STABILITY AND STRATEGIC TIME-DEPENDENT BEHAVIOUR IN MULTIAGENT SYSTEMS

Matei Popovici

Research Institute of University of Bucharest (ICUB)
University of Bucharest
Sector 5, 36-46 Mihail Kogalniceanu Blvd, 050107
Romania, Bucharest
e-mail: matei.popovici

Lorina Negreanu

Computer Science Department
POLITEHNICA University of Bucharest
Splaiul Independentei 313, Sector 6
060042 Bucharest, Romania
e-mail: lorina.negreanu@cs.pub.ro

Abstract. Temporal reasoning and strategic behaviour are important abilities of multiagent systems. We introduce a game-theoretic framework suitable for modelling selfish and rational agents which can store and reason about the evolution of an environment, and act according to their interests. Our aim is to identify stable interactions: those where no agent has a benefit from changing his behaviour to another. For this reason we deploy the game-theoretic concept of Nash equilibrium and strong Nash equilibrium. We show that not all agent interactions can be stable. Also, we investigate the computational complexity for verifying and checking the existence of stable agent interactions. This paves the way for developing agents which can take appropriate decisions in competitive and strategic situations.

Keywords: Temporal knowledge representation and reasoning, game theory, coordination

Mathematics Subject Classification 2010: 68T27
1 INTRODUCTION

Multiagent systems (MAS) have long been a successful means for modelling the interaction of software agents (or simply, programs) with themselves, other humans, and a given environment. In this context, there is an ever increasing need for MAS:

1. able to perform temporal inferences and
2. capable of strategic reasoning.

As concerns point 1, it implies that agents can store information related to the history of their environment as well as their own past and current state and they are able to infer some implicit knowledge based on such information. We believe this is critical, as it complements the agent’s awareness of its own environment, with the awareness of time. The point 2, is justified by scenarios such as stock markets [8] or auctioning [9] where each agent (be it human or software) is assumed to be rational and self-interested, thus acts accordingly.

In this paper, we equip MAS with memory and temporal inference capabilities by deploying a method for temporal reasoning previously described in [4, 5, 13, 12], and we study the strategic behaviour of such systems. In our setting, such a behaviour is characterized by agents’ ability to deviate whenever this is convenient, i.e. to change his action to another, given the actions of all other agents.

To illustrate such a situation, let us consider the following simplified stock-market scenario with three agents:

Agent 1 — the seller,
Agent 2 — the buyer,
Agent 3 — the supervisor.

On the market, stocks of type T can be sold or bought at a constant rate for a particular time interval. We assume T-stocks are already available for trading, initially. Agent 1 possesses a number of stocks of type T and would like to sell, but before agent 2 is buying. Agent 2 would like to buy stocks of type T, but before a transaction tax is installed and after Agent 1 has finished selling. Agent 3 would like to set a transaction tax on stocks of type T after they are no longer on sale by Agent 1. If the tax is established sooner, it is not justified and deemed as unfair. Alternatively, he would like to monitor the stock market and then establish the tax. However, monitoring the market is a more expensive task.

The scenario is a particular case of a temporal strategic planning problem, in which agents must be coordinate so that all formulated restrictions are satisfied, if possible. More formally, we have four time-dependent properties sell, buy, tax, monitor, each controlled by the corresponding agent, and which stand for:

1. This is achieved, possibly, by players other than 1, 2, 3.
1. sell stocks on market,
2. buy stocks,
3. establish transaction tax and
4. monitor the stock market, respectively.

The agent’s action consists of validating one or more properties he controls at a particular time interval. Each agent has a particular goal which is dependent on the current and past state(s) of the environment. In our example, the goals G_i of agents $i \in \{1, 2, 3\}$ are informally described as: G_1: sell before buy, G_2: buy before tax and buy after sell and G_3: tax after sell or tax before monitor. Formally, goals are expressed using the temporal language L_H, introduced and described in [12].

Also, each action has associated a particular cost. We further assume that agents are rational and self-interested, meaning they will choose to execute that particular action which:

1. makes the goal satisfied,
2. minimizes costs.

We are interested in the situations where agents cannot individually satisfy their goals i.e. they may have (partially) conflicting and/or (partially) overlapping goals. In such situations, agents may deviate, whenever this is a means for achieving a better outcome. For instance, in our example, if agent 2 cannot buy stocks before the transaction tax is installed, he might change his action from buying stocks to no action. Our aim is to identify those stable actions, one for each agent, which ensure that no agent has no incentive to deviate.

With this objective in view, we use a non-cooperative strategic game to formally describe scenarios mentioned above. Thus, the actions of all agents are instantaneous\(^2\). Next, we introduce the game-theoretic concept of Nash equilibrium (NE) which describes MAS stability against individual deviations. Further on, we consider a much more restrictive concept, the strong Nash equilibrium (SNE), where stability is considered with respect to deviations from all possible coalitions of agents.

We further study the computational complexity of verifying and identifying (strong) Nash equilibria, using the L_H-model checking procedure described in [12] and identify an upper complexity bound.

This paper extends our previous work from [14] which introduces a game-theoretic framework for studying agent stability, as well as the concept of Nash equilibrium, and finally, identifies the upper complexity bound for the verification and existence checking the Nash equilibria. In our current paper, we look at some limitations of the Nash equilibrium from [14], and propose the strong Nash equilibrium as an improved solution concept. We also examine situations where Nash

\(^2\) In a strategic game, actions are performed just as in the Rock-paper-scissors-game [15]. Each agent has no prior knowledge about what the others might do, and all actions are simultaneous.
and strong Nash equilibria exist and extend our computational complexity results to the latter, new concept. Also, we complete our study with completeness results. The latter concept has suggested that polynomial algorithms for computing our solution concepts are not likely to exist. We also discuss alternatives for tackling this issue. Finally, we have made the game-theoretic setting independent of the goal specification language and slightly changed it in order to improve readability.

The paper is structured as follows. In Section 2 we introduce the formal concept of environment, which describes the structure of a possibly time-dependent domain. Also, we introduce temporal graphs which capture particular evolutions of such domain. In Section 3, we describe t-games which capture strategic scenarios, where agents can make decisions and influence the evolution of the domain. In Section 4, we introduce the Nash and strong Nash equilibrium, and study the t-games in which such equilibria exist. In Section 5 we introduce the language L_H [12], as formal means for expressing time-dependent agent goals. We use L_H to study the computational complexity of verifying and checking for the existence of Nash and strong Nash equilibria. Finally, in Sections 6 and 7 we discuss related and future work, and conclude.

2 MODELLING ENVIRONMENTS AND EVOLUTION

A strategic interaction of a MAS occurs in a particular environment. The description of the environment, \mathcal{E}_{nv}, models time-dependent properties as labelled directed edges. We call such edges labelled quality edges. The label gives the semantics of the property at hand. Quality edges span action nodes. An action node models an instantaneous event, which changes the current state of the environment by initiating and terminating a quality edge. Each action node occurs at a precise moment of time. The latter are modelled by hypernodes.

Formally, we have:

Definition 2.0.1 (Environment). Let $Labels$ be a set of symbols. An environment is a structure $\mathcal{E}_{nv} = \langle A, E, \mathcal{L} \rangle$ defined with respect to $Labels$, as follows:

- A is a set whose elements are called action nodes
- $E \subseteq A \times A$ is a directed relation which models quality edges
- $\mathcal{L} : E \rightarrow Labels$ is a surjective function which assigns a symbol (label) to each quality edge.

Given the quality edge $(u, v) \in E$, we say that action nodes u or v are the constructor or destructor nodes of (u, v), respectively. Also, we say that (u, v) is initiated (terminated) by u (v), respectively.

The following example formalizes the setting discussed in the introductory section.
Example 2.0.1 (Environment). Let \(\mathcal{L}_{\text{labels}_1} = \{ \text{sell, buy, tax, monitor} \} \), \(A_1 = \{ u_1, u_2, u_3, u_4, u_5, u_6, v_1, v_2 \} \), \(E_1 = \{ (u_1, u_2), (u_3, u_4), (u_5, u_6), (v_1, v_2) \} \), \(\mathcal{L}_1((u_1, u_2)) = \text{sell} \), \(\mathcal{L}_1((u_3, u_4)) = \text{buy} \), \(\mathcal{L}_1((u_5, u_6)) = \text{tax} \) and \(\mathcal{L}_1((v_1, v_2)) = \text{monitor} \). The environment \(\mathcal{E}_{\text{env}_1} = \langle A_1, E_1, \mathcal{L}_1 \rangle \) models a setting with four types of properties, namely \(\text{sell, buy, tax and monitor} \). The properties are initiated by \(u_1, u_3, u_5, v_1 \) and terminated by \(u_2, u_4, u_6, v_2 \), respectively.

We note that \(\mathcal{E}_{\text{env}} \) merely provides a taxonomy of the domain at hand, giving us information about the available events and what properties they introduce. It provides no information about the actual evolution of the domain at hand. The latter is captured by temporal graphs:

Definition 2.0.2 ((labelled) temporal graph). Let \(\mathcal{E}_{\text{env}} = \langle A, E, \mathcal{L} \rangle \) be an environment, \(H \) be a set whose elements are called hypernodes and which designate moments of time, and \(\mathcal{T} : A \rightarrow H \) be a function which assigns an action node \(u \), to the hypernode \(\mathcal{T}(u) \), i.e. the moment when \(u \) takes place.

A labelled temporal graph (or t-graph) generated by \(\mathcal{E}_{\text{env}} \) and \(\mathcal{T} \) is a structure \(\mathcal{H}_{\text{env}}^T = \langle A', H, \mathcal{T}, E', \mathcal{L} \rangle \) where \(A' = \{ u \in A : \text{the function } \mathcal{T} \text{ is defined in } u \} \) and \(E' = \{ (u, v) : u, v \in A' \} \). When the environment and/or the \(\mathcal{T} \) function are clear from context, we write \(\mathcal{H} \) instead of \(\mathcal{H}_{\text{env}}^T \). Whenever \(\mathcal{T}(u) = \mathcal{T}(v) \) for two action nodes \(u, v \), we say they are simultaneous. We denote by \(\mathcal{H}_{\text{set}_{\text{env}}} \) the set of temporal graphs generated by \(\mathcal{E}_{\text{env}} \).

Remark 2.0.1 (The interpretation of hypernode). Each hypernode \(h \in H \) interprets a symbolic moment of time, i.e. one for which no time-stamp is known. For this reason, we do not introduce an a-priori known total ordering of \(H \). However, a (partial) pre-order can be inferred, as follows: \(u \geq_H v \) iff: (i) \(\mathcal{T}(u) = \mathcal{T}(v) \) or (ii) \((u, v) \in E \) or (iii) there exists \(u' \) such that \(u' \geq_H v \) and \(\mathcal{T}(u) = \mathcal{T}(u') \) or \((u, u') \in E \). We note that \(\geq_H \) is reflexive and transitive, however not total.

A temporal graph adds temporal information to an environment by assigning to action nodes \(u \), temporal moments \(\mathcal{T}(u) \) when they occur. The precise action nodes and quality edges of a temporal graph are those from the environment which correspond to executed action nodes, i.e. those for which the function \(\mathcal{T} \) is defined.

Example 2.0.2 (temporal graph). Let \(H_1 = \{ h_1, h_2, h_3, h_4 \} \), and the function \(\mathcal{T}_1 \), defined as follows: \(\mathcal{T}_1(u_1) = h_1 \), \(\mathcal{T}_1(u_2) = \mathcal{T}_1(u_3) = h_2 \), \(\mathcal{T}_1(u_5) = h_2 \) and \(\mathcal{T}_1(u_4) = \mathcal{T}_1(u_6) = h_4 \). The temporal graph generated by the environment \(\mathcal{E}_{\text{env}_1} \) from Example 2.0.1 and \(\mathcal{T}_1 \) is \(\mathcal{H}_1 = \langle A_1', H_1, \mathcal{T}_1, E_1', \mathcal{L}_1 \rangle \), where \(\mathcal{L}_1 \) are taken from Example 2.0.1 and \(A_1', E_1' \) are built according to Definition 2.0.2. \(\mathcal{H}_1 \) captures the evolution in which the buyer purchases the stocks precisely when they are no longer being sold and the supervisor inserts the tax while they are being bought. \(\mathcal{H}_1 \) is shown in Figure 1.

We note that quality edges have a dual representation. On one hand, they are edges of the form \((u, v) \) which are explicit parts of the temporal graph. The edge
Figure 1. The temporal graph H_1 for the evolution of the stock market

gives a temporal dimension to the modelled property. It is initiated by u, terminated by v and the interval when it is true is given by $[T(u), T(v)]$. On the other hand, the quality edge is labelled by a symbol, and the symbol encodes the semantics of the property. In [12], we also treat the more interesting case where labels can also be relational instances such as $P(a, b, c)$. Since the labels of temporal graphs do not affect in any way the formulation of our game-theoretic setting, in this paper, we adopt the restricted form of symbols only.

3 MODELLING A STRATEGIC INTERACTION

We use the term strategic interaction to describe any circumstance in which an individual’s situation is influenced by the goals and interventions of other individuals. In our scenario, the actors of a strategic interaction are agents. We assume they are selfish and rational in the game-theoretic sense [11]. Each agent i controls a limited set of action nodes C_{trl_i}. (S)he can perform an action $a_i = (A_i, T_i)$. Agent actions are different from action nodes. The latter are merely events in a temporal graph. The former should be understood in the game-theoretic sense. They are interventions of the agent in the environment. The action has two components: $A_i \subseteq C_{trl_i}$ is a subset of the controlled action nodes of i, which i will execute. T_i is a function which assigns for each action node $u \in A_i$ the moment $T_i(u)$ when it will be executed by the agent.

The outcome of a strategic interaction is a sequence of actions, one for each agent, i.e. an action profile. The latter can also be viewed as the outcome temporal graph, i.e. the one constructed from all agents’ actions.

3 We note that interaction should not be understood as a one-to-one relationship between pairs of agents. It should rather be viewed as means by which each agent can, by his own actions, affect the satisfaction of the goals of others. This is quite similar to the case of a game of poker. Here, players do not interact directly. They do so via the cards they choose to play. Each such action affects the outcome of the game, and hence, the winner.
Also, executing each action node \(u \) comes with a cost \(c(u) \). We assume that agents have a limited number of resources which they can spend. This is captured by values \(g_i \), one for each agent \(i \). Finally, each agent has a goal which (s) he would like to enforce. The goal of agent \(i \) is defined as the set \(G_i \) of temporal graphs which the agent considers desirable. Later on, in Section 5, we shall provide and discuss a more compact representation for goals.

Formally, the strategic interaction is modelled by a temporal game (or \(t \)-game), as follows:

Definition 3.0.3 (\(t \)-game). Let \(N \) be a set of agents, \(\mathcal{E}nv \) be an environment and \(H \) be a set of hypernodes. A \(t \)-game is a structure:

\[
\mathcal{G} = \langle N, \mathcal{E}nv, H, (Ctrl_i)_{i \in N}, c, (G_i)_{i \in N}, (g_i)_{i \in N} \rangle
\]

where each \(Ctrl_i \subseteq A \) is a subset of \(A \) (taken from \(\mathcal{E}nv \)) of action nodes controlled by agent \(i \), \(c : A \rightarrow \mathbb{R}^+ \) is a cost function, each \(G_i \subset \mathcal{H}set_{\mathcal{E}nv} \) is the goal of agent \(i \) and each \(g_i \) is the amount of available resources of agent \(i \). Also, \((Ctrl_i)_{i \in N} \) is a proper partition of \(A \), that is: \(Ctrl_i \cap Ctrl_j = \emptyset \) for any \(i \neq j \in N \) and \(\bigcup_{i \in N} Ctrl_i = A \).

Example 3.0.3 (\(t \)-game). The strategic interaction between the seller, buyer and supervisor, described informally in the introduction, is modelled by the \(t \)-game \(\mathcal{G}_1 = \langle N, \mathcal{E}nv_1, H_1, (Ctrl_i)_{i \in N}, c, (G_i)_{i \in N}, (g_i)_{i \in N} \rangle \) where \(H_1 \) is taken from Example 2.0.2, \(N = \{1, 2, 3\} \) (1 denotes the seller, 2 – the buyer and 3 – the supervisor), \(\mathcal{E}nv_1 \) is taken from Example 2.0.1, \(Ctrl_1 = \{u_1, u_2\} \), \(Ctrl_2 = \{u_3, u_4\} \), \(Ctrl_3 = \{u_5, u_6, v_1, v_2\} \), \(c(u) = 1 \) for all \(u \in A \), \(G_1 = \{H_{\mathcal{E}nv_1} : sell \ \text{occurs before} \ \text{buy}\} \), \(G_2 = \{H_{\mathcal{E}nv_1} : \ \text{buy \ \text{occurs before} \ \text{tax and after} \ \text{sell}}\} \), \(G_3 = \{H_{\mathcal{E}nv_1} : \ \text{tax \ \text{occurs after} \ \text{sell or before} \ \text{monitor}}\} \) and \(g_1 = g_2 = g_3 = 5 \). Thus, the seller (1), controls the actions which create/terminate the property \(\text{sell} \), the buyer (2) controls those which create/terminate \(\text{buy} \), while the supervisor (3) - those which create/terminate \(\text{tax} \) and \(\text{monitor} \).

In what follows, we assume \(\mathcal{G} \) is a \(t \)-game.

Remark 3.0.2 (The interpretation of \(H \)). We note that \(H \) i.e. the set of hypernodes, is given in advance, and without any specified ordering. \(H \) can be interpreted as a set of \textit{slots}, where agents can perform their actions. In this context, those are the agents which establish a (partial) ordering of \(H \), via their actions, more precisely, via the quality edges which they set, according to Remark 2.0.1.

Definition 3.0.4 (Action profile). An action of agent \(i \) in the \(t \)-game \(\mathcal{G} \) is a pair \(a_i = (A_i, T_i) \) where \(T_i : A_i \rightarrow H \) is a surjective function, \(A_i \subseteq Ctrl_i \) and each \(Ctrl_i \) together with \(H \) are taken from \(\mathcal{G} \). An action profile \(a \) in the \(t \)-game \(\mathcal{G} \) assigns to each agent \(i \in N \), the action \(a_i \). Formally, it is a sequence \(a = (a_i)_{i \in N} \). We write \(a_{-i} \) to refer to the action profile \(a \) which does not contain \(a_i \), \(a_C \) to refer to the sequence \((a_i)_{i \in C} \) and \(a_{-C} \) to refer to the action profile \(a \) which does not contain \(a_i \) for all \(i \in C \).
An action profile provides a complete specification of what all agents in the MAS will do, and corresponds to a temporal graph which stores the evolution of the environment, according to each agents’ action. The construction of the temporal graph simply takes all the action nodes executed by each agent, and introduces each of them at the moment when the agent desires to execute them. Formally, the temporal graph $H(a)$ resulted from the action profile $a = ((A_i, T_i))_{i \in N}$ in the t-game G, is the temporal graph generated by Env, H (which are taken from G) and the function T, which is built as follows: $T(u_i) = T_i(u_i)$ for each $u_i \in A_i$. We say that $H(a)$ is the outcome of a.

Example 3.0.4 (Action profile). We continue Example 3.0.3. The action profile a_1 in G_1 which produces the temporal graph H_1 from Example 2.0.2 is:

$$a_1 = ((\{u_1, u_2\}, T_1), (\{u_3, u_4\}, T_2), (\{u_5, u_6\}, T_3))$$

where $T_1(u_1) = h_1$, $T_1(u_2) = h_2$, $T_2(u_3) = h_2$, $T_2(u_4) = h_4$, $T_3(u_5) = h_2$ and $T_3(u_6) = h_4$.

Each outcome of the interaction produces a certain benefit or disadvantage for each agent. Naturally, this is dependent on:

1. the costs which each agent has to support and
2. whether or not the agent’s goal is satisfied.

Definition 3.0.5 (Cost, goal satisfaction, utility). Given a temporal graph $H(a)$ which is the outcome the action profile $a = ((A_i, T_i))_{i \in N}$, we define the cost of agent i as $cost_i(H(a)) = \sum_{u \in A_i} c(i)$. The cost is computed as the sum of costs of all action nodes executed by i. We say the goal of agent i is satisfied, if $H(a) \in G_i$. Finally, the utility of agent i in $H(a)$ is given by:

$$u_i(H(a)) = \begin{cases} g_i - cost_i(H(a)) & \text{if } H(a) \in G_i \\ -cost_i(H(a)) & \text{otherwise} \end{cases}$$

Example 3.0.5 (Cost, utility). The cost supported by each agent in H_1 (Example 2.0.2) is $cost_i(H_1) = 1 + 1 = 2$ for $i \in \{1, 2, 3\}$. The utility of the seller in H_1 is $u_1(H_1) = g_1 - cost_1(H_1) = 5 - 2 = 3$, since the goal of the seller is satisfied. However, the goal of the buyer is not satisfied, since buy does not occur after tax, therefore his/her utility is $u_2(H_1) = 0 - cost_2(H_1) = -2$.

Utility values provide a quantitative measure of an agent’s welfare in a given outcome (temporal graph). Beside costs, it also incorporates a qualitative component, namely goal satisfaction. If the goal is satisfied, the utility of an agent is computed as the amount of resources he is able to save (initial resources minus costs), while satisfying his goal. If the goal is not satisfied, the agent is penalized: his/hers utility is given by the negative value of his costs.
The choice for defining utility as above follows two assumptions:

1. agents must be incentivised to satisfy their goals, in the cheapest way possible and
2. the agents are resource-bounded, thus they cannot spend infinitely much for satisfying their goal.

Naturally, an agent will prefer a temporal graph over another, depending on the amount of utility which (s)he obtains in either of the two:

Definition 3.0.6 (Preference). We say an agent \(i\) (strictly) prefers a temporal graph \(H\) over \(H'\) and write \(H \succ_n H'\), if \(u_i(H) > u_i(H')\). We also extend the preference relation over action profiles. Given two action profiles \(a, a'\), we write \(a \succ_i a' \) iff \(H(a) \succ_i H'(a)\). The non-strict preference relation \(\succeq_i\) is defined with respect to \(\geq\) in a similar way. Also, we lift the preference relations to coalitions \(C \subseteq N\) of agents: we write \(a \succ_C a'\) when \(a \succ_i a'\) for all \(i \in C\).

Example 3.0.6 (Preference). Consider the temporal graph \(H_2\) from Figure 2, also generated by the environment \(E_{nV_1}\). First, note that \(u_3(H_2) = 5 - (1 + 1 + 1 + 1) = 1\), since, in this scenario, the supervisor monitors the market before setting the tax and \(u_3(H_1) = 5 - (1 + 1)\) since in \(H_1\) the tax is introduced after sell. Thus \(H_1 \succ_3 H_2\). Similarly \(H_2 \succeq_1 H_1\) but \(H_2 \not\succ_1 H_1\) and \(H_1 \not\succ_1 H_2\): the seller does not strictly prefer a temporal graph over another, since he has the same utility in both of them.

\(T_2\) together with \(H_1\) and the function \(T_2\), defined as follows: \(T_2(u_1) = T_2(v_1) = h_1, T_2(u_2) = T_2(u_3) = T_2(u_5) = T_2(v_2) = h_2\) and \(T_2(u_4) = T_2(u_6) = h_4\)
4 SOLUTION CONCEPTS

In the previous section we have formally described strategic settings by t-games. They consist of agents, their ability to execute cost-dependent action nodes, their goals and available resources. An interaction in such a setting consists of an action profile, in which each agent performs an action. The outcome of an interaction is a temporal graph. Also, we have seen that agents prefer certain temporal graphs over others, depending on costs and goal satisfaction.

In this section, we are interested in looking at those action profiles which are stable, more precisely, those where agents have no incentive to deviate.

Definition 4.0.7 (Nash equilibrium). A Nash equilibrium (NE) of a t-game is an action profile a^* such that, for each agent $i \in N$ and each action profile $a \neq a^*$ we have that $(a^* - i, a^*_i) \succeq_i (a^* - i, a_i)$. A Nash-stable temporal graph is $H = H(a)$ where a is a Nash equilibrium.

Example 4.0.7 (Nash equilibrium). Let H_3 which is obtained from H_1 by removing action nodes u_3 and u_4 and the quality edge (u_3, u_4) and $H_3 = H(a^1)$, where a^1 is the action profile from Example 3.0.4. Note that $H_1 \succ_3 H_2$ since in H_1 the goal of the supervisor is satisfied in a cheaper way than in H_2. Thus, H_2 is not a Nash equilibrium. Also $H_3 \succ_2 H_2$. The goal of the buyer is not satisfied in either temporal graph, however, since in H_3 the buyer executes no action node, his/her utility is 0, whereas in H_2 the utility is -2.

Finally, H_3 is a Nash equilibrium since no player has the ability to individually come up with a better action.

The following proposition settles the question regarding stability of arbitrary t-games.

Proposition 4.0.1 (Nash equilibrium existence). There are t-games where no Nash equilibrium exists.

Proof. [Sketch] Let G_2 be the t-game obtained from G_1 (from Example 3.0.3), where the goals of the buyer are modified as: $G_2 = \{H_{E_{mv}} : tax \ does \ not \ occur \ during \ buy\}$ and $G_3 = \{H_{E_{mv}} : tax \ occurs \ during \ buy\}$. There exists no Nash equilibrium of G_2. This is motivated by the following reasoning: let us assume that the buyer starts to buy stocks. If the supervisor takes no action, the goal of the buyer is satisfied since there is no tax property in the temporal graph. However, the goal of the supervisor is not satisfied, and he is incentivised to set the tax on the interval when buy is true. This action would satisfy his goal, but invalidate that of the buyer. Thus, now the buyer has an incentive to deviate, either to set buy in another interval, or, if this is not possible, not to set buy at all. This deviation increases the buyer’s utility from a strictly negative value, to either a positive one, or to zero. As a response to the buyer’s deviation, the supervisor is again incentivised to deviate, and the whole process repeats itself. The conclusion is that there exists no Nash-stable temporal graph in G_2. □
As illustrated by Example 4.0.7, the Nash equilibrium captures only individual deviations. Such deviations do not necessarily produce a globally desirable temporal graph. This is the case with H_3 from Example 4.0.7. H_3 is Nash-stable, however the goal of the buyer is not satisfied. Also, it might be the case that some goal is satisfied, but with a high cost. For these reasons, we introduce the strong Nash equilibrium which captures a much stronger notion of stability.

Definition 4.0.8 (strong Nash equilibrium). A *strong Nash equilibrium* (SNE) of a t-game is an action profile a^* such that, for each coalition of agents $C \subseteq N$ and each action profile $a \neq a^*$ we have that $(a^*_{-C}, a_C^*) \succeq_C (a_{-C}, a_C)$. A strong Nash-stable temporal graph is $H = H(a)$ where a is a strong Nash equilibrium.

Example 4.0.8 (strong Nash equilibrium). The temporal graph H_3 from Example 4.0.7 is not a strong Nash equilibrium. Coalition $\{1, 2, 3\}$ can deviate and implement a better temporal graph, namely H_4 from Figure 3. Note that, in H_4, the utility of the buyer is $u_2(H_4) = u_3(H_4) = 5 - (1 + 1) = 2$, which is strictly higher than the one obtained in H_3. However, H_4 is a strong Nash equilibrium. H_4 shows that, by cooperating, the buyer and the supervisor are mutually better off: the buyer can acquire his stocks before the tax is installed, and thus satisfy his goal.

![Figure 3. The strong-Nash stable temporal graph H_4](image)

Proposition 4.0.2. There are t-games where no strong Nash equilibrium exists.

Proof. [Sketch] The reasoning is similar to that from the proof of Proposition 4.0.1. In the same t-game G_2 there exists no strong Nash equilibrium. For each possible temporal graph in G_2, there exists a coalition, which contains either the buyer or the supervisor, which has an incentive to deviate. □

The behaviour of the strong Nash equilibrium simulates a form of coordination. In temporal graphs which are strong Nash stable, groups of agents seek the best available joint action.

Remark 4.0.3 (Discussion on t-games). As mentioned in the introduction, in a t-game, the actions of each agent are simultaneous, as in the Rock-paper-scissors-game [15]. Moreover, agents are not aware of the actions taken by others. The only
disclosed information about other agents is that given by the t-game itself: available actions, costs, goals, goal values.

Although, in most practical scenarios, actions are not simultaneous, it is reasonable to assume they are not publicly advertised, thus they remain unknown to other agents. This assumption is also justified by feasibility. Normal-form games, the ones in which the interaction is not necessarily simultaneous, are more complex, and require more computationally expensive solution concepts.

5 EXPRESSING GOALS

So far, we have expressed goals as sets of temporal graphs, which satisfy certain conditions, expressed in natural language. In this section, we take on a more formal approach, and use formulae from the temporal language L_H [12] for expressing such conditions. The motivation for our approach is twofold: on the one hand, expressing goals in such a way is more compact and straightforward. On the other hand, it offers means for computing Nash and strong Nash equilibria based on the L_H model checking procedure [12].

5.1 The Language L_H

L_H allows the expression of temporal constraints between the occurrence of quality edges in a temporal graph. In what follows, we briefly introduce and explain the syntax and semantics of L_H. For an extended discussion on L_H, we defer the interested reader to [12]. Again, we consider $Labels$ is a set of symbols.

Definition 5.1.1 (L_H syntax). Let $p, q \in Labels$. The syntax of L_H is recursively as follows:

$$\varphi ::= p \mid p \propto \varphi_1 \mid \neg \varphi_1 \mid p \propto \varphi_1 \land p \propto \varphi_2$$

where $\propto \in \{b,a,o\}$ is a temporal connective, and b,a,o stand for before, after and overlaps, respectively. Two quality edges overlap if they have exactly the same life-span (start and end in action nodes from the same hypernode). Also, the logical connective \lor is defined with respect to \neg and \land in the standard way.

Example 5.1.1 (L_H syntax). We consider the same set $Labels$ as the one introduced in Example 2.0.1. The following:

- $\varphi_1 = sellb\,buy$
- $\varphi_2 = buyb\,tax \land buya\,sell$
- $\varphi_3 = taxa\,buy \lor taxa\,monitor$

are valid L_H-formulae.

5 In this paper, for the brevity of our exposition, we use only a limited number of temporal connectives, which naturally limits the expressive power of L_H. The full necessary set of connectives is discussed in [12].
In order to identify the quality edges in a temporal graph which satisfies a $L_{\mathcal{H}}$-formula, the concept of *path* is important. A path is a finite sequence u_1, \ldots, u_n of action nodes such that each adjacent u_i and u_j:

1. share the same hypernode ($T(u_i) = T(u_j)$) or
2. are the constructor and destructor of a quality edge, respectively ($(u_i, u_j) \in E$).

Intuitively, paths are used to identify the precedence (or temporal order) of quality edges. For instance, the quality edge (u, v) occurs before (u', v') in \mathcal{H} if there is a path from v to u in \mathcal{H}.

Definition 5.1.2 ($L_{\mathcal{H}}$ semantics). The evaluation of a $L_{\mathcal{H}}$-formula done with respect to a temporal graph \mathcal{H} and is given by the mapping $|.|_{\mathcal{H}}: L_{\mathcal{H}} \to 2^E$ which assigns for each formula $\phi \in L_{\mathcal{H}}$ a set of quality edges $|\phi|_{\mathcal{H}}$ which satisfy it. $|.|_{\mathcal{H}}$ is defined as follows:

- $|p|_{\mathcal{H}} = \{(u, v) \in E : \mathcal{L}((u, v)) = p\}$
- $|\neg p|_{\mathcal{H}} = \{(u, v) \in E : \mathcal{L}((u, v)) \neq p\}$
- $|pb\phi|_{\mathcal{H}} = \{(u, v) \in |p|_{\mathcal{H}} : \text{there exists } (u', v') \in |\phi|_{\mathcal{H}} \text{ such that there is a path from } v \text{ to } u\}$
- $|\neg(pb\phi)|_{\mathcal{H}} = \{(u, v) \in |p|_{\mathcal{H}} : \text{there exists no } (u', v') \in |\phi|_{\mathcal{H}} \text{ such that there is a path from } v \text{ to } u\}$
- $|p \land \phi \land p \land \phi'|_{\mathcal{H}} = |p \land \phi|_{\mathcal{H}} \cap |p \land \phi'|_{\mathcal{H}}$
- $|\neg(p \land \phi \land p \land \phi')|_{\mathcal{H}} = |\neg p \lor \neg \phi|_{\mathcal{H}}$

The cases corresponding to other temporal connectives are defined in a similar way. For details, see [12].

Example 5.1.2 (Semantics). We consider the formulae ϕ_i, $i \in \{1, 2, 3\}$ from Example 5.1.1. $|\phi_1|_{\mathcal{H}_1} = \{(u_1, u_2)\}$, since the action node u_2 is directly connected to u_3 (by hypernode h_2) and (u_3, u_4) is labelled with buy. $|\phi_2|_{\mathcal{H}_1} = \emptyset$ since there is no quality edge labelled with buy which occurs after one labelled with tax. However, $|\phi_2|_{\mathcal{H}_4} = \{(u_3, u_4)\}$, since $|buy\text{sell}|_{\mathcal{H}_4} = \{(u_3, u_4)\}$, $|buy\text{tax}|_{\mathcal{H}_4} = \{(u_3, u_4)\}$, and $|\varphi_2|_{\mathcal{H}_4} = |buy\text{sell}|_{\mathcal{H}_4} \cap |buy\text{sell}|_{\mathcal{H}_4}$. Similarly, $|\varphi_3|_{\mathcal{H}_4} = \{u_5, u_6\}$.

Now, we can use $L_{\mathcal{H}}$-formula to express goals. Given an environment $\mathcal{E}nv$ and a goal formula ϕ_i of agent i, the goal set \mathcal{G}_i can be expressed as $\mathcal{G}_i = \{\mathcal{H}_{\mathcal{E}nv} : \|\phi_i\|_{\mathcal{H}_{\mathcal{E}nv}} \neq \emptyset\}$. In other words, a temporal graph $\mathcal{H}_{\mathcal{E}nv}$ generated by $\mathcal{E}nv$ satisfies the goal formula ϕ_i iff the evaluation of ϕ_i in $\mathcal{H}_{\mathcal{E}nv}$ yields at least one quality edge.

Proposition 5.1.1 ([12]). Given a formula $\phi \in L_{\mathcal{H}}$ and a quality edge (u, v), the decision problem $(u, v) \in |\phi|_{\mathcal{H}}$ is in PTIME. Also, computing the set $|\phi|_{\mathcal{H}}$ can be done in polynomial time with respect to the size of the formula ϕ and that of the temporal graph where ϕ is evaluated.
5.2 Computing NE and SNE

In this section, we look at the computational complexity of two well-established types of problems, namely:

1. verifying if an action profile is a (strong) Nash equilibrium of a given \(t \)-game and
2. establishing whether or not there exist (strong) Nash equilibria in a given \(t \)-game.

Finally, we discuss the impact of our results to the development of algorithms which solve these two problems.

Proposition 5.2.1 ((S)NE verification). Checking whether an action profile is a Nash equilibrium or a strong Nash equilibrium of a \(t \)-game with goals formulated in the language \(L_H \), is \(\text{coNP} \)-complete.

Proof. Consider the complement of the problem: given a \(t \)-game \(G \) and a temporal graph \(H \), is \(H \) not a (strong) Nash equilibrium.

Nash Equilibrium Membership in \(\text{NP} \) (sketch): Let \(a \) be the action profile which produces \(H \). We non-deterministically build all possible action profiles \(a^* \) and agents \(i \), in non-deterministic polynomial time (in the number of agents and quality edges from the environment). We then check \((a_{-i}, a_i) \succeq_i (a_{-i}, a^*_i)\) which can be done in deterministic polynomial time. The preference relation is computed by:

1. summing up all costs,
2. determining whether the goal of \(i \) is satisfied (which can be done in polynomial time, according to Proposition 5.1.1)
3. if it is the case, subtracting the resources from the total cost.

NP hardness: We build a reduction from SAT to our problem. Consider a propositional formula \(\varphi = T_1 \land T_2 \land \ldots \land T_n \), where each \(T_i \) is of the form \(T_i = \alpha_{i1} \lor \alpha_{i2} \lor \ldots \lor \alpha_{ik} \), where each \(\alpha_{ij} \) is of the form \(x \) or \(\neg x \), and \(x \) is a variable. We model an interpretation (assignment of a truth value to each variable) as a temporal graph \(H \) of an environment \(\mathcal{E}nv \), containing two hypernodes. \(\mathcal{E}nv \) is given by: \(H = \{ h_1, h_2 \} \). For each variable \(x \) of \(\varphi \), we build action nodes \(u^c_x, u^d_x \) and quality edge \((u^c_x, u^d_x)\), labelled as \(p_x \). Thus, each variable has a corresponding quality edge. We further add a distinguished quality edge \((u^c_x, u^d_x)\) labelled as \(p_x \). The temporal graph \(H \) generated by \(\mathcal{E}nv \) is built as follows: We fix the span of \(p_x \) from \(h_1 \) to \(h_2 \) (\(T(u_x^c) = h_1 \) and \(T(u_x^d) = h_2 \)). Whenever a variable \(x \) is true, we fix \(T(u_x^c) = h_1 \) and \(T(u_x^d) = h_2 \). Thus \(p_x \) holds in \(H \) between \(h_1 \) and \(h_2 \). Whenever \(x \) is false, we do not set \(p_x \) in \(H \) at all. Thus, the atomic propositional formula \(x \) corresponds to the \(L_H \) formula \(p_o x \), which means that \(p_x \) must overlap with \(p_o x \).
The formula \(\neg x \) corresponds to \(\neg(p \circ p_x) \), which means that it cannot be the case that \(p \) overlaps with \(p_x \).

We build a goal formula \(\varphi_{L_H} \) from \(\varphi \) by replacing each atomic positive and negated literal by the \(L_H \)-formulae described above. Now \(\varphi \) is satisfiable iff there exists a temporal graph \(\mathcal{H} \) generated by \(E_{nv} \) such that \(\| \varphi_{L_H} \| = \{ (u^c_i, u^d_i) \} \).

Next, we build a \(t \)-game \(G \) with \(N = 2 \). The first agent, 1, controls the property \(p_\ast \) and has as goal, the formula \(p_\ast \). The second agent, 2, controls all variable properties \(p_x \) and has as goal \(\varphi_{L_H} \). The costs of setting all variables are 0. The goal values are 1 for both agents. We build an action profile \(a \) in which the first agent sets \(p_\ast \) and the other does nothing.

\(\Rightarrow \) (sketch). If \(\varphi \) is satisfiable, then agent 2 has an incentive to deviate and execute those action nodes which will make \(\| \varphi_{L_H} \| \neq \emptyset \). Thus \(a \) is not a Nash equilibrium.

\(\Leftarrow \) (sketch). If \(a \) is not a Nash equilibrium, then there exists an agent which can deviate to increase his utility. The first agent has the maximal utility of 1. However, agent 2 has utility 0 and could achieve 1 if his goal is satisfied. Thus, he is the only one that can deviate. If a deviation exists, this must make \(\| \varphi_{L_H} \| \neq \emptyset \). Thus \(\varphi \) is satisfiable.

Strong Nash equilibrium. The proof is similar to that of the Nash equilibrium case, except that we consider groups of agents instead of individual agents. The same reduction can be used for showing \(coNP \)-completeness.

\(\square \)

Proposition 5.2.2 ((S)NE existence). Checking if there exists an action profile is a Nash equilibrium or strong Nash equilibrium of a \(t \)-game with goals formulated in the language \(L_H \), is in \(\Sigma_2 \).

Proof.

Nash equilibrium. We show the complement of the problem is in \(\Sigma_2 = NP^{coNP} \).

We non-deterministically build all action profiles if the \(t \)-game at hand, as illustrated in the proof of Proposition 5.2.1. This can be done in non-deterministic polynomial time. Hence, the building process is in \(NP \). For each such built action profile, we apply the procedure from Proposition 5.2.1, to establish if the profile is a Nash equilibrium. Thus, the entire existence checking process is in \(NP \), if we use an oracle from \(coNP \) (precisely the algorithm described in Proposition 5.2.1. Hence, the existence checking is in \(NP^{coNP} \).

Strong Nash equilibrium. The proof is similar to the above case.

\(\square \)

We conjecture that the existence checking is also complete for \(\Sigma_2 \).
The above results are, at least as first sight, quite pessimistic. They show that verification is as hard a problem as the hardest problems from NP, while existence checking is in Σ_2 and possibly complete for this class. However:

1. the complexity results coincide with those associated to similar problems. For instance, computing Nash equilibria [7] in propositional logic games are (co-)NP complete. If we take into account the fact that goals formulated in L_H are more expressive that the ones expressed in propositional logic, our results are quite optimistic. They show that we can *add temporal reasoning for free* to a strategic interaction, in terms of computational complexity;

2. although NP-completeness implies the exploration of a solution space of exponential size, this can be feasible for any MAS with a small number of agents. Thus, SAT solvers [10], which are known to be very fast, can be employed for determining Nash and strong Nash equilibria.

6 RELATED WORK

We consider Boolean (or propositional logic) Games [7] to be one of the first frameworks which use logic for describing goal-based strategic interactions between agents. We also note [3] which generalises the former setting from 2 to n-player scenarios. We believe that our approach is conceptually similar. However, instead of propositional logic, we use the more expressive language L_H, which also allows expressing domain-dependent temporal properties. Thus, the outcome of a game, which in the former setting is an interpretation of variables, is replaced here by a temporal graph.

The choice of L_H over well-known temporal logics such as LTL [16] or CTL [2], is motivated, on one hand, by the increased computational complexity of model checking in the case of LTL [16] and by the reduced expressive power of CTL, with respect to the extended version of L_H presented in [12]. We also note that, unlike temporal graphs, Kripke Structures – the models of CTL and LTL – may become inefficient in storing the evolution of large domains. Consider a property P which holds over a number n of states. In a Kripke Structure, storing the property P involves labelling each of the n states. As we have previously seen, in our approach, storing a property P does not depend in any way on the number of states (hyper-nodes) which it covers. For a more detailed comparison between L_H and standard temporal logics we defer the reader to [12].

There is a considerable amount of work aimed at expressing the strategic abilities of agents, such as ATL [1] and (Quantified) Coalition Logics [6]. These languages are aimed at expressing stability conditions, such as the ones captured by the Nash and strong Nash equilibrium. The final purpose is to analyze general properties of games. Our approach is considerably different. We consider the stability conditions as fixed (more precisely, they are NE and SNE) and analyze the possible domain (instead of game) evolutions which satisfy our conditions.
7 CONCLUSION AND FUTURE WORK

While the scope of our paper is rather formal, we believe our results can be easily put into practice. Our complexity results show that implementations are possible, if proper tools, such as SAT solvers, are deployed. Also, by introducing limited memory, that is, by truncating temporal graphs to a fixed number of hypernodes, the computational effort may be further controlled. As suggested by all the examples above, our modelling method can be used for identifying stable behaviour of agents in time-dependent environments. For clarity, we have employed a very simple fictitious stock-market example. However, we believe that our approach has a wide range of applicability, in areas such as intelligent environments and ambient intelligence, where both humans and devices interact in order to achieve individual interests. We are currently working in deploying our approach in this setting. This would naturally require efficient algorithms and appropriate techniques to tame the complexity of the problems at hand. We leave these issues for the future work.

Acknowledgement

The authors wish to acknowledge the help and support from Prof. Cristian Giumale, which was the first to think about temporal graphs, and whose guidance patroned the work presented in this paper.

The work has been funded by Project 264207, ERRIC-Empowering Romanian Research on Intelligent Information Technologies/FP7-REGPOT-2010-1.

This paper was supported by the project “Research scholarships for young researchers, Competition 2015” financed by the University of Bucharest via the Research Institute of University of Bucharest (ICUB).

REFERENCES

Matei Popovici is a postdoctoral researcher at the Research Institute of University of Bucharest (ICUB) and Lecturer at the Computer Science Department of POLITEHNICA University of Bucharest, where he teaches Programming Paradigms and Algorithms & Complexity Theory courses. He received his Ph.D. degree from the same institution in 2012, with a thesis on temporal knowledge representation and reasoning. His main research interests include algorithmic game theory, logics for multiagent system verification, network verification, and artificial intelligence.

Lorina Negreanu is currently Associate Professor with the Department of Computer Science, University POLITEHNICA of Bucharest (UPB). She graduated in 1987 from the Faculty of Control and Computers, Computer Science Department of UPB and she received her Ph.D. degree from the same university in 1999. Her main research areas include software and data modelling, model checking and software specification methods. She teaches courses on object oriented programming, formal languages (B.Sc. degree in CS), software verification and validation, advanced database systems (M.Sc. degree in CS). She is coordinating the research group “Software Modelling and Formal Verification”. She co-authored more than 50 research papers published in international journals and conference proceedings, 4 books, and 3 university textbooks. She was Visiting Professor at University of Maryland University College, US, and was/is member of Program Committees of several international conferences. She participated as a research team member in several national and international R&D grants, and international R&D projects.