real-time computational demand is low for a passive fault-tolerance control
scheme [20].

However, most of the existing solutions for passive fault tolerance are usually
designed and configured at design time, explicitly and statically identifying the most
critical components and their number of replicas, lacking the needed flexibility to
handle the runtime dynamics of open distributed real-time embedded systems [41].
Distributed real-time embedded systems often consist of several independently de-
veloped components, shared across applications and whose criticality may evolve
dynamically during the course of computation. As such, offline decisions on the
number and allocation of replicas may be inadequate after the system has been exe-
cuting for some time already. Even if embedded systems are usually designed to run



Passive Fault-Tolerance Management in CES 25

a well-defined set of applications, the increased complexity and requirements of the
latter reduces the possibility to statically analyse and predict application behaviour
and thus to apply static optimisations.

This paper is then motivated by the need to develop a cost-effective adaptive
fault tolerance solution with an overhead significantly lower as compared to a strict
active redundancy-based approach. The term cost-effective implies that we want to
achieve a high error coverage with the minimum amount of redundancy. The paper
proposes low runtime complexity heuristics to

1. dynamically determine which components to replicate based on their significance
to the system as a whole;

2. determine a number of replicas proportional to the components significance de-
gree; and

3. select the location of those replicas based on collected information about the
nodes availability as the system progresses.

An extensive number of simulation runs was analysed to quantitatively study the
effectiveness of the proposed approach. The results show that even simple heuristics
with low runtime complexity can achieve a reasonably higher system availability than
static offline decisions when lower replication ratios are imposed due to resource or
cost limitations.

However, nothing can be said about the behaviour of the system when any fail-
ures beyond design basis occur. Consider the case where the quality of the produced
output of a particular component depends not only on the amount and type of used
resources but also on the quality of the inputs being sent by other components in the
system [43]. If a primary replica is found to be faulty, a new primary must be elected
from the set of passive backup ones and the execution restarted from the last saved
state. However, it is not guaranteed that the new primary will be able to locally
reserve the needed resources to output the same QoS level that was being produced
by the old primary. In such cases, the need of coordination arises in order to preserve
the correct functionality of the distributed service execution [3, 14, 29]. Complex
interdependencies may exist among components such that the incorporation of one
change can require the inclusion of several others for the change to work correctly.
Complex problems may result from these chain reactions like infinite triggering of
new adaptations or inconsistent configurations in different components [38], inter-
ference between the different self-management behaviours of components, conflicts
over shared resources, sub-optimal system performance and hysteresis effects [16].

Coordination is then a key concept for developing self-adaptive distributed sys-
tems [18] and a wide spectrum of coordination strategies have been proposed. How-
ever, the limited applicability of existing coordination models to heterogeneous dis-
tributed real-time systems [15] provides the significant motivation for the develop-
ment of a decentralised coordination model that also reasons about the duration
and overhead of the coordination process. This paper builds upon the work pre-
sented in [29] and handles the coordinated activation of passive replicas through



26 L. Nogueira, J. Coelho

a feedback-based coordination model that reduces the complexity of the needed in-
teractions among nodes until a new collective global service solution is determined.
By exchanging feedback on the desired or imposed self-adaptive actions, compo-
nents converge towards a global solution, even if that means not supplying their
individually best solutions. As a result, each component, although autonomous, is
influenced by, and can influence, the behaviour of other components in the system.

The rest of the paper is organized as follows. Section 2 describes the system
model and used notation in the following sections. Section 3 proposes a set of
heuristics to determine the number of replicas proportional to each component’s
significance degree to the overall system and to select the location of those replicas
based on collected information about the availability of each node as the system pro-
gresses. Section 4 discusses the coordinated activation of passive replicas through
a feedback-based coordination model, reducing the complexity of the needed inter-
actions among nodes until a new collective global service solution is determined,
while benefiting from a better performance on non-failure cases by only updating
the backup replicas state on a failure of a primary one. The properties of the pro-
posed coordination model are formally verified in Section 5. Section 6 shows and
discusses, based on the results of extensive simulations, the efficiency of the proposed
coordination model. Finally, Section 7 concludes the paper.

2 SYSTEM MODEL

Service-oriented applications increasingly consist of a set of interacting software
components S = {c1, c2, . . . , cn} that jointly provide some service to end-users and
operate in open dynamic environments [21]. Each component ci is defined by its
functionality, is able to send and receive messages, is available at a certain point
of the network, and has a set of QoS parameters that can be changed in order to
adapt service provisioning to a dynamically changing environment. Each subset of
QoS parameters that relates to a single aspect of service quality is named as a QoS
dimension. Each of these QoS dimensions has different resource requirements for
each possible level of service quality. We make the reasonable assumption that
services execution modes associated with higher QoS levels require higher resource
amounts.

Components use results produced by other components, that may be running
on other nodes, to produce their own output and hence are interdependent. Inter-
dependency relationships among components of a service S can be represented as
a directed acyclic graph (DAG) GS = (VS, ES), where each vertex vi ∈ VS represents
a component ci ∈ S and a directed edge ei ∈ ES from cj to ck indicates that ck
is functionally dependent on cj. In this paper, we consider a failure to be when
a software component stops producing output.

Within GS = (VS, ES), we give particular names to three types of components.
A source component models an input device and is not a consumer of the output
produced by any other component in the DAG of the service. A sink component



Passive Fault-Tolerance Management in CES 27

represents a component that is not a producer of any output consumed by other
components in GS and models a unit to display the global service output in the end-
user’s device. The source and sink components mark the limit of a set of components
that must be managed in a coordinated manner. Finally, we call cut-vertex to
a component ci ∈ VS, if the removal of that component divides GS in two separate
connected graphs. Cut-vertexes may confine coordination operations to a subset
of GS. Within a feasible QoS region, it may be possible to maintain the current
output quality by compensating for a decrease in the input quality by an increase
in the amount of used resources or vice versa [43].

Each component ci is only aware of the set of inputs Ici = {(cj, Qj
val), . . . ,

(ck, Q
k
val)}, describing the quality of all of its inputs coming from precedent com-

ponents in GS and the set of outputs Oci = {(cl, Ql
val), . . . , (cp, Q

p
val)}, describing

the quality of all of its outputs sent to successor components in GW . As such, no
global knowledge is required for coordinating the activation of a backup replica after
a failure of a primary component ci.

3 ADAPTIVE REPLICATION CONTROL

The problem consists in finding a replication scheme which minimizes the probabil-
ity of failure of the most important components without replicating every software
component. This involves the study of mechanisms to determine which components
should be replicated, the quantity of replicas to be made, and where to deploy
such replicas [24]. As such, the benefit of replication in open dynamic resource-
constrained environments is a complex function of the number of replicas, the place-
ment of those replicas, the selected replica consistency protocol, and the availability
and performance characteristics of the nodes and networks composing the system.
Since replica consistency protocols are relatively well understood [23, 9, 41], we will
not consider them in the remainder of this paper.

Thus, assuming that a mechanism exists for keeping passive replicas consistent,
how can we make use of passive replication to increase the reliability of distributed
resource-constrained embedded systems where it may not be possible to replicate
every available component? Our approach is based on a concept of significance,
a value associated to each component which reflects the effects of its failure on
the overall system. Intuitively, the more a component ci has other components
depending on it, the more it is significant to the system as a whole. Then, the
significance degree wi of a component ci can be computed as the aggregation of
the interdependencies of other components on it, determining the usefulness of its
outputs to all components which depend on it to perform their tasks.

More formally, given SG = {G1, . . . ,Gn}, the set of connected graphs of interde-
pendencies between components for a given system, and OGj(ci), the out-degree of
a node ci ∈ Gj, the significance wi of ci is given by Equation (1).

wi =
n∑

k=1

OGk(ci) (1)



28 L. Nogueira, J. Coelho

Once the significance of each component to the system has been estimated, the
decision on which components to replicate and the correspondent number of passive
replicas must be taken. Equation (2) determines a number of replicas for a compo-
nent ci which is directly proportional to the component significance degree wi and
to the maximum number of possible replicas maxci

1, and inversely, proportional to
the sum of the significance degree of all components in the system W .

nci =
⌈wi ∗maxci

W

⌉
(2)

The next step is to determine a strategy for placing those replicas in the network.
Consider the effects of placing replicas on unreliable nodes. The resulting unreli-
ability of those replicas will usually require replica consistency protocols to work
harder [41], increasing network traffic and processing overheads. Thus, not only will
the system performance suffer but its availability may actually decrease, despite
the increased number of available components through replication [23]. However,
an optimal replica placement in a distributed system can be classified as a NP-hard
discrete location problem. Consequently, several heuristic strategies which do not
have a guarantee in terms of solution quality or running time, but provide a ro-
bust approach to obtaining a high quality solution to problems of a realistic size in
a reasonable time have been investigated, independently of the followed replication
approach [45, 17]. Nevertheless, it is our belief that static offline approaches are
inadequate for open real-time systems, where the environment dynamically changes
as the system progresses. As such, a placement of a replica which was correct when
a service started may be incorrect after it was executing for some time.

Two gross measures of the reliability of a node are its mean time to failure
(MTTF) and its mean time to recovery (MTTR) [24]. We propose to use those
measures to dynamically allocate the set of replicas of a component ci based on the

expected availability of nodes in the system. The utility 0 ≤ u
rij
k ≤ 1 of allocating

a passive replica rij of a component ci to a node nk is then defined by the probability
of its availability during the system execution, given by Equation (3). Utilities range
from zero, the value of a completely unavailable node, to one, the value of a totally
available node.

u
rij
k =

MTTFk

MTTFk +MTTRk

(3)

Having the utility of each possible allocation, the probability of failure of a given
set of replicas Ri = ri1, r

i
2, . . . , r

i
nci is determined by Equation (4).

F (Ri) = (1− ui1) ∗ (1− ui2) ∗ . . . ∗ (1− uinci ) (4)

The system will then allocate the set of replicas Ri = ri1, r
i
2, . . . , r

i
nci such that

its probability of failure F (Ri) is minimal among all the possible allocation sets. In

1 maxci is given by the number of nodes in a heterogeneous environment which have
the needed type of resources to execute the component ci.



Passive Fault-Tolerance Management in CES 29

order to keep this allocation as up-to-date as possible, nodes have to be monitored
as the system runs. If reliability of a replica set strays outside a predefined tolerance
value a reconfiguration of the allocation set should be performed.

4 COORDINATED ACTIVATION OF PASSIVE REPLICAS

While passive replication is appealing for systems that cannot afford the cost of
maintaining active replicas, the requirement to provide both high availability, strong
state consistency, and satisfactory response times during the non-failure cases is
conflicting in many ways. In fact, response times perceived by applications will
depend on the time taken by the primary replica to synchronise its state with that
of the slowest backup replica, even if low complexity replica consistency protocols
are used [41, 9].

To overcome this limitation there is a possibility for the state of backup replicas
to be made consistent only during a failure recovery, which significantly improves
response times and saves resources during the non-failure cases. We recognise, how-
ever, that extra time must be spent to activate a new primary due to the significantly
weaker consistency model. The problem is even more challenging when activating
replicas in interdependent component-based systems where the output produced by
a component may depend not only on the amount and type of used resources but
also on the quality of received inputs. Nevertheless, the complexity of the needed
interactions among nodes until a new collective global service solution is determined
can be reduced through a feedback-based protocol, while benefiting from a better
performance on non-failure cases by only updating the backup replicas state on
a failure of a primary one [29].

Ideally, whenever a primary component fails, such backup replica is elected as
a new primary that is able to obtain the needed resources to output the same QoS
level that was being produced by the old primary replica. However, due to the hete-
rogeneity and dynamically varying workloads of nodes in open embedded systems, it
is not guaranteed that at least one of the backups will be able to locally reserve the
needed resources to output such a quality level. On the other hand, the failing of
a component can be seen as an opportunity to upgrade the output QoS level of the
failing component ci in an attempt to upgrade the global QoS that is being supplied
to the user [29]. Note that the failing component could have been running on a device
that was forced to downgrade the output QoS of ci in order to accommodate new
services with a higher reward to the system or to the user [31] and now the selected
passive replica can be starting on a more powerful or less congested node.

Therefore, whenever a component fails, the activation of a passive replica may
prompt the need for coordination activities that ensure a new globally acceptable
solution for the entire distributed service [18]. While there has been a great deal
of research in several aspects of runtime coordination in embedded real-time sys-
tems [12, 10, 5, 13], to the best of our knowledge we are the first to address the
specific problem of coordinating the activation of passive replicas in interdependent



30 L. Nogueira, J. Coelho

distributed environments with real-time constraints. Here, the term coordinated ac-
tivation refers to the ability of a distributed system to invoke adaptive actions on
multiple nodes in a coordinated manner so as to achieve a new service configuration.

Without any central coordination entity, the collective adaptation behaviour
must emerge from local interactions among components. This is typically accom-
plished through the exchange of multiple messages to ensure that all involved com-
ponents make the same decision about whether and how to adapt [13]. One main
challenge is controlling this exchange of information in order to achieve a convergence
to a globally consistent solution. It may be difficult to predict the exact behaviour
of the system taken as a whole due to the large number of possible non-deterministic
ways in which the system can behave [42]. Whenever real-time decision making is
in order, a timely answer to events suggests that after some finite and bounded time
the global adaptation process converges to a consistent solution.

Therefore, whenever Qi
val′ , the proposed change of the currently output QoS

Qi
val for a component ci ∈ S, has an impact on the currently output QoS level

of direct neighbours in GS, a request for coordination in the adaptation process is
sent to those affected components. Naturally, the formulation of the corresponding
positive or negative feedback depends on the feasibility of the new requested QoS
level as a function of the quality of the new set of inputs Icj for component cj and
the amount of locally available resources.

Definition 1. Given a node n and a set of QoS levels σn to be provided for all the
components being locally executed at n, it is considered that admission control is
performed, and that therefore a system specific feasibility function (e.g. [30, 1, 34])
determines if a set of QoS requirements can be met with available resources.

feasibility(σn) =

 true if node n has sufficient resources
to supply the set of QoS levels σ

false otherwise

If there are insufficient resources to accommodate the change to the new re-
quested QoS level, a negative feedback is formulated and sent back in reply and
the global QoS adaptation fails. In this case, the former QoS level, that was being
output by the older primary, must be used.

On the other hand, positive changes in interdependent commitments are propa-
gated along GS, until the next cut-vertex cc is reached. For that, we define the paths
and the flatten functions. For the sake of simplicity of presentation, we present all
the functions in a declarative notation with the same operational model as a pattern
matching-based functional language. The reader should note that although a node
is only aware of its nearest neighbours in a coalition of cooperating nodes for the
collective execution of service S, we deal with the complete interdependency graph
only to prove that all the conducted actions are correctly propagated until the final
result is determined.

The paths function is a breadth first approach with cycle checking for determin-
ing components in paths. Visited components are added to the temporary set T in



Passive Fault-Tolerance Management in CES 31

order to avoid infinite loops. The function outputs all the components in all the
possible paths between two interdependent components ci and cj , or ⊥ if there is
no path between those two components. If there are more than one path between
them, the result is a set of sets, each of them corresponding to a distinct path. The
flatten function is then used to make the resulting set of sets flat, meaning that all
the components in these subsets will now belong to a simplified single set.

Definition 2. Given a DAG GS = (VS, ES) and two components ci, cj ∈ VS, all the
components in the possible paths between ci and cj are obtained as the result of the
function:

paths(ci, cj,GS) = flatten(paths(ci, cj,GS, ∅))
paths(ci, cj,GS, T ) = ∅, if ci = cj

paths(ci, cj,GS, T ) = {{ci, ck1} ∪ paths(ck1 , cj,GS, T ∪ {ck1})
...

{ci, ckn} ∪ paths(ckn , cj,GS, T ∪ {ckn})},
∀ckm ∈ VS, such that (ci, ckm) ∈ ES and ckm /∈ T

paths(ci, cj,GS, T ) = ⊥, otherwise

Definition 3. Given a set A containing other sets, the function flatten(A) is defined
as:

flatten(∅) = ∅
flatten(A) = {a} ∪ flatten(A \ {a}), if a ∈ A

Affected components collect relevant data, both from the commitments of other
components and from local resource reservations, that reflect the current state of
the system. Subsequently, each involved component analyses the collected data
and takes a decision on whether and how to adapt in order to reach a global desired
state. Finally, to implement the decision, the set of components acts in a coordinated
manner. A coordinated adaptive phase is initiated whenever a coordination phase
is successful, i.e. whenever the component that initiated the coordination request
receives a positive feedback in reply. During the coordination phase, each node pre-
reserves the needed resources to achieve the new output QoS. Therefore, resource
allocation is always possible at this stage [31]. Once resources are allocated, the node
commits to produce the announced output QoS either until the service terminates
or adaptation occurs.

Definition 4. Given a connected graph GS = (VS, EW ), such that component ci ∈
VS, and Ici = {(cj, Qj

val), . . . , (ck, Q
k
val)} as the current set of QoS inputs of ci, and

given T as the set of changed QoS inputs in response to the coordination request,



32 L. Nogueira, J. Coelho

the function update(I, T ) updates I with the elements from T :

update(∅, T ) = ∅
update(I, T ) = {(ci, Qi

val′)} ∪ update(I \ (ci, Q
i
val), T ), if (ci, Q

i
val) ∈ I

and (ci, Q
i
val′) ∈ T

update(I, T ) = {(ci, Qi
val)} ∪ update(I \ (ci, Q

i
val), T ), if (ci, Q

i
val) ∈ I

and (ci, Q
i
val′) /∈ T

Definition 5. Given the connected graph GS = (VS, ES) with a set of ordered cut-
vertices CS and the subgraph that connects component ci to next cut-vertex cc ∈ CS,
the function test change(ci, cc,GS, Qi

val′) is defined by:

test change(ci, cc,GS, Qi
val′) = T, if

T ′ = {(ci, Qi
val′)},

P = paths(ci, cc,GS),

IQoS = get input qos(ci),

test change component(IQoS, P, T
′) = T,

T 6= ⊥
test change(ci, cc,GS, Qi

val′) = ⊥, otherwise.

test change component(IQoS, ∅, T ′) = ∅
test change component(IQoS, P, T

′) = test change component(IQoS, P\{cj}, T ′)
∪ {(cj, Qj

val′)}, if

cj ∈ P,
S = update(IQoS, P, T

′),

test feasibility(cj, Q
j
val′ , S) = true,

test change component(IQoS, P, T
′) = ⊥, otherwise

Furthermore, we use the following auxiliary functions which, for the sake of
clarity of presentation, we do not define formally:

test feasibility(ci,Q
i
val′, Ici): Given a node nx where a component ci ∈ S is

currently being executed, Qi
val′ as the new requested QoS level for ci, and

Ici = {(cj, Qj
val), . . . , (ck, Q

k
val)} as the new set of QoS levels given as input to ci,

test feasibility refers to the specific feasibility function of the system given by
Definition 1 applied to node nx to determine if the new set of QoS requirements
can be met with available resources.

set qos level(Qi
val′, ci, S): Sets the new QoS level Qi

val′ for component ci ∈ S.



Passive Fault-Tolerance Management in CES 33

get cut vertices(GS): Returns an ordered set of all the cut-vertices in GS. This
function is based on the depth-first algorithm for finding cut-vertices which was
first presented in [46]. The cut-vertices are found and stored ordered through
the DAG from a source component until the sink component.

get input qos(ci): Given a component ci ∈ S, returns the set of elements (cj,
Qj

val), where each of these elements represents a component cj with an output
QoS level of Qj

val used as an input in component ci.

get qos level(ci): Returns the current QoS level output by component ci.

head(S): Returns the first element of set S.

Having this background, given the connected graph GS = (VS, ES), an end-user
sink component cu, the set of components S and the set of cut-vertices CS computed
by function get cut vertices(GS), whenever a component ci ∈ VS is able to change
its output QoS to a new QoS level Qi

val′ , subsequent components in GS respond to
the coordination request according to a decentralised feedback-based coordination
protocol, formally presented in Algorithm 1.

Algorithm 1 Service coordination

service coordination(ci, cu,GS, CS), = change(F, S), if

try coordination(ci, CS ∪ {cu}) = F

and F 6= ⊥

try coordination(ci, ∅) = ∅
try coordination(ci, CS) = try coordination(cc, C ′S) ∪ T, if

cc = head(CS\{ci}),
Qi

val′ = get qos level(ci),

test change(ci, cc,GS, Qi
val′) = T,

T 6= ⊥
try coordination(ci, CS) = ⊥, otherwise.

change(∅, S) = true

change(F, S) = change(F ′, S), where

(cj, Q
j
val′) ∈ F,

set qos level(Qj
val′ , cj, S),

F ′ = F\{(cj, Qj
val′)}.

By exchanging feedback on the performed self-adaptations, components converge
towards a global solution, overcoming the lack of central coordination and global



34 L. Nogueira, J. Coelho

knowledge. Negative feedback loops occur when a change in one service component
triggers an opposing response that counteracts that change at other interdependent
component along GS. On the other hand, the positive feedback loops promote global
adaptations. The snowballing effect of the positive feedback takes an initial change
in one component and reinforces that change in the same direction at all affected
partners.

A fundamental advantage of the proposed coordination model is that both the
communication and adaptation overheads may depend on the size of a component
neighbourhood until a cut-vertex is reached, instead of the entire set of components,
if a cut-vertex is able to maintain its current output quality, despite the changes
on the quality of its inputs. This allows the proposed feedback-based coordination
model to scale effectively to large distributed systems.

5 PROPERTIES OF THE COORDINATION MODEL

Proposition 1. Given a node n and a set of QoS levels σ to be satisfied, the
function feasibility(σn) always terminates and returns true if σ is feasible in n or
false otherwise.

Proposition 2. Given a DAG GS = (VS, ES) and two components ci, cj ∈ VS,
paths(ci, cj) terminates and returns all the components in the possible paths between
ci and cj, ∅ in case ci = cj, or ⊥ in case there is no path between ci, cj ∈ VS.

Proposition 3. Given two sets I and T , both with elements of the form (ci, Q
i
val),

update(I,T) terminates and returns a new set with the elements of I such that
whenever (ci, Q

i
current) ∈ I and (ci, Q

i
new) ∈ T the pair stored in the returned set is

(ci, Q
i
new).

Lemma 1. Given the connected graph GS = (VS, ES) with a set of cut-vertices CS
and the subgraph that connects component ci to next cut-vertex cc ∈ CS and a new
updated QoS level value Qi

val′ , the call to test change(ci, cc,GS, Qi
val′) terminates

and succeeds if cc is able to output a new QoS level Qc
val′ or fails otherwise.

Theorem 1 (Correctness of service coordination). Given the connected graph
GS = (VS, ES) representing the QoS interdependencies of a service S being exe-
cuted by a group of components, such that cu ∈ V is the end-user sink component
receiving the service at a QoS level Qval, whenever a component ci announces an up-
date to Qi

val′ , Algorithm 1 changes the set of SLAs at components in G such that cu
receives S changed to the QoS level Qu

val′ or does not change the set of local SLAs
at any node and cu continues to receive S at its current QoS level Qu

val.

Proof. Termination comes from the finite number of elements in CS ∪ cu and from
Lemma 1. Algorithm 1 applies the function test change iteratively to all nodes in
the subgraph starting with ci and finishing in cu. The base case is when there are
no cut-vertices and there is only one call to test change. It is trivial to see that



Passive Fault-Tolerance Management in CES 35

the result of test change will consist in a set of components that will update for the
new QoS level Qj

val′ or it will fail and, by Lemma 1, it is correct. The remaining
cases happen when there is one or more cut-vertices between ci and cu. Here, update
will be applied to all subgraphs starting in ci and finishing in cu. Each of these
subgraphs are sequentially tested. Only if all of them can be updated service S will
be delivered to component cu at the new updated QoS level Qu

val′ . The result follows
by induction in the number of cut-vertices. �

Definition 6. Given a directed graph GS = (VS, ES), the in-degree of a component
ci ∈ V is the number of edges that have ci as their destination.

Definition 7. Given a directed graph GS = (VS, ES), the out-degree of a component
ci ∈ V is the number of edges that have ci as their starting node.

Whenever a change to a new QoS level Qi
val′ is requested by a component ci, if

the next cut-vertex cc in G cannot supply the requested level, then all the precedent
components between ci and cc are kept in their currently supplied feasible QoS level
Qj

val. Thus, the number of needed messages is given by the in-degree and out-
degree of the nodes in the paths between ci and cc where it was determined that
the requested new QoS level was not possible. On the other hand, if the requested
change is possible, the number of needed messages is given by the number of edges
between ci and the end-user sink component cu. This is because a change is only
possible after all the involved components are queried and the conjunction of their
efforts results in a newer QoS level being delivered to cu. Thus, the maximum
number of exchanged messages in a coordination operation is given by Formula (5).∑

c∈VS

(deg+(c) + deg−(c)) (5)

Applications with real-time requirements can benefit from decentralised coor-
dination mechanisms, as long as those mechanisms support the timing and QoS
requirements of applications. Therefore, coordination tasks need to be time depen-
dent since handling time is necessary to specify (and enforce) given levels of quality
of service [44, 31].

Access to the system resources can be modelled as a set of isolated constant-
bandwidth servers, either related to CPU [2, 28] or network [32, 35] scheduling.
Furthermore, feedback can be formulated as a result of a local anytime QoS adapta-
tion process that can trade off the needed computation time by the achieved quality
of solution, within a useful and bounded time [30].

Based on these guarantees, it is possible to determine a time-bounded conver-
gence to a globally accepted solution. As such, the uncertain outcome of iterative
decentralised control models whose effect may not be observable until some unknow-
able time in the future [42] is not present in the proposed regulated coordination
model.



36 L. Nogueira, J. Coelho

Proposition 4. Given the connected graph GS = (VS, ES) representing the QoS
interdependencies of a service S, such that cu ∈ V is the end-user sink component
receiving the service at a QoS level Qval, if a source component starts a service
coordination process involving all the nodes in the graph, this means that for a graph
of n components we have to exchange the number of messages given by Formula (5).
If the longest exchange of messages between two components takes tm time units
and the longest time for a node to compute its feedback is δ then the convergence
of the system for the worst case scenario is given by the following formula:(∑

c∈VS

(
deg+(c) + deg−(c)

))
∗ tm ∗ δ (6)

6 EVALUATION

We have conducted extensive simulations in order to evaluate the performance of the
proposed decentralised feedback-based coordination model in highly dynamic open
scenarios. The objective was to show that it can be efficiently used to coordinate
the activation of passive replicas and maintain desirable system-wide properties in
decentralised component-based systems with timing constraints.

An application that captures, compresses and transmits frames of video to end
users, which may use a diversity of end devices and have different sets of QoS
preferences, was used to evaluate the efficiency of the proposed passive replication
mechanism with coordinated activations, with a special attention being devoted
to introduce a high variability in the characteristics of the considered scenarios.
The application is composed by a set of components to collect the data, a set of
compression components to gather and compress the data sent from multiple sources,
a set of transmission components to transmit the data over the network, a set of
decompression components to convert the data into the user’s specified format, and
a set of components to display the data in the end device.

The number of simultaneous nodes in the system randomly varied, in each sim-
ulation run, from 10 to 100. For each node, the type and amount of available
resources were randomly generated, creating a distributed heterogeneous environ-
ment. Nodes failed and recovered according to their MTTF and MTTR reliability
values, which were randomly assigned when the nodes were created (it was ensured
that each node had an availability between 60 % and 99 %). Each node was running
a prototype implementation of the CooperatES framework [25], with a fixed set of
mappings between requested QoS levels and resource requirements. At randomly
selected nodes, new service requests from 5 to 20 simultaneous users were randomly
generated, dynamically generating different amounts of load and resource availabil-
ity. Based on each user’s service request, services of 4 to 20 components were formed
and randomly a percentage of the connections among those components was selected
as a QoS interdependency.



Passive Fault-Tolerance Management in CES 37

In order to assess the efficiency of the proposed dynamic replication control as
opposed to an offline static replication in dynamic resource-constrained environ-
ments, we considered the number of component-based services which were able to
recover from failures and conclude their cooperative executions as a function of the
used replication ratio. The reported results were observed from multiple and inde-
pendent simulation runs, with initial conditions and parameters, but different seeds
for the random values used to drive the simulations, obtaining independent and
identically distributed variables2. The mean values of all generated samples were
used to produce the charts.

In the first study, we evaluated the achieved system availability with the pro-
posed dynamic replication control based on components significance and with a sta-
tic offline approach in which the components to replicate and number of their repli-
cas is fixed by the system designer at the service composition phase [24]. At each
simulation run, if the primary replica of a component ci failed during operation,
a new primary was selected among the set of passive backups. If this was not pos-
sible, all the coalitions depending on ci were aborted. In this study, replicas were
also randomly allocated among eligible nodes with the dynamic replication control
policy.

Figure 1. Impact of the chosen replication control strategy on the system availability

Figure 1 clearly shows that our strategy is more accurate to determine and
replicate the most significant components than a static offline one, particularly with
lower replication ratios. Thus, when lower replication ratios are imposed due to
resource or cost limitations, a higher availability can be achieved if the selection
of which components to replicate and number of their replicas depends on their
significance to the system as a whole. In open and dynamic environments, such

2 The random values were generated by the Mersenne Twister algorithm [26].



38 L. Nogueira, J. Coelho

significance can be determined online as the aggregation of all the other components
that depend on a particular component to perform their tasks.

The second study evaluated the impact of the selected replicas placement stra-
tegy on the achieved system availability for a given replication ratio. The study
compared the performance of the proposed allocation heuristic based on collected
information about the nodes availability as the system evolves with a random policy
in which the placement of the generated replicas is fixed offline [33]. The decision
on which components to replicate and their number of replicas followed the same
dynamic and static approaches of the first study. For the dynamic allocation stra-
tegy, a tolerance value for the availability of each replica set was randomly generated
at each simulation run. If this tolerance was surpassed, a reassignment of replicas
was performed. The results were plotted in Figure 2.

Figure 2. Impact of the chosen replica allocation strategy on the system availability

It is then possible to conclude that the location of replicas is a relevant factor
for the system availability as a whole. The proposed dynamic replicate allocation
that takes into account the nodes reliability over time always achieves a better per-
formance than an offline static allocation policy in open and dynamic environments.
Furthermore, a comparison of Figures 1 and 2 shows that even though an improve-
ment in availability can be achieved by increasing the replication ratio, the impact
of replicas placement is quite significant.

The third study evaluated the efficiency of the proposed coordinated activation
of interdependent passive replicas in comparison to a typical centralised coordina-
tion approach [40] in which a system-wide controller coordinates resource allocations
among multiple nodes. The average results of all simulation runs for the different
coalition sizes and percentages of interdependencies among components are plotted
in Figure 3. As expected, both coordination approaches need more time as the com-
plexity of the services topology increases. Nevertheless, the proposed decentralised



Passive Fault-Tolerance Management in CES 39

coordination model is faster to determine the overall coordination result in all the
evaluated services topologies, demanding approximately 75 % of the time spent by
the centralised near-optimal model.

Figure 3. Time for a coordinated replica activation

7 CONCLUSIONS

The increased complexity of embedded real-time systems leads to increasing de-
mands with respect to requirements engineering, high-level design, early error de-
tection, productivity, integration, verification and maintenance, which increases the
importance of the efficient management of life-cycle properties such as maintain-
ability, portability, and adaptability. Therefore it is necessary to have a systematic
approach to embedded software development and maintenance. A natural choice
is to use the well-established component-based design in which the system can be
seen as a set of interacting components, each providing a well-defined subset of
functionalities and whose integration produces the final system behaviour.

At the same time, when developing embedded systems, certain constraints re-
garding extra-functional properties have to be guaranteed, such as: timing, resource
usage and higher reliability and availability. These extra-functional properties have
significant importance, and have to be addressed explicitly when developing embed-
ded systems.

The availability and performance of the open distributed embedded system is
significantly affected by the choice of the replication control strategy and placement
of the generated replicas. Due to its low resource consumption, passive replication is
appealing for embedded real-time systems that cannot afford the cost of maintaining
active replicas and need not assure a hard real-time performance. The proposed
heuristics based on the components significance to the overall system and on nodes



40 L. Nogueira, J. Coelho

reliability history have a low runtime complexity and achieve a reasonably higher
system availability than static offline decisions, particularly when lower replication
ratios are imposed due to resource or cost limitations.

Another challenge is to transfer the state of a distributed service to a new glob-
ally acceptable configuration whenever a new elected primary cannot provide the
same QoS level that was being output by the old primary that was found as faulty.
The proposed distributed coordination model reduces the complexity of the needed
interactions among nodes and is faster to converge to a globally acceptable solution
than the traditional centralised coordination approach.

Acknowledgments

This work was partially supported by National Funds through FCT/MEC (Por-
tuguese Foundation for Science and Technology) and when applicable, co-financed
by ERDF (European Regional Development Fund) under the PT2020 Partnership,
within project UID/CEC/04234/2013 (CISTER Research Centre); also by the North
Portugal Regional Operational Programme (ON. 2 – O Novo Norte) under the Na-
tional Strategic Reference Framework (NSRF), through the European Regional De-
velopment Fund (ERDF), and by National Funds through FCT/MEC (Portuguese
Foundation for Science and Technology), within project NORTE-07-0124-FEDER-
000063 (BEST-CASE, New Frontiers). Jorge Coelho was partially funded by LIACC
through Programa de Financiamento Plurianual of FCT.

REFERENCES

[1] Abdelzaher, T. F.—Atkins, E.M.—Shin, K.G.: QoS Negotiation in Realtime
Systems and Its Application to Automated Flight Control. IEEE Transactions on
Computers, Best of RTAS ’97 Special Issue, Vol. 49, 2000, No. 11, pp. 1170–1183.

[2] Abeni, L.—Buttazzo, G.: Integrating Multimedia Applications in Hard Realtime
Systems. Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998, p. 4.

[3] Allen, G.—Dramlitsch, T.—Foster, I.—Karonis, N.T.—Ripeanu, M.—
Seidel, E.—Toonen, B.: Supporting Efficient Execution in Heterogeneous Dis-
tributed Computing Environments with Cactus and Globus. Proceedings of the 2001
ACM/IEEE Conference on Supercomputing, November 2001, pp. 52–52.

[4] Balasubramanian, J.—Tambe, S.—Lu, C.—Gokhale, A.—Gill, C.—
Schmidt, D.C.: Adaptive Failover for Real-Time Middleware with Passive Repli-
cation. Proceedings of the 15th IEEE Real-Time and Embedded Technology and
Applications Symposium, IEEE Computer Society, April 2009, pp. 118–127.

[5] Boutilier, C.—Das, R.—Kephart, J.O.—Tesauro, G.—Walsh, W.E.: Co-
operative Negotiation in Autonomic Systems Using Incremental Utility Elicitation.
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, Acapulco,
Mexico, August 2003, pp. 89–97.



Passive Fault-Tolerance Management in CES 41

[6] Budhiraja, N.—Marzullo, K.—Schneider, F. B.—Toueg, S.: The Primary-
Backup Approach. Distributed Systems (2nd Ed.), 1993, pp. 199–216.

[7] Cai, Zh.—Kumar, V.—Cooper, B. F.—Eisenhauer, G.—Schwan, K.—
Strom, R. E.: Utility-Driven Proactive Management of Availability in Enterprise-
Scale Information Flows. Proceedings of the ACM/IFIP/USENIX 2006 International
Conference on Middleware, Springer-Verlag, 2006, pp. 382–403.

[8] Crnkovic, I.: Component-Based Software Engineering for Embedded Systems. Pro-
ceedings of the 27th International Conference on Software Engineering, St. Louis, MO,
USA, May 2005, pp. 712–713.

[9] de Juan-Marin, R.—Decker, H.—Munoz-Esco, F.D.: Revisiting Hot Passive
Replication. Proceedings of the 2nd International Conference on Availability, Relia-
bility and Security, April 2007, pp. 93–102.

[10] De Wolf, T.—Holvoet, T.: Towards Autonomic Computing: Agent-Based Mod-
elling, Dynamical Systems Analysis, and Decentralised Control. Proceedings of the
IEEE International Conference on Industrial Informatics, August 2003, pp. 470–479.

[11] Distler, T.—Popov, I.—Schröder-Preikschat, W.—Reiser, H. P.—Ka-
pitza, R.: Spare: Replicas on Hold. Proceedings of the 18th Network and Distributed
System Security Symposium, February 2011.

[12] Dorigo, M.—Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. New
Ideas in Optimization, 1999, pp. 11–32.

[13] Dowling, J.—Haridi, S.: Decentralized Reinforcement Learning for the Online
Optimization of Distributed Systems. Chapter in Reinforcement Learning: The-
ory and Applications, I-Tech Education and Publishing, Vienna, Austria, 2008,
pp. 142–167.

[14] Ensink, B.—Adve, V.: Coordinating Adaptations in Distributed Systems. Pro-
ceedings of the 24th International Conference on Distributed Computing Systems,
Tokyo, Japan, March 2004, pp. 446-455.

[15] Farinelli, A.—Rogers, A.—Petcu, A.—Jennings, N.R.: Decentralised Coor-
dination of Low-Power Embedded Devices Using the Max-Sum Algorithm. Proceed-
ings of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems, 2008, Vol. 2, pp. 639–646.

[16] Friday, A.—Davies, N.—Cheverst, K.: Utilising the Event Calculus for Policy
Driven Adaptation on Mobile Systems. Proceedings of the 3rd International Workshop
on Policies for Distributed Systems and Networks, Washington, DC, USA, IEEE
Computer Society, 2002, p. 13.

[17] Fu, W.—Xiao, N.—Lu, X.: A Quantitative Survey on QoS-Aware Replica Place-
ment. Proceedings of the 7th International Conference on Grid and Cooperative Com-
puting, Shenzhen, China, October 2008, pp. 281–286.

[18] Gelernter, D.—Carriero, N.: Coordination Languages and Their Significance.
Communications of the ACM, Vol. 35, 1992, No. 2, pp. 96–107.

[19] Guerraoui, R.—Schiper, A.: Software-Based Replication for Fault Tolerance.
IEE Computer, Vol. 30, 1997, pp. 68–74.



42 L. Nogueira, J. Coelho

[20] Jiang, J.—Yu, X.: Fault-Tolerant Control Systems: A Comparative Study Between
Active and Passive Approaches. Annual Reviews in Control, Vol. 36, 2012, No. 1,
pp. 60–72.

[21] Jin, J.—Nahrstedt, K.: QoS-Aware Service Management for Component-Based
Distributed Applications. ACM Transactions on Internet Technology, Vol. 8, 2008,
No. 3, pp. 14:1–14:31.

[22] Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer, 1997.

[23] Little, M.C.: Object Replication in a Distributed System. Ph.D. thesis, Depart-
ment of Computing Science, Newcastle University, September 1991.

[24] Little, M.C.—McCue, D. L.: The Replica Management System: A Scheme for
Flexible and Dynamic Replication. Proceedings of the 2nd International Workshop on
Configurable Distributed Systems, April 1994, pp. 46–57.

[25] Maia, C.—Nogueira, L.—Pinho, L.M.: Experiences on the Implementation of
a Cooperative Embedded System Framework: Short Paper. Proceedings of the 8th

International Workshop on Java Technologies for Real-Time and Embedded Systems,
Prague, Czech Republic, August 2010, pp. 70–72.

[26] Matsumoto, M.—Nishimura, T.: Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), Vol. 8, 1998, No. 1, pp. 3–30.

[27] Nikolow, D.: Semantic-Based Storage QoS Management Methodology – Case Study
for Distributed Environments. Computing and Informatics, Vol. 31, 2012, No. 6,
pp. 1345–1366.

[28] Nogueira, L.—Pinho, L.M.: A Capacity Sharing and Stealing Strategy for
Open Real-Time Systems. Journal of Systems Architecture, Vol. 56, 2010, No. 4-6,
pp. 163–179.

[29] Nogueira, L.—Coelho, J.: Service-Wide Adaptations in Distributed Embedded
Component-Based Systems. Proceedings of the 7th International Symposium on Intel-
ligent Distributed Computing, Prague, Czech Republic, September 2013, pp. 141–150.

[30] Nogueira, L.—Pinho, L.M.: Dynamic QoS Adaptation of Inter-Dependent Task
Sets in Cooperative Embedded Systems. Proceedings of the 2nd ACM International
Conference on Autonomic Computing and Communication Systems, Turin, Italy,
September 2008, p. 97.

[31] Nogueira, L.—Pinho, L.M.: Time-Bounded Distributed QoS-Aware Service Con-
figuration in Heterogeneous Cooperative Environments. Journal of Parallel and Dis-
tributed Computing, Vol. 69, 2009, No. 6, pp. 491–507.

[32] Nolte, T.—Lin, K.-J.: Distributed Real-Time System Design Using CBS-Based
End-to-End Scheduling. Proceedings of the 9th International Conference on Parallel
and Distributed Systems, December 2002, pp. 355–360.

[33] On, G.—Schmitt, J.—Steinmetz, R.: Quality of Availability: Replica Placement
for Widely Distributed Systems. Proceedings of the 11th International Workshop on
Quality of Service, Monterey, CA, June 2003, pp. 325–342.



Passive Fault-Tolerance Management in CES 43

[34] Park, J.—Ryu, M.—Hong, S.: Deterministic and Statistical Admission Control
for QoS-Aware Embedded Systems. Journal of Embedded Computing, Vol. 1, 2005,
pp. 57–71.

[35] Pedreiras, P.—Gai, P.—Almeida, L.—Buttazzo, G.C.: FTT-Ethernet:
A Flexible Real-Time Communication Protocol That Supports Dynamic QoS Man-
agement on Ethernet-Based Systems. IEEE Transactions on Industrial Informatics,
Vol. 1, 2005, No. 3, pp. 162–172.

[36] Pinho, L.M.—Vasques, F.—Wellings, A.: Replication Management in Reliable
Real-Time Systems. Real-Time Systems, Vol. 26, 2004, No. 3, pp. 261–296.

[37] Powell, D. (Editor): A Generic Fault-Tolerant Architecture for Real-Time Depend-
able Systems. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[38] Rajkumar, R.—Lee, C.—Lehoczky, J.—Siewiorek, D.: A Resource Alloca-
tion Model for QoS Management. Proceedings of the 18th IEEE Real-Time Systems
Symposium, IEEE Computer Society, 1997, pp. 298.

[39] Rasche, A.—Poize, A.: Dynamic Reconfiguration of Component-Based Real-Time
Software. Proceedings of the 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, February 2005, pp. 347–354.

[40] Rohloff, K.—Schantz, R.—Gabay, Y.: High-Level Dynamic Resource Man-
agement for Distributed, Real-Time Embedded Systems. Proceedings of the 2007
Summer Computer Simulation Conference, July 2007, pp. 749–756.

[41] Rubel, P.—Gillen, M.—Loyall, J.—Schantz, R.—Gokhale, A.—Bala-
subramanian, J.—Paulos, A.—Narasimhan, P.: Fault Tolerant Approaches for
Distributed Real-Time and Embedded Systems. Proceedings of the 2007 Military
Communications Conference, Orlando, Florida, USA, October 2007, pp. 1–8.

[42] Di Marzo Serugendo, G.: Autonomous Systems with Emergent Behaviour. Chap-
ter in Handbook of Research on Nature Inspired Computing for Economy and Man-
agement, Idea Group, Inc., Hershey-PA, USA, September 2006, pp. 429–443.

[43] Shankar, M.—de Miguel, M.—Liu, J.W. S.: An End-to-End QoS Management
Architecture. Proceedings of the 5th IEEE Real-Time Technology and Applications
Symposium, Washington, DC, USA, 1999, IEEE Computer Society, pp. 176–191.

[44] Stankovic, J. A.—Abdelzaher, T. E.—Lu, Ch.—Sha, L.—Hou, J. C.: Real-
Time Communication and Coordination in Embedded Sensor Networks. Proceedings
of the IEEE, Vol. 91, July 2003, No. 7, pp. 1002–1022.

[45] Streichert, T.—Glass, M.—Wanka, R.—Haubelt, C.—Teich, J.:
Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks. Proceed-
ings of the 21st International Conference on Architecture of Computing Systems,
Dresden, Germany, February 2008, pp. 23–37.

[46] Tarjan, R. E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
Vol. 1, 1972, No. 2, pp. 146–160.

[47] Tjora, A.—Skavhaug, A.: A General Mathematical Model for Run-Time Distri-
butions in a Passively Replicated Fault Tolerant System. Proceedings of the 15th Eu-
romicro Conference on Real-Time Systems, Porto, Portugal, July 2003, pp. 295–301.



44 L. Nogueira, J. Coelho

[48] Wiklander, J.—Eliasson, J.—Kruglyak, A.—Lindgren, P.—Nordland-
er, J.: Enabling Component-Based Design for Embedded Real-Time Software. Jour-
nal of Computers, Vol. 4, 2009, No. 12, pp. 1309–1321.

[49] Zhang, J.—Liu, L.—Pu, C.—Ammar, M.: Reliable Peer-to-Peer End System
Multicasting through Replication. Proceedings of the 4th International Conference
on Peer-to-Peer Computing, Zurich, Switzerland, August 2004, pp. 235–242.

Lúıs Nogueira received his B.Sc. degree in computing en-
gineering in 2000, his M.Sc. degree in informatics – systems
and networks in 2002 and his Ph.D. degree in computer scien-
ce in 2009 from University of Porto. He is Assistant Professor
at the Department of Computer Engineering, School of Engi-
neering of the Polytechnic Institute of Porto and a researcher
at CISTER/INESC-TEC. His main research interests include
open real-time systems, self-organising decentralised systems,
QoS support, and real-time scheduling algorithms.

Jorge Coelho received his B.Sc. degree in computer science in
2000, his M.Sc. degree in informatics – systems and networks in
2002 and his Ph.D. degree in computer science in 2007 from Uni-
versity of Porto. He is Assistant Professor at the Department of
Computer Engineering, School of Engineering of the Polytech-
nic Institute of Porto. His main research interests include open
real-time systems, self-organising decentralised systems, XML
processing languages, and verification of web content.


