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Abstract. The performance of data grids for data intensive, real-time applications
is highly dependent on the data dissemination algorithm employed in the system.
Motivated by this fact, this study first formally defines the real-time splittable data
dissemination problem (RTS/DDP) where data transfer requests can be routed over
multiple paths to maximize the number of data transfers to be completed before
their deadlines. Since RTS/DDP is proved to be NP-hard, four different heuris-
tic algorithms, namely kSP/ESMP, kSP/BSMP, kDP/ESMP, and kDP/BSMP are
proposed. The performance of these heuristic algorithms is analyzed through an ex-
tensive set of data grid system simulation scenarios. The simulation results reveal
that a performance increase up to 8 % as compared to a very competitive single
path data dissemination algorithm is possible.
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1 INTRODUCTION

Data grids are envisaged to run real-time, data-intensive applications emerging from
many disciplines of science and engineering such as geographic information science,
high-energy physics, and remote instrumentation [1, 2, 3]. These applications are
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typically composed of a number of jobs, each of which is associated with a real-
time requirement as well as a demand for access to terabytes/petabytes of data [4].
These data are usually read-only and produced by sensors of particle accelerators,
globally positioned seismic sensors, or satellite images [4, 5]. For example, Compact
Muon Solenoid (CMS) detector located at LHC (Large Hadron Collider) produces
about 1 petabyte of read-only data every year. These data are stored at CERN and
made available to researchers across the globe by means of the WLCG data grid
system [5].

The data dissemination problem encountered in data grid systems such as
WLCG deals with finding paths by which data will be transferred and with cal-
culating bandwidths to be used for these transfers. Moving large-scale data on pre-
computed paths while providing bandwidth guarantees (quality of service – QoS –
guarantees in general) has been the subject of many studies in the grid community
as well as in the network community. In order to support end-to-end guaranteed ser-
vice in the internet, for example, the IETF has defined integrated services (IntServ)
architecture [6]. Later in [7], network element (router) behavior required to deliver
a guaranteed delay and bandwidth in the Internet were described. Furthermore,
Resource Reservation Protocol (RSVP) [8] complements IntServ by enabling the re-
source reservations on the routers along a path. In addition to these efforts, there are
several research and education networks, e.g. Internet2 [9], ESnet [10], UltraScience
Net [11], which have been enabled to provide on-demand or in-advance bandwidth
guarantees [12].

While several different issues have been addressed in providing dedicated chan-
nels for data flows over multiple administrative domains in the literature, this
study is mainly focused on the development of multi path data dissemination algo-
rithms. Specifically, real-time splittable data dissemination problem (RTS/DDP),
which formulates the problem of multi path data dissemination, is formally defined
first. Four heuristic algorithms, namely kSP/ESMP, kSP/BSMP, kDP/ESMP and
kDP/BSMP, are proposed after RTS/DDP is proved to be NP-hard. These algo-
rithms try to schedule data transfer requests with real-time requirements through
multiple paths in a data grid system with the objective of maximizing the satisfia-
bility. The proposed algorithms are compared against very competitive single path
and multi path algorithms in order to prove that they are beneficial to data grid
systems in scheduling data transfer requests.

The rest of the paper is organized as follows: Section 2 surveys the related
work. Section 3 formulates real-time splittable data dissemination problem. The
solution of this problem is achieved in two phases. Section 4 presents the algorithms
developed for the first phase, real-time k -path selection (RTPS-k). After finding
a set of feasible paths for every request in the first phase, Section 5 introduces the
algorithms proposed for the second phase, real-time flow sharing (RTFS), in order
to yield the final data dissemination schedule. Section 6 shows a detailed set of
simulation results related to four different multi path data dissemination algorithms.
Finally, Section 7 concludes the study.



404 M. M. Atanak, A. Doğan

2 RELATED WORK

The data scheduling algorithms proposed in the literature can be grouped into two
main categories, namely single path and multi path data dissemination algorithm.
Furthermore, a single and multi path algorithm can schedule the data transfer re-
quests in on-demand, in-advance or batch fashion.

In single path data dissemination, any data transfer is always routed using a sin-
gle path between a source and destination pair while meeting some specific con-
straints. On-demand single path data dissemination algorithms (unicast QoS-based
routing algorithms) have been extensively studied in the literature [13, 14, 15, 16, 17].
According to the characterization table in [17], QoS-based routing problems are clas-
sified into three classes, which are multiple constrained path, multiple constrained
optimal path, and restricted shortest path. For each of these problems, a set of
algorithms from the literature is reported in the table, where their common metrics
are delay, jitter, bandwidth, packet loss, number of hops, link cost, etc. In addition,
these QoS-based routing algorithms are usually extensions or modifications of well-
known shortest path algorithms, e.g., Dijkstra, Bellman-Ford algorithms, so as to
consider multiple QoS constraints.

With the advance of e-science applications [18] and next generation networks
with bandwidth guarantees [12], in-advance and batch single path data dissemina-
tion algorithms have been proposed. In [19], the impact of a variety of advance
reservation models on the in-advance single path data dissemination is investigated
in detail. For the basic reservation model of [19], under which a path with minimum
bandwidth value between a pair of source and destination nodes is searched for,
the connection feasibility, maximum duration, and soonest completion problems are
formulated, and they are all shown to be solvable in polynomial time. Later, the
basic reservation model is extended to the advance cumulative reservation problem,
where a path can transmit at any bandwidth value available through the network
and adapt to the changes in available bandwidth. In [19], the advance cumulative
reservation problem is shown to be NP-hard, and hence an approximation algorithm
is proposed. In addition, similar algorithms to those in [19] for the basic reservation
model are proposed in [20, 21]. In [21], nine different path computation algorithms
are compared for the fixed slot in-advance scheduling problem, among which the
minimum hop feasible path algorithm is shown to be the best in maximizing the
network utilization. In [22], a few advance cumulative reservation problems, e.g.,
variable path with variable bandwidth, are formulated, and the algorithms for their
solutions are provided.

Different from the on-demand and in-advance single path data dissemination
algorithms in which data transfer requests are scheduled one after another, batch
single path data dissemination algorithms schedule multiple data transfer requests
concurrently in order to maximize the satisfiability, which is the ratio of the number
of accepted requests to the total number of requests [23, 24, 25].

In the literature, there are other studies, e.g., [26, 27, 28, 29, 30], related to the
data transfer scheduling using a single path in grid systems. In [26], a time-slot-based
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approach for scheduling the elastic and streaming requests in Lambda Grids is de-
scribed. In [27], the bulk data transfer scheduling (BDTS) problem, which searches
for an optimal bandwidth allocation profile for each data request with deadline to
minimize the overall network congestion, is defined. BDTS problem is proved to
be solvable in polynomial time as a maximum concurrent flow problem. In [28], a
general framework based on TCP is proposed to implement a bulk data transfer
service in a grid network environment in which the bandwidth allocation profiles
for data transfers are obtained as described in [27]. In [29], a novel queueing sys-
tem is proposed to model the elastic data transfers with deadline in grid computing
applications over a shared path. This model can be used to calculate the blocking
probability of elastic data transfer requests, the necessary capacity of a bottleneck
link, and the number of classes that can be supported in order to have the blocking
probability of requests below a certain threshold. In [30], explicit admission control
and high-speed transport protocols are combined to enable an opportunistic sharing
of the network capacity by data transfer requests having heterogeneous bandwidth
and delay requirements so that a high acceptance probability of such requests is
achieved while maintaining efficient network-resource utilization.

Multi path data dissemination, which is a further generalization of the sin-
gle path data dissemination, uses multiple paths simultaneously between source-
destination pairs to deliver data at the related destinations while satisfying few
specific constraints. Multi path data dissemination (routing) has been already sup-
ported by interior gateway protocols such as open shortest path first (OSPF) [31]
and intermediate system to intermediate system (IS-IS) [32]. Apart from these con-
nectionless protocols, multi-protocol label switching (MPLS) networks offer a con-
nection-oriented approach [33]. That is, a label switched path is first set up between
an ingress router and egress router, and then the ingress router encapsulates IP
packets with labels that facilitate forwarding IP packets along the label switched
path. In [34], a survey of deployed (OSPF, IS-IS, and MPLS) and incrementally
deployable techniques that can provide internet-wide multi path routing is given. In
[35], the maximum hop-count constrained traffic bifurcation problem is formulated
for MPLS networks, which consists of finding hop-count constrained multiple paths
between an ingress and an egress node pair with the objective of minimizing the
maximum of link utilization, and a heuristic algorithm is proposed to achieve near-
optimal link utilization values. In [36] and [37], the problem of multi path routing
with bandwidth and delay constraints for a source-destination pair is studied, which
requires finding one or more paths that meet the bandwidth constraint and mini-
mize the delay of the longest path. [36] proposes a multi path heuristic algorithm
that delivers video from a server to its client using a set of shortest paths in the
max-flow subgraph of the related network, while [37] introduces a fully polynomial
time approximation algorithm that performs better than the heuristic algorithm
of [36]. In [38], k -splittable problem with end-to-end delay constraints (k -DCRP)
for a source-destination pair is addressed, and a branch-and-price strategy with pro-
hibitively long running times for large-scale networks is developed. In [39], restricted
multipath and k -path routing problems are introduced as a network flow problem
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with the objective of minimizing link congestion, and optimal and approximation
algorithms are presented. In [40], the maximum concurrent file transfer problem
with start and end times is formulated as the maximum concurrent flow problem
whose objective is maximizing the throughput. The edge-path formulation of [40]
results in a performance close to the optimal throughput with a reasonable time
complexity while it uses a small number of pre-defined paths for each data transfer.
In [41], several multipath reservation algorithms for in advance scheduling of single
and multiple file transfers in connection-oriented optical networks are developed to
produce schedules with minimum finish time. In addition to these studies, in the
literature, there are other studies that address the different aspects of multi path
routing, e.g., [42, 43, 44].

3 PROBLEM FORMULATION

A data grid system is modeled by an undirected graph G = (V,E), where V =
{v1, . . . , vn} defines machines that include computing elements to run applications,
storage elements to store application data, and network routers (or switches); E =
{e1, . . . , em} denotes links that connect any two machines, and ei ∈ E is associated
with a bandwidth value ci > 0 and a delay value di ≥ 0. Network routers together
with links form an interconnection network among machines.

R = {r1, . . . , rλ} denotes a set of real-time data transfer requests. Each request
ri ∈ R is modeled by a quadruple 〈si, ti, fi, δi〉 in which si is the source machine, ti
is the destination machine, fi is the requested data item, and δi > 0 is the deadline
of request ri.

Pi = {p1, . . . , pli} defines a set of paths for request ri ∈ R, where pj ∈ Pi is
a simple path which connects machines si and ti; li > 0 is the number of such paths.

Definition 1. The bandwidth demand of request ri ∈ R on path pj ∈ Pi, which is
denoted by πij, is the minimum bandwidth value that guarantees the timely delivery
of ri at its destination.

πij =
|fi|

δi −
∑
el∈pj dl

(1)

where |fi| denotes the data item size.

Definition 2. A path pj ∈ Pi is feasible for ri ∈ R if and only if βij ≥ πij, where
βij is the bottleneck bandwidth of path pj and equal to the minimum of available
bandwidth values of all the links that constitute the path.

Definition 3. A request ri ∈ R is satisfied if there exists at least one feasible path
in Pi.

Definition 4. The satisfiability of a set of real-time data transfer requests is the
number of satisfied requests in R by means of a scheduling algorithm.
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In data grid systems, there is a centralized data dissemination scheduler in charge
of making all real-time data scheduling decisions for all data transfer requests in R
submitted by the running applications, e.g., [23, 24, 45]. Furthermore, the scheduler
is capable of issuing reservation requests to the related components of the system
in order for the data transfers to take place as scheduled, which is known as ad-
vance reservation. With respect to the scheduler and advance reservation models
adopted by the system, when a data item fi with deadline δi needs to be moved
from a source si to its destination storage element ti, the scheduler calls for a data
dissemination algorithm that computes a set of paths Pi and bandwidth values, and
the computed bandwidth values on all links along these paths are reserved before the
start of data transfer between the start and end times of transmission. Similar data
dissemination mechanisms based on advance reservation can be found in numerous
studies in the literature, e.g., [10, 41, 46].

From the network point of view, it is possible to provide such a guaranteed
service by means of having IntServ [6, 7] or MPLS [33] together with RSVP [8],
which is recently surveyed in detail by [47]. The next generation networks in [12], on
the other hand, naturally enable grid applications to reserve the network bandwidth
in advance to guarantee its availability. Furthermore, it should be noted that the
guaranteed service of IntServ [7] achieves zero packet loss as long as the related
flows stay within their specified traffic parameters, and a firm delay guarantees that
a datagram will arrive no later than a certain time after it was transmitted by its
source. There are also efforts to provide a zero packet loss network infrastructure to
TCP so that it can achieve a sustained high throughput in the science networks [18].

For the best-effort data dissemination problems studied in the literature, a va-
riety of goals are attained. Some best-effort goal examples include the completion
of data transfer requests as early as possible, minimizing a cost function associated
with the data transfers or maximizing over all link utilization. Since this work fo-
cuses on the real-time data transfers, the goal differs from the best-effort problems,
and Definition 5 formally gives it.

Definition 5. Given a networked system G = (V,E) and a set of real-time data
transfer requests R, the real-time splittable data dissemination problem (RTS/DDP)
seeks to maximize the number of satisfied requests where each requested data item
is required to be transferred over at most k disjoint paths.

RTS/DDP : max
∑
ri∈R

∑
pj∈Pi

fijxij (2)

∑
pj∈Pi

fij = 1,∀ ri ∈ R (3)

∑
pj∈Pi

xij ≤ k,∀ ri ∈ R (4)

∑
ri∈R

∑
pj∈Pi

ξlijπijfij ≤ cl, ∀ el ∈ E (5)
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∑
el∈pj

dl ≤ δi,∀ ri ∈ R and ∀ pj ∈ Pi if xij = 1 (6)

fij ≤ xij,∀ ri ∈ R and pj ∈ Pi (7)

xij ∈ {0, 1}, 0 ≤ fij ≤ 1,∀ ri ∈ R and pj ∈ Pi (8)

where xij is 1 if request ri ∈ R is transferred over pj ∈ Pi, and 0 otherwise; fij
defines the fraction of request ri ∈ R that will be transmitted over path pj ∈ Pi; ξlij
is 1 if link el ∈ E is on the path pj ∈ Pi, and 0 otherwise.

In RTS/DDP, the objective function (2) is to maximize the number of satisfied
requests. For any request ri ∈ R, in (3), the total fraction of scheduled data item
must be equal to one in order to guarantee the satisfaction of all requests. For any
request ri ∈ R, in (4), the number of paths that are used to make it satisfiable must
be less than or equal to k. For all links el ∈ E, in (5), their capacity must not be
violated due to all scheduled data transfers. In (6), the delay guarantee associated
to a given request must be satisfied on its candidate path if and only if this path
is activated. In (7), the indicator variables xij are link to the fij variables. Finally,
bounds on all variables are introduced in (8).

Theorem 1. RTS/DDP is NP-hard.

Proof. It was shown in [39] that the single source unsplittable flow problem can be
reduced to the k -path routing problem with single commodity, which is equivalent to
RTS/DDP for |R| = 1 and dl = 0 for all el ∈ E. Since the single source unsplittable
flow problem is known to be NP-hard, RTS/DDP is also NP-hard. 2

In this study, RTS/DDP is split into two sub-problems, namely real-time k -path
selection problem (RTPS-k) and real-time flow sharing (RTFS), whose solutions
are sought in two separate phases. While RTS/DDP is solved, in the first phase,
a heuristic algorithm produces a solution to RTPS-k, in which feasible paths for each
request are included, if possible. However, having feasible paths for each request
does not usually imply that all requests can be simultaneously scheduled along their
respective feasible paths because of the link capacity constraints. In such a case,
a small number of requests must be rejected for the sake of the remaining ones,
which now can be satisfied along their pre-computed paths. In this study, deciding
about which requests should stay and which ones should be rejected is handled in
the second phase. Thus, another heuristic algorithm takes all the paths generated
in the first phase as an input and produces a solution to RTFS, in which a subset of
input paths with the minimum cardinality is rejected. Furthermore, it is the duty of
the second phase to determine the amount of flow to be directed through each route
for the requests that will be satisfied. In the following sections, several algorithms
for the solution of RTPS-k and RTFS are introduced.
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4 REAL-TIME K -PATH SELECTION

In order to solve RTS/DDP, k paths for each request need to be determined. Each
path can be found using any path selection algorithm. In this study, shortest de-
lay based path selection algorithms are employed. Two heuristic algorithms are
proposed for RTPS-k in this study: k -shortest path, k -disjoint path.

4.1 k-Shortest Path (kSP)

As shown in Figure 1, in kSP algorithm, k paths for each request is found as follows:
Initially, request r ∈ R is defined by destination machine tr, data item fr, and
deadline δr. If all link delays are assumed to be zero, it is sufficient to reserve
a bandwidth value of r.NoDelayRequiredBandwidth = |fr|/δr on every link along
path pj ∈ Pr to satisfy the deadline of request. Any link that cannot provide
r.NoDelayRequiredBandwidth is first removed from G to form a new undirected
graph tempG. Then, the Dijkstra’s shortest path algorithm is run on tempG in
order to find the shortest path from destination machine r.Destination (tr) to every
other storage machine. It is possible that one or more storage machines have data
item fr. Thus, r.Source is chosen to be the storage machine with data item fr that
is the closest to r.Destination, and path1 ∈ Pr is found. During the second for-loop,
starting from path1, remaining k -1 paths are generated. In the ith iteration of this
for-loop, a new path is identified to be the shortest one among all paths that are
deviations from pathi, where all deviations from pathi are found as follows, which
is inspired from [48]:

1. Let n be the number of links in pathi.

2. From j = 1 to n, repeat the following:

3. Delete the jth link of the ith shortest path. Run the Dijkstra’s shortest path
algorithm to find the shortest path with remaining links. If a path is found, add
this path as a possible deviation. Reinstate the deleted link.

All paths found are stored in r.Paths . Finally, kSP algorithm returns kSP List
that includes all related information for the second phase. The Dijkstra’s shortest
path algorithm runs in O(|V |2). In the worst case, path i has |E| links. Therefore,
all possible deviations from a path are found in O(|V |2|E|). Hence, kSP algorithm
works in O(k|V |2|E|R).

4.2 k-Disjoint Path (kDP)

The paths that are determined by kSP may include some links more than the other.
In order to balance the link utilizations, k -Disjoint Path (kDP) algorithm, which is
shown in Figure 2 and inspired from [49], is proposed. Note that kDP algorithm
is the same as kSP algorithm until the second for-loop. In the second for-loop,
starting from path1, remaining k-1 paths in kDP are produced in a different manner.
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kSP algorithm
//Input: G(V,E), request set R, number of paths for each request k
//Output: kSP List
kSP List = ∅;
for each request r ∈ R
r.Paths = ∅;
r.NoDelayRequiredBandwidth = |fr|/δr;
tempG = G− {ei : ei ∈ E; and r.NoDelayRequiredBandwidth > ci};
Run Dijkstra’s algorithm on tempG while r.Destination is source;
r.Source = nearest data storage machine with fr;
path1 = shortest path between (r.Source, r.Destination) on tempG ;
r.Paths = r.Paths ∪ path1;
for i = 1: k− 1
B = {pathj : a deviation from path i};
path i+1 = Dijkstra’s shortest path in set B;
r.Paths = r.Paths ∪ path i+1;

end for
kSP List = kSP List ∪〈r, r.Paths〉;

end for
return kSP List;

end algorithm

Figure 1. kSP algorithm

Specifically, in the ith iteration, a new path is determined as follows: Links on pathi
are removed from the current network topology tempG. After the removal, the
next shortest distance path is determined by running the Dijkstra’s shortest path
algorithm on tempG. The procedure is repeated until up to k paths are determined.
In order to find k disjoint paths, the Dijkstra’s shortest path algorithm is called
k times, which results in O(k|V |2). Hence, kDP algorithm has the time complexity
of O(k|V |2R).

5 REAL-TIME FLOW SHARING (RTFS)

After finding k paths for each request using any one of RTPS-k algorithms, the prob-
lem of real-time flow sharing attempts to find out the amount of flow to be delivered
through each path in order to maximize the number of satisfiable requests. For
the solution of RTFS, two algorithms, namely equal share multi path and balanced
share multi path, are proposed.

5.1 Equal Share Multi Path (ESMP)

As shown in Figure 3, equal share multi path algorithm accepts kSP List or kDP List
as an input. For each data transfer request in kSP List or kDP List, ESMP first
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kDP algorithm
//Input: G(V,E), request set R, number of paths for each request k
//Output: kDP List
kDP List = ∅;
for each request r ∈ R
r.Paths = ∅;
r.NoDelayRequiredBandwidth = |fr|/δr;
tempG = G− {ei : ei ∈ E; and r.NoDelayRequiredBandwidth > ci};
Run Dijkstra’s algorithm on tempG while r.Destination is source;
r.Source = nearest data storage machine with fr;
path1 = shortest path between (r.Source, r.Destination) on tempG ;
r.Paths = r.Paths ∪ path1;
for i = 1: k− 1

tempG = tempG − {ej : ej ∈ path i};
path i+1 = shortest path between (r.Source, r.Destination) on tempG ;
r.Paths = r.Paths ∪ path i+1;

end for
kDP List = kDP List ∪ 〈r, r.Paths〉;

end for
return kDP List ;

end algorithm

Figure 2. kDP algorithm

tries to schedule request r through single route path1, where r.RequiredBandwidth1 =
|fr|/(δr − totalDelay(path1)). If all links along path1 have available bandwidth that
is at least r.RequiredBandwidth1, request r is considered to be satisfiable and link
bandwidths are updated accordingly. If it is not possible to schedule a request
through single path, ESMP algorithm tries to schedule request r through two dif-
ferent routes path1 and path2, each of which delivers half of the size of request and
r.RequiredBandwidth1 = (|fr|/2)/(δr−totalDelay(path1)) and r.RequiredBandwidth2

= (|fr|/2)/(δr− totalDelay(path2)). If all links along path1 and path2 have available
bandwidth that is at least r.RequiredBandwidth1 and r.RequiredBandwidth2, respec-
tively, request r is considered to be satisfiable and link bandwidths are updated
accordingly. If it is not possible to schedule the request through two paths, the pro-
cedure repeats up to k paths at most. If request r cannot be satisfied with k paths,
it is labeled as unsatisfiable.

In ESMP algorithm, while-loop repeats k times at the worst case for each re-
quest. During the ith iteration of while-loop, for-loop inside while-loop costs O(i|E|),
where a path can have at most |E| links. As a result, while-loop has a cost of
O(k2|E|) and ESMP algorithm has the time complexity of O(k2|E|R).
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ESMP algorithm
//Input: G(V,E), List = kSP List or kDP List , k
//Output: SatisfiableRequestList
SatisfiableRequestList = ∅;
e.Used = 0 for all e ∈ E;
for each request r ∈ List
r.Paths = List r.Paths ;
i = 1; r.State = unsatisfiable;
while (i ≤ k and r.State = unsatisfiable)
r.State = satisfiable;
e.UsedCopy = e.Used for all e ∈ E;
for j = 1: i

path = r.Pathsj; myshare = |fr|/i;
r.RequiredBandwidthj = myshare/(δr − totalDelay(path));
for each link e ∈ path

if (e.UsedCopy + r.RequiredBandwidthj > ce)
r.State = unsatisfiable;
i = i+ 1; break;

else
e.UsedCopy = e.UsedCopy + r.RequiredBandwidthj;

end if
end for
if (r.State = unsatisfiable) break; end if

end for
end while
if (r.State = satisfiable)

for j = 1: i
path = r.Pathsj;
for each link e ∈ path
e.Used = e.Used + r.RequiredBandwidthj;

end for
SatisfiableRequestList ∪= 〈r, path, r.RequiredBandwidthj〉;

end for
end if

end for
return SatisfiableRequestList ;

end algorithm

Figure 3. ESMP algorithm
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BSMP algorithm
//Input: G(V,E), List = kSP List or kDP List , k
//Output: SatisfiableRequestList
SatisfiableRequestList = ∅; e.Used = 0 for all e ∈ E;
for each request r ∈ List
r.Paths = List r.Paths ; i = 1; r.State = unsatisfiable;
r.TotalUsefulBandwidth = 0;
while (i ≤ k and r.State = unsatisfiable)
r.State = satisfiable; path = r.Paths i; r.UsefulBandwidth i =∞;
for each link e ∈ path

if (r.UsefulBandwith i > (ce − e.Used))
r.UsefulBandwith i = ce − e.Used ;

end if
end for
r.TotalUsefulBandwidth += r.UsefulBandwidth i;
e.UsedCopy = e.Used for all e ∈ E;
for j = 1: i

path = r.Pathsj;
myshare = |fr| × r.UsefulBandwidthj/r.TotalUsefulBandwidth;
r.RequiredBandwidthj = myshare/(δr − totalDelay(path));

for each link e ∈ path
if (e.UsedCopy + r.RequiredBandwidthj > ce)
r.State = unsatisfiable;
i = i+ 1; break;

else
e.UsedCopy = e.UsedCopy + r.RequiredBandwidthj;

end if
end for
if (r.State = unsatisfiable) break; end if

end for
end while
if (r.State = satisfiable)

for j = 1: i
path = r.Pathsj;
for each link e ∈ path
e.Used = e.Used + r.RequiredBandwidthj;

end for
SatisfiableRequestList ∪= 〈r, path, r.RequiredBandwidthj〉;

end for
end if

end for
return SatisfiableRequestList ;

end algorithm

Figure 4. BSMP algorithm
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5.2 Balanced Share Multi Path (BSMP)

ESMP algorithm attempts to deliver roughly equal amount of flow from each path.
However, assigning more flow to paths with more usable bandwidth may increase
efficiency. In balanced share multi path algorithm, which is shown in Figure 4, the
main difference from ESMP is the computation of myshare. In ESMP, myshare =
|fr|/i is proportional to the number of different paths used for request r and all
paths carry an equal amount (myshare) of data. In BSMP, on the other hand,
myshare = |fr| × r.UsefulBandwidthj/r.TotalUsefulBandwidth depends on not only
the number of different paths used for request r, but also the available minimum
bandwidths along these paths. As a result, different paths usually carry different
amounts of data, which is proportional to their useful bandwidth values. BSMP
algorithm has the same time complexity of O(k2|E|R) as ESMP.

6 EXPERIMENTAL RESULTS

In order to gather experimental results, a data grid system simulation platform in
[50], namely DGridSim, has been used. DGridSim creates a new data grid system
based on the simulation parameters in its GUI when a simulation is started.

DGridSim creates a data grid system that will be composed of sites with zero or
more computing elements, one data storage element, and star connected local area
network. This local network connects the gateway router and computing/storage
elements within site by means of dedicated links, where gateway-computing ele-
ment links have bandwidth of U ∼ [Min CE Link Bandwidth = 400, Max CE
Link Bandwidth = 600] MBytes/s; gateway-storage element links have bandwidth of
U ∼ [Min SE Link Bandwidth = 800, Max SE Link Bandwidth = 1 200] MBytes/s;
all in-site links have delay of U ∼ [Min Site Link Delay = 0.008, Max Site Link
Delay = 0.0012] sec. Note that U ∼ means uniformly distributed. The gate-
way routers are interconnected by a randomly generated internet network topol-
ogy composed of U∼[Min Routers = 8, Max Routers = 12] edge/core routers and
U∼[Min Internet Links = 16, Max Internet Links = 24] links whose bandwidths
are U∼[Min Internet Link Bandwidth = 120, Max Internet Link Bandwidth =
180] MBytes/s and delays are U ∼[Min Internet Link Delay = 0.0025, Max Internet
Link Delay = 0.0075] sec. Based on the data organization model chosen, DGrid-
Sim either creates a federative data grid system or hierarchical data grid system
as follows. Table 1 summarizes the simulation parameters related to the data grid
network.

Data grid systems with federative data organization: DGridSim creates
a data grid system of Site Count = 20 sites, each of which includes U ∼ [Min
Computing Element = 24, Max Computing Element = 36] heterogeneous com-
puting elements and a single U ∼ [Min Storage Element = 1, Max Storage
Element = 1] storage element. The computing elements have MIPS rating of
U ∼ [Min CE Capacity = 8 000, Max CE Capacity = 12 000] and storage el-
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Parameter Min Max

CE Link Bandwidth (MBytes/s) 400 600

SE Link Bandwidth (MBytes/s) 800 1 200

Site Link Delay (sec) 0.008 0.0012

Routers 8 12

Internet Links 16 24

Internet Link Bandwidth (MBytes/s) 120 180

Internet Link Delay (sec) 0.025 0.0075

Table 1. Simulation parameters related to the data grid network

ements have storage capacity of U ∼ [Min SE Capacity = 80 000, Max SE
Capacity = 120 000] MBytes.

Data Grid systems with hierarchical data organization: DGridSim forms
a data grid system of Site Count = 25 sites, which correspond to one Tier-0
site, Tier-1 Site Count = 4 Tier-1 sites, and (25-1-Tier-1 Site Count) = 20
Tier-2 sites. Every Tier-1 site is equipped with a single storage element only
whose storage capacity is U ∼ [Min SE Capacity = 200 000, Max SE Capacity =
300 000] MBytes. Every Tier-2 site, on the other hand, has U ∼ [Min Comput-
ing Element = 24, Max Computing Element = 36] heterogeneous computing
elements and a single storage element with U ∼ [40 000, 60 000] MBytes of
storage capacity. Note that minimum/maximum values of the Tier-2 site stor-
age capacity are determined based on the total storage capacity of Tier-1 sites
and Tier SE Capacity Ratio. In this study, Tier SE Capacity Ratio = 1 is
assumed, which implies that the average value of total Tier-1 storage capacity
(250 000 × 4 = 1 000 000 MBytes) is equal to the average value of total Tier-2
storage capacity (50 000× 20 = 1 000 000 MBytes). Table 2 gives the simulation
parameters related to the data grid system.

Data Organization Parameter Min Max

Federative

Site Count 20
Computing Element 24 36
CE Capacity (MIPS) 8 000 12 000
SE Capacity (MBytes) 80 000 120 000

Hierarchical

Tier-0 Site Count 1
Tier-1 Site Count 4
Tier-2 Site Count 20
Tier-1 SE Capacity (MBytes) 200 000 300 000
Tier-2 Computing Element 24 36
Tier-2 CE Capacity (MIPS) 8 000 12 000
Tier-2 SE Capacity (MBytes) 40 000 60 000

Table 2. Simulation parameters related to the data grid system
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After the data grid system fabric has been formed, jobs start coming into the
system according to Poisson process with Inter-arrival Time = 5 sec. DGridSim
will create Job Count = 10 500 jobs whose sizes are U ∼ [Min Job Size = 4.8, Max
Job Size = 7.2] MI (Million Instruction); deadlines are U ∼ [Min Deadline = 400,
Max Deadline = 600] sec. Furthermore, every job is associated with U ∼ [Min
Job Data = 2, Max Job Data = 4] job data among all available job data in the
system according to a job data access pattern (Random, Geometric, or Zipf). First
500 of these jobs are created to account for slow start and only last 10 000 jobs
are considered in the simulation results. Finally, DGridSim instantiates Data-item
Count = 10 000 different job data, each of which has a size of U ∼ [Min DI Size =
800, Max DI Size = 1 200] MBytes. Note that job data are randomly distributed
to all sites in the federative data organization, while they all are initially stored
in Tier-0 site in the hierarchical model. Table 3 gives the simulation parameters
related to the jobs and data-items.

Parameter Min Max

Inter-arrival time (sec) 5

Job Count 10500

Job Size (MI) 4 800 000 7 200 000

Deadline (sec) 400 600

Job Data 2 4

Data-item Count 10 000

DI Size (MBytes) 800 1 200

Data Access Patterns Random, Geometric, Zipf

Table 3. Simulation parameters related to the jobs and data-items

The performance of the proposed multi path algorithms are compared against
SP MinDelay [50] and Path Determination [51] algorithms. According to a very
detailed study conducted by [50], among 20 different real-time single path data
dissemination algorithms, SP MinDelay algorithm has shown the best performance
under the same simulation scenarios as the ones described herein. So, SP MinDelay
algorithm is expected to provide a competitive lower bound for the multi path
algorithms. On the other hand, there is no study similar to [50] that compares
the performance of available multi path algorithms in the literature. Consequently,
among the multi path routing algorithms surveyed in Section 2, Path Determination
algorithm by [51] is chosen due to its proven high performance. This algorithm is
based on a variant of the Dijkstra’s shortest path algorithm, where the weight of
an edge is the ratio of the round-trip time of the path corresponding to the edge
to its available bandwidth, and the distance function of a path is computed as
the maximum of the weights on each of its constituent edges. As a result, Path
Determination algorithm schedules data transfers on those paths that can yield the
minimum expected completion time for them.
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All simulation results are reported in Tables 4–9, which show the number of
satisfied data requests among 10000 submitted requests. In these tables, the per-
formance of the proposed algorithms are presented with respect to k (maximum
number of paths for each request), while Path Determination algorithm uses as
many paths as necessary to meet the related deadlines due to the virtue of its de-
sign, and SP MinDelay always uses a single path. Furthermore, the tables show
mean standard deviations (σ) separately for each algorithm as well.

k

Algorithms 2 4 6 8 10 σ

SP MinDelay 5 231 36

kSP
ESMP 5 621 5 603 5 629 5 623 5 620 38
BSMP 5 664 5 634 5 616 5 653 5 639 31

kDP
ESMP 5 652 5 599 5 635 5 655 5 645 25
BSMP 5 660 5 622 5 647 5 623 5 637 34

Path Determination 5 606 25

Table 4. The effect of real-time multi path data dissemination algorithms on the real-time
performance of data grid systems that adhere to federative data organization model
and random data access pattern

k

Algorithms 2 4 6 8 10 σ

SP MinDelay 9 181 111

kSP
ESMP 9 497 9 489 9 519 9 512 9 512 75
BSMP 9 486 9 509 9 428 9 504 9 504 82

kDP
ESMP 9521 9 492 9 547 9 451 9 451 101
BSMP 9 548 9 502 9 599 9 515 9 515 90

Path Determination 9 550 57

Table 5. The effect of real-time multi path data dissemination algorithms on the real-time
performance of data grid systems that adhere to federative data organization model
and geometric data access pattern

Tables 4, 5, and 6 show the results when the data organization model is feder-
ative. According to these tables, kSP and kDP perform very similar to each other,
while BSMP is usually superior to ESMP for a particular RTPS-k algorithm. In
addition, kSP/BSMP achieves a performance improvement over SP MinDelay be-
tween 4 % and 8 %, which is the highest among the proposed multi path algorithms.
As compared to Path Determination, however, kSP/BSMP performs slightly better
in most of the simulation scenarios.

Tables 7, 8, and 9 depict the results when the data organization model is hier-
archical. Similar to the previous results, kSP achieves a very similar performance
to kDP, and BSMP is generally better than ESMP. Furthermore, both kSP/BSMP
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k

Algorithms 2 4 6 8 10 σ

SP MinDelay 9 113 150

kSP
ESMP 9 405 9 413 9 164 9 491 9 526 95
BSMP 9 594 9 351 9 517 9 621 9 280 81

kDP
ESMP 9 424 9 545 9 331 9 381 9 456 78
BSMP 9 419 9 285 9 291 9 513 9 380 126

Path Determination 9 508 218

Table 6. The effect of real-time multi path data dissemination algorithms on the real-time
performance of data grid systems that adhere to federative data organization model
and zipf data access pattern

k

Algorithms 2 4 6 8 10 σ

SP MinDelay 4 695 21

kSP
ESMP 5 080 5 101 5 088 5 081 5 096 22
BSMP 5 104 5 095 5 091 5 092 5 099 15

kDP
ESMP 5112 5 108 5 106 5 097 5 102 19
BSMP 5 100 5 095 5 089 5 080 5 102 19

Path Determination 5 107 29

Table 7. The effect of real-time multi path data dissemination algorithms on the real-time
performance of data grid systems that adhere to hierarchical data organization
model and random data access pattern

and kDP/BSMP attain a performance improvement over SP MinDelay about 8 %,
and they perform marginally superior to Path Determination in several simulation
scenarios.

Even though the proposed multi path algorithms do not considerably improve
on Path Determination algorithm, they achieve comparable or better performance

k

Algorithms 2 4 6 8 10 σ

SP MinDelay 5 425 61

kSP
ESMP 5 798 5 817 5 786 5 905 5 777 138
BSMP 5 859 5 890 5 812 5 873 5 802 127

kDP
ESMP 5 806 5 817 5 808 5 856 5 811 91
BSMP 5 884 5 877 5 804 5 890 5 782 114

Path Determination 5 848 147

Table 8. The effect of real-time multi path data dissemination algorithms on the real-time
performance of data grid systems that adhere to hierarchical data organization
model and geometric data access pattern
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k

Algorithms 2 4 6 8 10 σ

SP MinDelay 5 026 55

kSP
ESMP 5 378 5 423 5 401 5 469 5 449 62
BSMP 5 446 5 389 5 412 5 389 5 402 52

kDP
ESMP 5 352 5 387 5 425 5 440 5 407 41
BSMP 5 483 5 453 5 459 5 404 5 411 53

Path Determination 5 428 42

Table 9. The effect of real-time multi path data dissemination algorithms on the real-time
performance of data grid systems that adhere to hierarchical data organization
model and zipf data access pattern

values by means of a fixed set of paths between every source and destination pair,
rather than computing a new set of paths for every data transfer request. Conse-
quently, in networks with a huge number of data requests, it may be beneficial to
use these precomputed paths in terms of minimizing the data transfer scheduling
delays.

According to these tables, it is evident that multi path is proven to be superior to
single path data dissemination as far as the real-time performance is concerned. Yet,
increasing k does not always yield a better performance. The performance of a data
dissemination algorithm depends heavily on the data organization model of data grid
system and the data access pattern of applications. Furthermore, common to both
data organization models, all algorithms show the best performance for geometric
data access pattern, followed by zipf and random. Finally, it should be emphasized
that these results contribute to the literature in several ways, including the impact
of k on real-time data transfers and performance of multi path algorithms under
different data organization models and data access patterns.

7 CONCLUSIONS

The real-time splittable data dissemination problem (RTS/DDP) that seeks to max-
imize the number of satisfied data transfer requests where each requested data item
is required to be transferred over at most k disjoint paths is an important problem
to harness the performance of data grid systems for data intensive, real-time appli-
cation. Efficient solutions to the RTS/DDP are sought in four different combination
of schedules generated by the heuristic algorithms for real-time k -path selection and
real-time flow sharing problems. The proposed multi path algorithms are imple-
mented in a data grid system simulator in order to compare their performances
against very competitive single path and multi path algorithms. The simulation
results show that the multi path algorithms can significantly improve the perfor-
mance of data grid systems against the single path algorithm. Furthermore, how
much performance will be gained depends on both the data organization of data grid
system and data access pattern by jobs. Finally, kSP/BSMP and kSP-kDP/BSMP
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algorithms have shown the best performance for the federative and hierarchical data
organization models, respectively.

The future work includes the development of new real-time k-path selection
and real-time flow sharing algorithms, and the analysis of their combinations with
respect to other multi path algorithms. Furthermore, a more detailed survey and
the performance comparison of multi path data dissemination algorithms for data
grid systems will be conducted.
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