
Computing and Informatics, Vol. 34, 2015, 4–22

STABILITY AND STRATEGIC TIME-DEPENDENT
BEHAVIOUR IN MULTIAGENT SYSTEMS

Matei Popovici

Research Institute of University of Bucharest (ICUB)
University of Bucharest
Sector 5, 36-46 Mihail Kogalniceanu Blvd, 050107
Romania, Bucharest
e-mail: matei.popovici

Lorina Negreanu

Computer Science Department
POLITEHNICA University of Bucharest
Splaiul Independentei 313, Sector 6
060042 Bucharest, Romania
e-mail: lorina.negreanu@cs.pub.ro

Abstract. Temporal reasoning and strategic behaviour are important abilities of
multiagent systems. We introduce a game-theoretic framework suitable for mod-
elling selfish and rational agents which can store and reason about the evolution of
an environment, and act according to their interests. Our aim is to identify stable
interactions: those where no agent has a benefit from changing his behaviour to
another. For this reason we deploy the game-theoretic concept of Nash equilibrium
and strong Nash equilibrium. We show that not all agent interactions can be stable.
Also, we investigate the computational complexity for verifying and checking the
existence of stable agent interactions. This paves the way for developing agents
which can take appropriate decisions in competitive and strategic situations.

Keywords: Temporal knowledge representation and reasoning, game theory, coor-
dination

Mathematics Subject Classification 2010: 68T27

Stability and Strategic Time-Dependent Behaviour in MAS 5

1 INTRODUCTION

Multiagent systems (MAS) have long been a successful means for modelling the
interaction of software agents (or simply, programs) with themselves, other humans,
and a given environment. In this context, there is an ever increasing need for MAS:

1. able to perform temporal inferences and

2. capable of strategic reasoning.

As concerns point 1. it implies that agents can store information related to the
history of their environment as well as their own past and current state and they
are able to infer some implicit knowledge based on such information. We believe this
is critical, as it complements the agent’s awareness of its own environment, with the
awareness of time. The point 2. is justified by scenarios such as stock markets [8] or
auctioning [9] where each agent (be it human or software) is assumed to be rational
and self-interested, thus acts accordingly.

In this paper, we equip MAS with memory and temporal inference capabilities by
deploying a method for temporal reasoning previously described in [4, 5, 13, 12], and
we study the strategic behaviour of such systems. In our setting, such a behaviour is
characterized by agents’ ability to deviate whenever this is convenient, i.e. to change
his action to another, given the actions of all other agents.

To illustrate such a situation, let us consider the following simplified stock-
market scenario with three agents:

Agent 1 – the seller,

Agent 2 – the buyer,

Agent 3 – the supervisor.

On the market, stocks of type T can be sold or bought at a constant rate for
a particular time interval. We assume T -stocks are already available for trading,
initially1. Agent 1 possesses a number of stocks of type T and would like to sell,
but before agent 2 is buying. Agent 2 would like to buy stocks of type T , but before
a transaction tax is installed and after Agent 1 has finished selling. Agent 3 would
like to set a transaction tax on stocks of type T after they are no longer on sale by
Agent 1. If the tax is established sooner, it is not justified and deemed as unfair.
Alternatively, he would like to monitor the stock market and then establish the tax.
However, monitoring the market is a more expensive task.

The scenario is a particular case of a temporal strategic planning problem, in
which agents must be coordinate so that all formulated restrictions are satisfied,
if possible. More formally, we have four time-dependent properties sell , buy , tax ,
monitor , each controlled by the corresponding agent, and which stand for:

1 This is achieved, possibly, by players other than 1, 2, 3.

6 M. Popovici, L. Negreanu

1. sell stocks on market,

2. buy stocks,

3. establish transaction tax and

4. monitor the stock market, respectively.

The agent’s action consists of validating one or more properties he controls at a par-
ticular time interval. Each agent has a particular goal which is dependent on the
current and past state(s) of the environment. In our example, the goals Gi of agents
i ∈ {1, 2, 3} are informally described as: G1: sell before buy , G2: buy before tax
and buy after sell and G3: tax after sell or tax before monitor . Formally, goals are
expressed using the temporal language LH, introduced and described in [12].

Also, each action has associated a particular cost. We further assume that agents
are rational and self-interested, meaning they will choose to execute that particular
action which:

1. makes the goal satisfied,

2. minimizes costs.

We are interested in the situations where agents cannot individually satisfy their
goals i.e. they may have (partially) conflicting and/or (partially) overlapping goals.
In such situations, agents may deviate, whenever this is a means for achieving a bet-
ter outcome. For instance, in our example, if agent 2 cannot buy stocks before the
transaction tax is installed, he might change his action from buying stocks to no
action. Our aim is to identify those stable actions, one for each agent, which ensure
that no agent has no incentive to deviate.

With this objective in view, we use a non-cooperative strategic game to formally
describe scenarios mentioned above. Thus, the actions of all agents are instanta-
neous2. Next, we introduce the game-theoretic concept of Nash equilibrium (NE)
which describes MAS stability against individual deviations. Further on, we consider
a much more restrictive concept, the strong Nash equilibrium (SNE), where stability
is considered with respect to deviations from all possible coalitions of agents.

We further study the computational complexity of verifying and identifying
(strong) Nash equilibria, using the LH-model checking procedure described in [12]
and identify an upper complexity bound.

This paper extends our previous work from [14] which introduces a game-
theoretic framework for studying agent stability, as well as the concept of Nash
equilibrium, and finally, identifies the upper complexity bound for the verification
and existence checking the Nash equilibria. In our current paper, we look at some
limitations of the Nash equilibrium from [14], and propose the strong Nash equi-
librium as an improved solution concept. We also examine situations where Nash

2 In a strategic game, actions are performed just as in the Rock-paper-scissors-game [15].
Each agent has no prior knowledge about what the others might do, and all actions are
simultaneous.

Stability and Strategic Time-Dependent Behaviour in MAS 7

and strong Nash equilibria exist and extend our computational complexity results
to the latter, new concept. Also, we complete our study with completeness results.
The latter concept has suggested that polynomial algorithms for computing our so-
lution concepts are not likely to exist. We also discuss alternatives for tackling this
issue. Finally, we have made the game-theoretic setting independent of the goal
specification language and slightly changed it in order to improve readability.

The paper is structured as follows. In Section 2 we introduce the formal concept
of environment, which describes the structure of a possibly time-dependent domain.
Also, we introduce temporal graphs which capture particular evolutions of such
domain. In Section 3, we describe t-games which capture strategic scenarios, where
agents can make decisions and influence the evolution of the domain. In Section 4,
we introduce the Nash and strong Nash equilibrium, and study the t-games in
which such equilibria exist. In Section 5 we introduce the language LH [12], as
formal means for expressing time-dependent agent goals. We use LH to study the
computational complexity of verifying and checking for the existence of Nash and
strong Nash equilibria. Finally, in Sections 6 and 7 we discuss related and future
work, and conclude.

2 MODELLING ENVIRONMENTS AND EVOLUTION

A strategic interaction of a MAS occurs in a particular environment. The description
of the environment, Env, models time-dependent properties as labelled directed
edges. We call such edges labelled quality edges. The label gives the semantics of
the property at hand. Quality edges span action nodes. An action node models
an instantaneous event, which changes the current state of the environment by
initiating and terminating a quality edge. Each action node occurs at a precise
moment of time. The latter are modelled by hypernodes.

Formally, we have:

Definition 2.0.1 (Environment). Let Labels be a set of symbols. An environment
is a structure Env = 〈A,E,L〉 defined with respect to Labels, as follows:

• A is a set whose elements are called action nodes

• E ⊆ A× A is a directed relation which models quality edges

• L : E → Labels is a surjective function which assigns a symbol (label) to each
quality edge.

Given the quality edge (u, v) ∈ E, we say that action nodes u or v are the constructor
or destructor nodes of (u, v), respectively. Also, we say that (u, v) is initiated
(terminated) by u (v), respectively.

The following example formalizes the setting discussed in the introductory sec-
tion.

8 M. Popovici, L. Negreanu

Example 2.0.1 (Environment). Let Labels1 = {sell , buy , tax ,monitor}, A1 = {u1,
u2, u3, u4, u5, u6, v1, v2}, E1 = {(u1, u2), (u3, u4), (u5, u6), (v1, v2)}, L1((u1, u2)) =
sell ,
L1((u3, u4)) = buy , L1((u5, a6)) = tax and L1((v1, v2)) = monitor . The environ-
ment Env1 = 〈A1, E1,L1〉 models a setting with four types of properties, namely
sell , buy , tax and monitor . The properties are initiated by u1, u3, u5, v1 and termi-
nated by u2, u4, u6, v2, respectively.

We note that Env merely provides a taxonomy of the domain at hand, giving
us information about the available events and what properties they introduce. It
provides no information about the actual evolution of the domain at hand. The
latter is captured by temporal graphs:

Definition 2.0.2 ((labelled) temporal graph). Let Env = 〈A,E,L〉 be an environ-
ment, H be a set whose elements are called hypernodes and which designate mo-
ments of time, and T : A→ H be a function which assigns an action node u, to the
hypernode T (u), i.e. the moment when u takes place.

A labelled temporal graph (or t-graph) generated by Env and T is a structure
HTEnv = 〈A′, H, T , E ′,L〉 where A′ = {u ∈ A : the function T is defined in u} and
E ′ = {(u, v) : u, v ∈ A′}. When the environment and/or the T function are clear
from context, we write H instead of HTEnv. Whenever T (u) = T (v) for two action
nodes u, v, we say they are simultaneous. We denote by HsetEnv the set of temporal
graphs generated by Env.

Remark 2.0.1 (The interpretation of hypernode). Each hypernode h ∈ H inter-
prets a symbolic moment of time, i.e. one for which no time-stamp is known. For
this reason, we do not introduce an a-priori known total ordering of H. However,
a (partial) pre-order can be inferred, as follows: u ≥H v iff: (i) T (u) = T (v) or
(ii) (u, v) ∈ E or (iii) there exists u′ such that u′ ≥H v and T (u) = T (u′) or
(u, u′) ∈ E. We note that ≥H is reflexive and transitive, however not total.

A temporal graph adds temporal information to an environment by assigning
to action nodes u, temporal moments T (u) when they occur. The precise action
nodes and quality edges of a temporal graph are those from the environment which
correspond to executed action nodes, i.e. those for which the function T is defined.

Example 2.0.2 (temporal graph). Let H1 = {h1, h2, h3, h4}, and the function T1,
defined as follows: T1(u1) = h1, T1(u2) = T1(u3) = h2, T1(u5) = h2 and T1(u4) =
T1(u6) = h4. The temporal graph generated by the environment Env1 from Exam-
ple 2.0.1 and T1 is H1 = 〈A′1, H1, T1, E ′1,L1〉, where L1 are taken from Example 2.0.1
and A′1, E

′
1 are built according to Definition 2.0.2. H1 captures the evolution in

which the buyer purchases the stocks precisely when they are no longer being sold
and the supervisor inserts the tax while they are being bought. H1 is shown in
Figure 1.

We note that quality edges have a dual representation. On one hand, they are
edges of the form (u, v) which are explicit parts of the temporal graph. The edge

Stability and Strategic Time-Dependent Behaviour in MAS 9

u1

h1

u2

u3

u5

h2

h3

u4

u6

h4

sell

buy

tax

Figure 1. The temporal graph H1 for the evolution of the stock market

gives a temporal dimension to the modelled property. It is initiated by u, terminated
by v and the interval when it is true is given by [T (u), T (v)]. On the other hand,
the quality edge is labelled by a symbol, and the symbol encodes the semantics of
the property. In [12], we also treat the more interesting case where labels can also
be relational instances such as P (a, b, c). Since the labels of temporal graphs do not
affect in any way the formulation of our game-theoretic setting, in this paper, we
adopt the restricted form of symbols only.

3 MODELLING A STRATEGIC INTERACTION

We use the term strategic interaction to describe any circumstance in which an indi-
vidual’s situation is influenced by the goals and interventions of other individuals.3

In our scenario, the actors of a strategic interaction are agents. We assume they are
selfish and rational in the game-theoretic sense [11]. Each agent i controls a limited
set of action nodes Ctrli. (S)he can perform an action ai = (Ai, Ti). Agent actions
are different from action nodes. The latter are merely events in a temporal graph.
The former should be understood in the game-theoretic sense. They are interven-
tions of the agent in the environment. The action has two components: Ai ⊂ Ctrli
is a subset of the controlled action nodes of i, which i will execute. Ti is a function
which assigns for each action node u ∈ Ai the moment Ti(u) when it will be executed
by the agent.

The outcome of a strategic interaction is a sequence of actions, one for each
agent, i.e. an action profile. The latter can also be viewed as the outcome temporal
graph, i.e. the one constructed from all agents’ actions.

3 We note that interaction should not be understood as a one-to-one relationship be-
tween pairs of agents. It should rather be viewed as means by which each agent can, by
his own actions, affect the satisfaction of the goals of others. This is quite similar to the
case of a game of poker. Here, players do not interact directly. They do so via the cards
they choose to play. Each such action affects the outcome of the game, and hence, the
winner.

10 M. Popovici, L. Negreanu

Also, executing each action node u comes with a cost c(u). We assume that
agents have a limited number of resources which they can spend. This is captured
by values gi, one for each agent i. Finally, each agent has a goal which (s)he would
like to enforce. The goal of agent i is defined as the set Gi of temporal graphs which
the agent considers desirable. Later on, in Section 5, we shall provide and discuss
a more compact representation for goals.

Formally, the strategic interaction is modelled by a temporal game (or t-game),
as follows:

Definition 3.0.3 (t-game). Let N be a set of agents, Env be an environment and
H be a set of hypernodes. A t-game is a structure:

G = 〈N, Env, H, (Ctrli)i∈N , c, (Gi)i∈N , (gi)i∈N〉

where each Ctrli ⊆ A is a subset of A (taken from Env) of action nodes controlled by
agent i, c : A→ R+ is a cost function, each Gi ⊂ HsetEnv is the goal of agent i and
each gi is the amount of available resources of agent i. Also, (Ctrli)i∈N is a proper
partition of A, that is: Ctrli ∩ Ctrlj = ∅ for any i 6= j ∈ N and ∪i∈NCtrli = A.

Example 3.0.3 (t-game). The strategic interaction between the seller, buyer and
supervisor, described informally in the introduction, is modelled by the t-game
G1 = 〈N, Env1, H1, (Ctrli)i∈N , c, (Gi)i∈N , (gi)i∈N〉 where H1 is taken from Exam-
ple 2.0.2, N = {1, 2, 3} (1 denotes the seller, 2 – the buyer and 3 – the su-
pervisor), Env1 is taken from Example 2.0.1, Ctrl1 = {u1, u2}, Ctrl2 = {u3, u4},
Ctrl3 = {u5, u6, v1, v2}, c(u) = 1 for all u ∈ A, G1 = {HEnv1 : sell occurs before
buy}, G2 = {HEnv1 : buy occurs before tax and after sell}, G3 = {HEnv1 : tax oc-
curs after sell or before monitor} and g1 = g2 = g3 = 5. Thus, the seller (1), controls
the actions which create/terminate the property sell , the buyer (2) controls those
which create/terminate buy , while the supervisor (3) - those which create/terminate
tax and monitor .

In what follows, we assume G is a t-game.

Remark 3.0.2 (The interpretation of H). We note that H i.e. the set of hyper-
nodes, is given in advance, and without any specified ordering. H can be interpreted
as a set of slots, where agents can perform their actions. In this context, those are
the agents which establish a (partial) ordering of H, via their actions, more precisely,
via the quality edges which they set, according to Remark 2.0.1.

Definition 3.0.4 (Action profile). An action of agent i in the t-game G is a pair
ai = (Ai, Ti) where Ti : Ai → H is a surjective function, Ai ⊆ Ctrli and each Ctrli
together with H are taken from G. An action profile a in the t-game G assigns to
each agent i ∈ N , the action ai. Formally, it is a sequence a = (ai)i∈N . We write
a−i to refer to the action profile a which does not contain ai, aC to refer to the
sequence (ai)i∈C and a−C to refer to the action profile a which does not contain ai
for all i ∈ C.

Stability and Strategic Time-Dependent Behaviour in MAS 11

An action profile provides a complete specification of what all agents in the
MAS will do, and corresponds to a temporal graph which stores the evolution of the
environment, according to each agents’ action. The construction of the temporal
graph simply takes all the action nodes executed by each agent, and introduces
each of them at the moment when the agent desires to execute them. Formally,
the temporal graph H(a) resulted from the action profile a = ((Ai, Ti))i∈N in the
t-game G, is the temporal graph generated by Env, H (which are taken from G) and
the function T , which is built as follows: T (ui) = Ti(ui) for each ui ∈ Ai. We say
that H(a) is the outcome of a.

Example 3.0.4 (Action profile). We continue Example 3.0.3. The action profile a1

in G1 which produces the temporal graph H1 from Example 2.0.2 is:

a1 = (({u1, u2}, T1), ({u3, u4}, T2), ({u5, u6}, T3))

where T1(u1) = h1, T1(u2) = h2, T2(u3) = h2, T2(u4) = h4, T3(u5) = h2 and
T3(u6) = h4.

Each outcome of the interaction produces a certain benefit or disadvantage for
each agent. Naturally, this is dependent on:

1. the costs which each agent has to support and

2. whether or not the agent’s goal is satisfied.

Definition 3.0.5 (Cost, goal satisfaction, utility). Given a temporal graph H(a)
which is the outcome the action profile a = ((Ai, Ti))i∈N , we define the cost of
agent i as costi(H(a)) =

∑
u∈Ai

c(i). The cost is computed as the sum of costs of
all action nodes executed by i. We say the goal of agent i is satisfied, if H(a) ∈ Gi.
Finally, the utility of agent i in H(a) is given by:

ui(H(a)) =

{
gi − costi(H(a)) if H(a) ∈ Gi

−costi(H(a)) otherwise

Example 3.0.5 (Cost, utility). The cost supported by each agent in H1 (Exam-
ple 2.0.2) is costi(H1) = 1 + 1 = 2 for i ∈ {1, 2, 3}. The utility of the seller in H1

is u1(H1) = g1 − cost1(H1) = 5 − 2 = 3, since the goal of the seller is satisfied.
However, the goal of the buyer is not satisfied, since buy does not occur after tax ,
therefore his/her utility is u2(H1) = 0− cost2(H1) = −2.

Utility values provide a quantitative measure of an agent’s welfare in a given out-
come (temporal graph). Beside costs, it also incorporates a qualitative component,
namely goal satisfaction. If the goal is satisfied, the utility of an agent is computed
as the amount of resources he is able to save (initial resources minus costs), while
satisfying his goal. If the goal is not satisfied, the agent is penalized: his/hers utility
is given by the negative value of his costs.

12 M. Popovici, L. Negreanu

The choice for defining utility as above follows two assumptions:

1. agents must be incentivised to satisfy their goals, in the cheapest way possible
and

2. the agents are resource-bounded, thus they cannot spend infinitely much for
satisfying their goal.

Naturally, an agent will prefer a temporal graph over another, depending on the
amount of utility which (s)he obtains in either of the two:

Definition 3.0.6 (Preference). We say an agent i (strictly) prefers a temporal
graph H over H′ and write H �n H′, if ui(H) > ui(H′). We also extend the
preference relation over action profiles. Given two action profiles a, a′, we write
a �i a

′ iff H(a) �i H′(a). The non-strict preference relation �i is defined with
respect to ≥ in a similar way. Also, we lift the preference relations to coalitions
C ⊆ N of agents: we write a �C a

′ when a �i a
′ for all i ∈ C.

u1

v1

h1

u2

u3

u5

v2

h2

h3

u4

u6

h4

sell

buy

tax

monitor

Figure 2. H2 – A better temporal graph for the supervisor

Example 3.0.6 (Preference). Consider the temporal graph H2 from Figure 2, also
generated by the environment Env14. First, note that u3(H2) = 5−(1+1+1+1) = 1,
since, in this scenario, the supervisor monitors the market before setting the tax and
u3(H1) = 5 − (1 + 1) since in H1 the tax is introduced after sell . Thus H1 �3 H2.
Similarly H2 �1 H1 but H2 6�1 H1 and H1 6�1 H2: the seller does not strictly prefer
a temporal graph over another, since he has the same utility in both of them.

4 together with H1 and the function T2, defined as follows: T2(u1) = T2(v1) = h1,
T2(u2) = T2(u3) = T2(u5) = T2(v2) = h2 and T2(u4) = T2(u6) = h4

Stability and Strategic Time-Dependent Behaviour in MAS 13

4 SOLUTION CONCEPTS

In the previous section we have formally described strategic settings by t-games.
They consist of agents, their ability to execute cost-dependent action nodes, their
goals and available resources. An interaction in such a setting consists of an action
profile, in which each agent performs an action. The outcome of an interaction is
a temporal graph. Also, we have seen that agents prefer certain temporal graphs
over others, depending on costs and goal satisfaction.

In this section, we are interested in looking at those action profiles which are
stable, more precisely, those where agents have no incentive to deviate.

Definition 4.0.7 (Nash equilibrium). A Nash equilibrium (NE) of a t-game is an
action profile a∗ such that, for each agent i ∈ N and each action profile a 6= a∗ we
have that (a∗−i, a

∗
i) �i (a∗−i, ai). A Nash-stable temporal graph is H = H(a) where

a is a Nash equilibrium.

Example 4.0.7 (Nash equilibrium). Let H3 which is obtained from H1 by remov-
ing action nodes u3 and u4 and the quality edge (u3, u4) and H1 = H(a1), where
a1 is the action profile from Example 3.0.4. Note that H1 �3 H2 since in H1 the
goal of the supervisor is satisfied in a cheaper way than in H2. Thus, H2 is not
a Nash equilibrium. Also H3 �2 H2. The goal of the buyer is not satisfied in either
temporal graph, however, since in H3 the buyer executes no action node, his/her
utility is 0, whereas in H2 the utility is −2.

Finally, H3 is a Nash equilibrium since no player has the ability to individually
come up with a better action.

The following proposition settles the question regarding stability of arbitrary
t-games.

Proposition 4.0.1 (Nash equilibrium existence). There are t-games where no
Nash equilibrium exists.

Proof. [Sketch] Let G2 be the t-game obtained from G1 (from Example 3.0.3), where
the goals of the buyer are modified as: G2 = {HEnv1 : tax does not occur during buy}
and G3 = {HEnv1 : tax occurs during buy}. There exists no Nash equilibrium of G2.
This is motivated by the following reasoning: let us assume that the buyer starts to
buy stocks. If the supervisor takes no action, the goal of the buyer is satisfied since
there is no tax property in the temporal graph. However, the goal of the supervisor
is not satisfied, and he is incentivised to set the tax on the interval when buy is true.
This action would satisfy his goal, but invalidate that of the buyer. Thus, now the
buyer has an incentive to deviate, either to set buy in another interval, or, if this
is not possible, not to set buy at all. This deviation increases the buyer’s utility
from a strictly negative value, to either a positive one, or to zero. As a response to
the buyer’s deviation, the supervisor is again incentivised to deviate, and the whole
process repeats itself. The conclusion is that there exists no Nash-stable temporal
graph in G2. �

14 M. Popovici, L. Negreanu

As illustrated by Example 4.0.7, the Nash equilibrium captures only individual
deviations. Such deviations do not necessarily produce a globally desirable temporal
graph. This is the case with H3 from Example 4.0.7. H3 is Nash-stable, however
the goal of the buyer is not satisfied. Also, it might be the case that some goal
is satisfied, but with a high cost. For these reasons, we introduce the strong Nash
equilibrium which captures a much stronger notion of stability.

Definition 4.0.8 (strong Nash equilibrium). A strong Nash equilibrium (SNE) of
a t-game is an action profile a∗ such that, for each coalition of agents C ⊆ N and
each action profile a 6= a∗ we have that (a∗−C , a

∗
C) �C (a∗−C , aC). A strong Nash-stable

temporal graph is H = H(a) where a is a strong Nash equilibrium.

Example 4.0.8 (strong Nash equilibrium). The temporal graph H3 from Exam-
ple 4.0.7 is not a strong Nash equilibrium. Coalition {1, 2, 3} can deviate and im-
plement a better temporal graph, namely H4 from Figure 3. Note that, in H4, the
utility of the buyer is u2(H4) = u3(H4) = 5 − (1 + 1) = 2, which is strictly higher
than the one obtained in H3. However, H4 is a strong Nash equilibrium. H4 shows
that, by cooperating, the buyer and the supervisor are mutually better of: the buyer
can acquire his stocks before the tax is installed, and thus satisfy his goal.

u1

h1

u2

u3

h2

u5

u4

h3

u6

h4

sell

buy

tax

Figure 3. The strong-Nash stable temporal graph H4

Proposition 4.0.2. There are t-games where no strong Nash equilibrium exists.

Proof. [Sketch] The reasoning is similar to that from the proof of Proposition 4.0.1.
In the same t-game G2 there exists no strong Nash equilibrium. For each possible
temporal graph in G2, there exists a coalition, which contains either the buyer or
the supervisor, which has an incentive to deviate. �

The behaviour of the strong Nash equilibrium simulates a form of coordination.
In temporal graphs which are strong Nash stable, groups of agents seek the best
available joint action.

Remark 4.0.3 (Discussion on t-games). As mentioned in the introduction, in
a t-game, the actions of each agent are simultaneous, as in the Rock-paper-scissors-
game [15]. Moreover, agents are not aware of the actions taken by others. The only

Stability and Strategic Time-Dependent Behaviour in MAS 15

disclosed information about other agents is that given by the t-game itself: available
actions, costs, goals, goal values.

Although, in most practical scenarios, actions are not simultaneous, it is rea-
sonable to assume they are not publicly advertised, thus they remain unknown to
other agents. This assumption is also justified by feasibility. Normal-form games,
the ones in which the interaction is not necessarily simultaneous, are more complex,
and require more computationally expensive solution concepts.

5 EXPRESSING GOALS

So far, we have expressed goals as sets of temporal graphs, which satisfy certain
conditions, expressed in natural language. In this section, we take on a more formal
approach, and use formulae from the temporal language LH [12] for expressing such
conditions. The motivation for our approach is twofold: on the one hand, expressing
goals in such a way is more compact and straightforward. On the other hand, it
offers means for computing Nash and strong Nash equilibria based on the LH model
checking procedure [12].

5.1 The Language LH

LH allows the expression of temporal constraints between the occurrence of qual-
ity edges in a temporal graph. In what follows, we briefly introduce and explain
the syntax and semantics of LH. For an extended discussion on LH, we defer the
interested reader to [12]. Again, we consider Labels is a set of symbols.

Definition 5.1.1 (LH syntax). Let p, q ∈ Labels. The syntax of LH is recursively
as follows:

ϕ ::= p | p ∝ ϕ1 | ¬ϕ1 | p ∝ ϕ1 ∧ p ∝ ϕ2

where ∝ ∈ {b, a,o}5 is a temporal connective, and b, a,o stand for before, after
and overlaps, respectively. Two quality edges overlap if they have exactly the same
life-span (start and end in action nodes from the same hypernode). Also, the logical
connective ∨ is defined with respect to ¬ and ∧ in the standard way.

Example 5.1.1 (LH syntax). We consider the same set Labels as the one intro-
duced in Example 2.0.1. The following:

• ϕ1 = sellbbuy

• ϕ2 = buybtax ∧ buyasell

• ϕ3 = taxabuy ∨ taxamonitor

are valid LH-formulae.

5 In this paper, for the brevity of our exposition, we use only a limited number of tem-
poral connectives, which naturally limits the expressive power of LH. The full necessary
set of connectives is discussed in [12].

16 M. Popovici, L. Negreanu

In order to identify the quality edges in a temporal graph which satisfies a LH-
formula, the concept of path is important. A path is a finite sequence u1, . . . , un of
action nodes such that each adjacent ui and uj:

1. share the same hypernode (T (ui) = T (uj)) or

2. are the constructor and destructor of a quality edge, respectively ((ui, uj) ∈ E).

Intuitively, paths are used to identify the precendence (or temporal order) of quality
edges. For instance, the quality edge (u, v) occurs before (u′, v′) in H if there is
a path from v to u in H.

Definition 5.1.2 (LH semantics). The evaluation of a LH-formula done with re-
spect to a temporal graph H and is given by the mapping ‖ · ‖H : LH → 2E which
assigns for each formula ϕ ∈ LH a set of quality edges ‖ϕ‖H which satisfy it. ‖ · ‖H
is defined as follows:

• ‖p‖H = {(u, v) ∈ E : L((u, v)) = p}
• ‖¬p‖H = {(u, v) ∈ E : L((u, v)) 6= p}
• ‖pbϕ‖H = {(u, v) ∈ ‖p‖H : there exists (u′, v′) ∈ ‖ϕ‖H such that there is a path

from v to u}
• ‖¬(pbϕ)‖H = {(u, v) ∈ ‖p‖H : there exists no (u′, v′) ∈ ‖ϕ‖H such that there is

a path from v to u}
• ‖p ∝ ϕ ∧ p ∝ ϕ′‖H = ‖p ∝ ϕ‖H ∩ ‖p ∝ ϕ′‖H
• ‖¬(ϕ ∧ ϕ′)‖H = ‖¬ϕ ∨ ¬ϕ′‖H

The cases corresponding to other temporal connectives are defined in a similar way.
For details, see [12].

Example 5.1.2 (Semantics). We consider the formulae ϕi, i ∈ {1, 2, 3} from Ex-
ample 5.1.1. ‖ϕ1‖H1 = {(u1, u2)}, since the action node u2 is directly connected to
u3 (by hypernode h2) and (u3, u4) is labelled with buy . ‖ϕ2‖H1 = ∅ since there is no
quality edge labelled with buy which occurs after one labelled with tax . However,
‖ϕ2‖H4 = {(u3, u4)}, since ‖buyasell‖H4 = {(u3, u4)}, ‖buybtax‖H4 = {(u3, u4)},
and ‖ϕ2‖H4 = ‖buyasell‖H4 ∩ ‖buyasell‖H4 . Similarly, ‖ϕ3‖H4 = {u5, u6}.

Now, we can use LH-formule to express goals. Given an environment Env and
a goal formula φi of agent i, the goal set Gi can be expressed as Gi = {HEnv :
‖φi‖HEnv

6= ∅}. In other words, a temporal graph HEnv generated by Env satisfies
the goal formula φi iff the evaluation of φi in HEnv yields at least one quality edge.

Proposition 5.1.1 ([12]). Given a formula φ ∈ LH and a quality edge (u, v), the
decision problem (u, v) ∈ ‖φ‖H is in PTIME. Also, computing the set ‖φ‖H can be
done in polynomial time with respect to the size of the formula φ and that of the
temporal graph where φ is evaluated.

Stability and Strategic Time-Dependent Behaviour in MAS 17

5.2 Computing NE and SNE

In this section, we look at the computational complexity of two well-established
types of problems, namely:

1. verifying if an action profile is a (strong) Nash equilibrium of a given t-game
and

2. establishing whether or not there exist (strong) Nash equilibria in a given t-game.

Finally, we discuss the impact of our results to the development of algorithms which
solve these two problems.

Proposition 5.2.1 ((S)NE verification). Checking whether an action profile is
a Nash equilibrium or a strong Nash equilibrium of a t-game with goals formulated
in the language LH, is coNP -complete.

Proof. Consider the complement of the problem: given a t-game G and a temporal
graph H, is H not a (strong) Nash equilibrium.

Nash Equilibrium Membership in NP (sketch): Let a be the action profile
which produces H. We non-deterministically build all possible action profiles a∗

and agents i, in non-deterministic polynomial time (in the number of agents
and quality edges from the environment). We then check (a−i, ai) �i (a−i, a

∗
i)

which can be done in deterministic polynomial time. The preference relation is
computed by:

1. summing up all costs,

2. determining whether the goal of i is satisfied (which can be done in polyno-
mial time, according to Proposition 5.1.1)

3. if it is the case, subtracting the resources from the total cost.

NP hardness: We build a reduction from SAT to our problem. Consider
a propositional formula ϕ = T1 ∧ T2 ∧ . . . ∧ Tn, where each Ti is of the
form Ti = αi1∨αi2∨ . . .∨αik, where each αij is of the form x or ¬x, and x is
a variable. We model an interpretation (assignment of a truth value to each
variable) as a temporal graph H of an environment Env, containing two hy-
pernodes. Env is given by: H = {h1, h2}. For each variable x of ϕ, we build
action nodes ucx, udx and quality edge (ucx, u

d
x), labelled as px. Thus, each

variable has a corresponding quality edge. We further add a distinguished
quality edge (uc∗, u

d
∗) labelled as p∗. The temporal graph H generated by

Env is built as follows: We fix the span of p∗ from h1 to h2 (T (uc∗) = h1
and T (ud∗) = h2). Whenever a variable x is true, we fix T (ucx) = h1 and
T (udx) = h2. Thus px holds in H between h1 and h2. Whenever x is false, we
do not set px in H at all. Thus, the atomic propositional formula x corre-
sponds to the LH formula p∗ o px, which means that px must overlap with p∗.

18 M. Popovici, L. Negreanu

The formula ¬x corresponds to ¬(p∗ o px), which means that it cannot be
the case that p∗ overlaps with px.

We build a goal formula ϕLH from ϕ by replacing each atomic positive and
negated literal by the LH-formulae described above. Now ϕ is satisfiable
iff there exists a temporal graph H generated by Env such that ‖ϕLH‖ =
{(uc∗, ud∗)}.
Next, we built a t-game G with N = 2. The first agent, 1, controls the
property p∗ and has as goal, the formula p∗. The second agent, 2, controls
all variable properties px and has as goal ϕLH . The costs of setting all
variables are 0. The goal values are 1 for both agents. We build an action
profile a in which the first agent sets p∗ and the other does nothing.

=⇒ (sketch). If ϕ is satisfiable, then agent 2 has an incentive to deviate and
execute those action nodes which will make ‖ϕLH‖ 6= ∅. Thus a is not a Nash
equilibrium.

⇐= (sketch). If a is not a Nash equilibrium, then there exists an agent which
can deviate to increase his utility. The first agent has the maximal utility
of 1. However, agent 2 has utility 0 and could achieve 1 if his goal is satisfied.
Thus, he is the only one that can deviate. If a deviation exists, this must
make ‖ϕLH‖ 6= ∅. Thus ϕ is satisfiable.

Strong Nash equilibrium. The proof is similar to that of the Nash equilibrium
case, except that we consider groups of agents instead of individual agents. The
same reduction can be used for showing coNP -completeness.

�

Proposition 5.2.2 ((S)NE existence). Checking if there exists an action profile is
a Nash equilibrium or strong Nash equilibrium of a t-game with goals formulated in
the language LH, is in Σ2.

Proof.

Nash equilibrium. We show the complement of the problem is in Σ2 = NP coNP .
We non-deterministically build all action profiles if the t-game at hand, as illus-
trated in the proof of Proposition 5.2.1. This can be done in non-deterministic
polynomial time. Hence, the building process is in NP . For each such built
action profile, we apply the procedure from Proposition 5.2.1, to establish if
the profile is a Nash equilibrium. Thus, the entire existence checking process
is in NP, if we use an oracle from coNP (precisely the algorithm described in
Proposition 5.2.1. Hence, the existence checking is in NP coNP .

Strong Nash equilibrium. The proof is similar to the above case.

�

We conjecture that the existence checking is also complete for Σ2.

Stability and Strategic Time-Dependent Behaviour in MAS 19

The above results are, at least as first sight, quite pessimistic. They show that
verification is as hard a problem as the hardest problems from NP , while existence
checking is in Σ2 and possibly complete for this class. However:

1. the complexity results coincide with those associated to similar problems. For
instance, computing Nash equilibria [7] in propositional logic games are (co-)NP
complete. If we take into account the fact that goals formulated in LH are more
expressive that the ones expressed in propositional logic, our results are quite
optimistic. They show that we can add temporal reasoning for free to a strategic
interaction, in terms of computational complexity;

2. although NP -completeness implies the exploration of a solution space of expo-
nential size, this can be feasible for any MAS with a small number of agents.
Thus, SAT solvers [10], which are known to be very fast, can be employed for
determining Nash and strong Nash equilibria.

6 RELATED WORK

We consider Boolean (or propositional logic) Games [7] to be one of the first frame-
works which use logic for describing goal-based strategic interactions between agents.
We also note [3] which generalises the former setting from 2 to n-player scenarios.
We believe that our approach is conceptually similar. However, instead of proposi-
tional logic, we use the more expressive language LH, which also allows expressing
domain-dependent temporal properties. Thus, the outcome of a game, which in the
former setting is an interpretation of variables, is replaced here by a temporal graph.

The choice of LH over well-known temporal logics such as LTL [16] or CTL [2],
is motivated, on one hand, by the increased computational complexity of model
checking in the case of LTL [16] and by the reduced expressive power of CTL, with
respect to the extended version of LH presented in [12]. We also note that, unlike
temporal graphs, Kripke Structures – the models of CTL and LTL – may become
inefficient in storing the evolution of large domains. Consider a property P which
holds over a number n of states. In a Kripke Structure, storing the property P
involves labelling each of the n states. As we have previously seen, in our approach,
storing a property P does not depend in any way on the number of states (hyper-
nodes) which it covers. For a more detailed comparison between LH and standard
temporal logics we defer the reader to [12].

There is a considerable amount of work aimed at expressing the strategic abilities
of agents, such as ATL [1] and (Quantified) Coalition Logics [6]. These languages
are aimed at expressing stability conditions, such as the ones captured by the Nash
and strong Nash equilibrium. The final purpose is to analyze general properties of
games. Our approach is considerably different. We consider the stability conditions
as fixed (more precisely, they are NE and SNE) and analyze the possible domain
(instead of game) evolutions which satisfy our conditions.

20 M. Popovici, L. Negreanu

7 CONCLUSION AND FUTURE WORK

While the scope of our paper is rather formal, we believe our results can be easily
put into practice. Our complexity results show that implementations are possible,
if proper tools, such as SAT solvers, are deployed. Also, by introducing limited
memory, that is, by truncating temporal graphs to a fixed number of hypernodes,
the computational effort may be further controlled. As suggested by all the examples
above, our modelling method can be used for identifying stable behaviour of agents in
time-dependent environments. For clarity, we have employed a very simple fictitious
stock-market example. However, we believe that our approach has a wide range of
applicability, in areas such as intelligent environments and ambient intelligence,
where both humans and devices interact in order to achieve individual interests. We
are currently working in deploying our approach in this setting. This would naturally
require efficient algorithms and appropriate techniques to tame the complexity of
the problems at hand. We leave these issues for the future work.

Acknowledgement

The authors wish to acknowledge the help and support from Prof. Cristian Giumale,
which was the first to think about temporal graphs, and whose guidance patroned
the work presented in this paper.

The work has been funded by Project 264207, ERRIC-Empowering Romanian
Research on Intelligent Information Technologies/FP7-REGPOT-2010-1.

This paper was supported by the project “Research scholarships for young re-
searchers, Competition 2015” financed by the University of Bucharest via the Re-
search Institute of University of Bucharest (ICUB).

REFERENCES

[1] Alur, R.—Henzinger, T. A.—Kupferman, O.: Alternating-Time Temporal
Logic. In Revised Lectures from the International Symposium on Compositional-
ity: The Significant Difference (COMPOS ’97), Springer-Verlag, London, UK, 1998,
pp. 23–60.

[2] Arnold, A.—Crubille, P.: A Linear Algorithm to Solve Fixed-Point Equations
on Transition Systems. Inf. Process. Lett., Vol. 29, 1988, No. 2, pp. 57–66.

[3] Bonzon, E.—Lagasquie-Schiex, M.-Ch.—Lang, J.—Zanuttini, B.: Boolean
Games Revisited. In ECAI, 2006, pp. 265–269.

[4] Giumale, C.—Negreanu, L.: Reasoning with Fluid Qualities. 17th International
Conference on Control Systems and Computer Science (CSCS 17), December 2009,
Vol. 2, pp. 197–203.

[5] Giumale, C.—Negreanu, L.—Muraru, M.—Popovici, M.: Modeling Ontolo-
gies for Time-Dependent Applications. Symbolic and Numeric Algorithms for Scien-
tific Computing, International Symposium, 2010, pp. 202–208.

Stability and Strategic Time-Dependent Behaviour in MAS 21

[6] Ågotnes, T.—van der Hoek, W.—Wooldridge, M.: Quantified Coalition
Logic. Synthese, Vol. 165, 2008, No. 2, pp. 269–294.

[7] Harrenstein, P.—van der Hoek, W.—Meyer, J.-J.—Witteveen, C.: Boo-
lean Games. Proceedings of the 8th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK ’01), San Francisco, CA, USA, 2001, Morgan Kaufmann Pub-
lishers Inc., pp. 287–298.

[8] Luo, Y.—Liu, K.—Davis, D. N.: A Multi-Agent Decision Support System for
Stock Trading. Network, IEEE, Vol. 16, 2002, No. 1, pp. 20–27.

[9] Ma, Y.-L.—Li, B.-Q.: An Auction-Based Multi-Agent System Model with Variable
Use-Factor. 2008 International Conference on Machine Learning and Cybernetics,
July 2008, Vol. 2, pp. 899–903.

[10] Moskewicz, M. W.—Madigan, C. F.—Zhao, Y.—Zhang, L.—Malik, S.:
Chaff: Engineering an Efficient Sat Solver. In Annual ACM IEEE Design Automation
Conference, ACM, 2001, pp. 530–535.

[11] Osborne, M.J.—Rubinstein, A.: A Course in Game Theory. MIT Press, 1994.

[12] Popovici, M.: Using Evolution Graphs for Describing Topology-Aware Predic-
tion Models in Large Clusters. In: Fisher, M., van der Torre, L., Dastani, M.
and Governatori, G. (Eds.): Computational Logic in Multi-Agent Systems, Springer
Berlin/Heidelberg, 2012, Vol. 7486, pp. 94–109.

[13] Popovici, M.—Muraru, M.—Agache, A.—Giumale, C.—Negreanu, L.—
Dobre, C.: A Modeling Method and Declarative Language for Temporal Rea-
soning Based on Fluid Qualities. Proceedings of the 19th International Conference
on Conceptual Structures for Discovering Knowledge (ICCS ’11), Berlin, Heidelberg,
Springer-Verlag, 2011, pp. 215–228.

[14] Popovici, M.—Negreanu, L.: Strategic Behaviour in Multi-Agent Systems Able
to Perform Temporal Reasoning. In IDC, 2013, pp. 211–216.

[15] Shoham, Y.—Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[16] Sistla, A. P.—Clarke, E. M.: The Complexity of Propositional Linear Temporal
Logics. J. ACM, Vol. 32, 1985, No. 3, pp. 733–749.

22 M. Popovici, L. Negreanu

Matei Popovici is a postdoctoral researcher at the Research
Institute of University of Bucharest (ICUB) and Lecturer at the
Computer Science Department of POLITEHNICA University of
Bucharest, where he teaches Programming Paradigms and Algo-
rithms & Complexity Theory courses. He received his Ph.D. de-
gree from the same institution in 2012, with a thesis on temporal
knowledge representation and reasoning. His main research in-
terests include algorithmic game theory, logics for multiagent
system verification, network verification, and artificial intelli-
gence.

Lorina Negreanu is currently Associate Professor with the
Department of Computer Science, University POLITEHNICA
of Bucharest (UPB). She graduated in 1987 from the Faculty
of Control and Computers, Computer Science Department of
UPB and she received her Ph.D. degree from the same univer-
sity in 1999. Her main research areas include software and data
modelling, model checking and software specification methods.
She teaches courses on object oriented programming, formal lan-
guages (B.Sc. degree in CS), software verification and validation,
advanced database systems (M.Sc. degree in CS). She is coordi-

nating the research group “Software Modelling and Formal Verification”. She co-authored
more than 50 research papers published in international journals and conference proceed-
ings, 4 books, and 3 university textbooks. She was Visiting Professor at University of
Maryland University College, US, and was/is member of Program Committees of several
international conferences. She participated as a research team member in several national
and international R & D grants, and international R & D projects.

