
Computing and Informatics, Vol. 34, 2015, 911–940

CONSTRUCTION OF HARDWARE COMPONENTS
FOR THE INTERNET OF SERVICES

Pawe l Bachara, Robert Brzoza-Woch, Jacek D lugopolski
Piotr Nawrocki, Wojciech Zaborowski, Krzysztof Zieliński

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science
al. A. Mickiewicza 30
30-059 Kraków, Poland
e-mail: zab@agh.edu.pl

Andrzej Ruta

Samsung R & D Institute Poland
Al. Armii Ludowej 26
00-609 Warszawa, Poland

Abstract. In this paper we focus on a hardware realization of web services (WS)
and their integration within the service-oriented architecture (SOA). Previous ap-
proaches to the implementation of network-enabled services in hardware covered
only very specific types of applications and were platform-dependent. Our contri-
bution is a generic framework where heterogeneous everyday objects are enhanced
with appropriate hardware extensions. This turns them into intelligent electronic
devices that can sense the environment as well as interact with it, exposing their
functionality via public WS interface. An integration scheme is introduced to allow
the augmented objects to be used within highly distributed enterprise applications.
Each web service is mapped to a functionally equivalent Open Services Gateway
initiative (OSGi) service so that it can be dynamically added to the pool of elemen-
tary services accessible within the enterprise service bus (ESB). Our approach is
exemplified by several web services for environment monitoring, mechanical control
and visual inspection, all implemented in a reconfigurable hardware. A case study
of integrating and using such services is also presented.

912 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

Keywords: Hardware web services, service oriented architecture, intelligent sen-
sors, actuator control, FPGA, ESB

Mathematics Subject Classification 2010: 68T40, 68U10, 68W10, 70B15,
70Q05, 93C40, 93C62, 93C83, 93C85, 94A08, 94A13, 97P30, 97P60

1 INTRODUCTION

Modern web services make up the core of machine-to-machine interaction over the
network in both Business-to-Business (B2B) and Business-to-Client (B2C) segments
of the market. Although their role is increasingly important and they are used in
more and more sophisticated distributed applications, relatively little has been done
so far to integrate software and hardware under a unified web services framework.
While many application-specific hardware devices, such as certain street surveillance
cameras, are already accessible at any time and from any network-enabled machine
in the world, their functionality usually remained fixed. There is no common sup-
port for easy exposition of heterogeneous, reconfigurable and largely autonomous
hardware resources over the web.

Looking from a broader perspective, the problem can be formulated as concern-
ing a missing layer at the contact point of two worlds: the domain of commodity
objects and tools used by humans in their everyday lives and the existing computing
infrastructure comprised of various large-scale enterprise systems. Those objects are
called things further in this paper. The former, in order to be useful for internet-
era consumers, require an appropriate adaptation, such as digitization or network
enablement. The goal of such extensions is to turn ordinary objects into smart elec-
tronic appliances that can be localized in the network and provide data, which is the
foundation of the Internet of Things (IoT) paradigm [1, 2, 3, 4, 5]. Although the idea
is simple, its application in general is difficult for instance due to the heterogeneity
of existing objects and the lack of well-established implementation standards.

On the other hand, contemporary enterprise systems support business processes,
information flow and data analysis within and between organizations, and we are
all becoming more and more heavily dependent on such infrastructures. However,
they could serve humans much more efficiently if the computing power, flexibil-
ity and portability of smart hardware were better exploited. Even if appropriate
networked devices are already available, they must be made capable of providing
services through a unified interface and in such a way that they can be discovered,
used flexibly and replaced when needed in environments with thousands of users and
a variety of technologies. What lacks is another layer of integration in the form of
an appropriate middleware, that could let potential consumers to perceive hardware
appliances as regular software web services.

Figure 1 illustrates the general idea of integrating the World of Things (WoT)
with the software world of enterprise-class computer systems. The left ellipse sym-

Construction of Hardware Components for the Internet of Services 913

bolizes a heterogeneous set of utility objects (things), such as temperature sensors,
door locks or surveillance cameras which, as off-the-shelf market products, cannot
be used remotely. They usually have no network interface. Some are inherently
mechanical and cannot even generate any digital output. The first level of inte-
gration facilitates transition from the World of Things to the Internet of Things
(center ellipse) which allows us to connect the objects to one another and to the
outside world. This step requires an appropriate hardware adaptation. To en-
able smooth integration of the resulting networked devices with enterprise systems,
Service-Oriented Architecture [6] design principles must be applied. It requires
implementation of the web service functionality on the device’s side, as well as pro-
viding an appropriate middleware to enable provisioning of the hardware services to
the corporate or public sector environments. Therefore, the second level of integra-
tion maps the Internet of Things into what we call the Internet of Services (right
ellipse).

H
a

rd
w

a
re

C
o

m
m

u
n

ic
a

ti
o

n

Internet of Things
World of Things

Thing_1

Thing_3

Thing_2

Device_1

Device_3

Device_2

C
o

m
m

u
n

ic
a

ti
o

n

Internet of Services

Service_1

Service_3

Service_2

A
d

a
p

ta
ti

o
n

E
th

e
rn

e
t/

T
C

P

S
O

A
P

/R
E

S
T

Figure 1. The idea of integrating the domain of commodity objects (things) with the
enterprise software in accordance with the service-oriented architecture paradigm

The aim of this paper is to present a novel methodology for building SOA-
compliant applications that make extensive use of heterogeneous hardware services
for general-purpose environment monitoring and actuator control. These services
are based on devices which, upon the appropriate hardware extension, become dis-
coverable and accessible over the network through web service interfaces. A range
of both custom-made and off-the-shelf appliances are investigated where the neces-
sary communication layers and WS stacks have been implemented partly or fully
in hardware. The main focus is on Field Programmable Gate Array (FPGA) based
devices which are computationally powerful and can be flexibly tuned to various ap-

914 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

plication scenarios through a dynamic reconfiguration. Furthermore, we show how
such services can be transparently integrated with the enterprise systems within the
message-oriented architectures, such as the Enterprise Service Bus [7].

The main contributions of this paper are: 1) a set of prototype services embed-
ded in reconfigurable, technologically diverse hardware devices, 2) a generic archi-
tecture and a methodology of implementing such services, and 3) middleware that
enables flexible exploitation of these services within the ESB so that the hardware
implementation and details of the internal communication protocols remain trans-
parent from the caller’s perspective. An example scenario of employing the selected
hardware services in an intelligent house is also outlined. It involves smart sensors
for environmental parameter monitoring and visual inspection, as well as devices
for mechanical door, ventilation, heating and light switch control – all remotely
customizable.

The rest of this paper is composed as follows. In Section 2 we review the state
of the art in the hardware implementation of web services. In Section 3 we ana-
lyze the challenges involved in integrating such embedded services with enterprise
applications. A generic set of design principles is proposed to address these chal-
lenges. Subsequently, we delve into details on how different kinds of devices can be
extended to turn them into fully-functional web services, taking into account their
technology-specific features and limitations. Section 4 describes how our services
can be transparently used as building blocks of larger SOA systems. In Section 5
we provide an intelligent building case study where the proposed methodology and
the selected prototype devices assembled can improve the resource utilization and
enhance the residents security. Finally, Section 7 concludes this work.

2 PREVIOUS WORK

Service Oriented Architectures [6] are particularly well-suited for deploying mul-
tiple applications that need to be run on varied technologies and platforms while
communicating with one another. An increasing number of solutions uses the SOA
paradigm [8]. The applications that process data delivered by specialized hard-
ware devices, such as environmental parameter sensors, fit perfectly in the SOA
paradigm as long as these devices can be made fully interoperable over the network,
regardless of the complexity of their internal implementations and interfaces. This,
however, seems to be a major problem taking into account a huge technological and
functional diversity of smart devices available on the market together with a multi-
tude of related implementation standards and communication protocols. Below we
briefly review the previous work on simultaneous usage of software and hardware
components in contemporary distributed applications.

One of the most popular approaches to integrating hardware elements in SOA
systems is the service-oriented device architecture (SODA) [9]. Most elements of
this architecture reside in a layer which separates the physical and digital realms.
External devices are connected to other SOA system elements via the web service

Construction of Hardware Components for the Internet of Services 915

binding component and their functionality is exposed as web services. The details
of communication with the physical devices are hidden behind higher-level abstrac-
tions. SODA implementations are not limited to specific technologies, what is mainly
why this architecture has gained so much popularity in the industry. However, as
opposed to the solutions presented in this paper, SODA limits the device’s func-
tionality to that offered by its associated connection adapter. Even if the interface
is flexible enough to realize the required functionality, all low-level operations have
to be performed by calling appropriate web services, which generates unnecessary
communication overhead.

Due to its widespread usage and flexibility web services technology is becoming
a popular means of enabling remote control of electronic devices. There are many
solutions where a single-chip microcontroller does the job. It usually suffices for sim-
ple control systems, but in cases where time and synchronization are key factors, the
FPGA technology proves more adequate. In such cases the time-dependent parts
of the control process are typically implemented in the FPGA matrix, but the web
server parts still run as sequential code executed by microprocessors, possibly under
control of operating systems [10]. In a substantial number of previous studies [11]
a C-to-hardware high-level description language is also used to represent hardware
semantics using high-level software abstractions. This facilitates automatic hard-
ware logic inference for a specific target behaviour. In this paper we wish to show
(among others) that while this strategy is reasonable, alternative approaches are
also possible. For instance, both parts: control processes and web server logic can
be implemented in one FPGA chip using the very-high-speed integrated circuits
Hardware Description Language (VHDL), without recourse to microprocessors and
operating systems. Moreover, the same hardware platform can be reused for many
different tasks upon reconfiguration.

The use of embedded devices, such as smartphones or wireless sensor networks
for web services development has already been described in [12] and [13]. The
implementation is normally done on a microcontroller or microprocessor with ap-
propriately large computing power [14, 15]. Moreover, a number of web service de-
velopment toolkits exist for both Java Platform Micro Edition and .NET Compact
Framework, in addition to the platform-independent gSOAP toolkit [16]. However,
solutions in which an FPGA chip is used to implement core server-side functions,
such as Simple Object Access Protocol (SOAP) request handling, remain rather
uncommon [17, 18].

One example of an embedded system utilizing FPGA as a remote co-processor
for performance optimization was given in [19]. The authors of that paper used
an FPGA module on a Peripheral Component Interconnect (PCI) board attached
to a conventional personal computer (PC). The processing power of the FPGA was
exposed as a set of web services, one per library function implemented in hardware.
In this scenario the clients simply provide input data and receive processing results
as though they made local library function calls. However, the system could not
operate autonomously and was neither designed for sensing the environment, nor
reacting to any changes in it.

916 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

There are also many solutions that incorporate FPGAs to enhance the compu-
tational power of the main system without exposing a web service interface. Some
examples in the field of image processing are given in [20, 21, 22, 23, 24] and more
recently in [25]. The system described in the last of these studies uses a soft-core
implementation of the NIOS-II microcontroller with custom instructions to speed
up certain image processing tasks.

A separate group of embedded devices that can be used to provide web services
are wireless sensors. They are usually small, low-complexity devices with wireless
communication capability. When used in large numbers, they create so-called Wire-
less Sensor Networks (WSN) [26, 27]. This technology has been applied in many
areas where the acquisition and processing of various kinds on environmental data
on spatially distributed phenomena or processes is required. In [28] the follow-
ing applications of WSNs are listed: structural health monitoring, traffic control,
healthcare, pipeline monitoring, precision agriculture, active volcano monitoring or
underground mining. Due to the severe hardware and software limitations of WSN
nodes, sensor networks are not able to share their functionality in a manner con-
sistent with the web services or other SOA-compatible standard. Therefore, some
kind of gateway is always needed. An example solution that allows sensor networks
to be exposed as web services was presented in [29].

3 ELEMENTS OF THE ENVIRONMENT AS HARDWARE SERVICES

The role of inexpensive yet robust processing devices, such as various smart sensors
or embedded computers incorporated in consumer electronics, has grown signifi-
cantly over the past decade. The current development trend for such devices is
towards making them active participants in business processes according to the In-
ternet of Things paradigm [1, 2, 3, 4, 5]. This is achieved by assigning identities to
hardware resources and creating services that can interact with them over the in-
ternet. Below we outline a generic framework for building and integrating hardware
services, assuming heterogeneity of the underlying devices (things), i.e. their differ-
ent technological realizations, varying computational capacity, existence or lack of
networking capability, and the like.

Let us start with an analysis of the challenges faced when building hardware
services. First of all, the technological diversity of potentially useful devices is
immense. Some of them, such as door locks, are purely mechanical. Therefore, for
remote control they require special actuators based on servomotors. Others may only
produce analogue output that must first be converted to a digital form. The devices
may also differ significantly in terms of complexity. For instance, an air pressure
sensor will always be much less complex than an embedded processor based device
or a piece of advanced consumer electronics. The latter categories may be based
on application-specific integrated circuits (ASICs), programmable microcontrollers,
FPGAs or even combinations of the above. Moreover, highly autonomous devices
will usually require some degree of embedded intelligence which calls for further

Construction of Hardware Components for the Internet of Services 917

hardware resources, e.g. extra memory for data storage or special-purpose actuator
controllers.

Another important issue is device programming. Most commonly, it is done
with the help of the so-called Electronic Design Automation (EDA) software using
hardware description languages, such as VHDL [30] or Verilog [31]. This gives de-
velopers full control over the hardware design. However, the use of microcontrollers
facilitates typically software-style device programming, e.g. in C/C++ languages,
which increases productivity. There are also successful examples of a mixed hard-
ware/software co-design approach to this problem.

To communicate with the outside world, a device must gain networking capabil-
ity. To enable it, hardware extensions are usually required. At this point a number
of new problems emerge. First, the network interface (typically a standalone off-
the-shelf module) must work properly with the existing circuits. Second, the format
of data sent and received has to be carefully considered and the whole Transmission
Control Protocol/Internet Protocol (TCP/IP) stack must be implemented. While it
is embedded in many popular hardware solutions available on the market, high-level
web service functionality, such as Extensible Markup Language (XML) serialization
and de-serialization, is not the case. Finally, other constraints, such as design lay-
out (including the necessary extension boards), may prevent the device from being
assembled efficiently. For instance, in many visual inspection tasks only miniature
image sensors prove practically useful.

To address the above issues in a uniform way, we propose a generic design
that can be consistently followed when building hardware web services of arbitrary
complexity and purpose. Our concept is illustrated in Figure 2. Details related
to specific technologies that are beyond the scope of this generic design are de-
scribed later on in this section where we focus on different kinds of special-purpose
devices.

In the most general situation, an object from the World of Things represents
a simple physical appliance with no electronics, where direct manual interaction is
the only possible way of using it. The goal is to enable automatic and remote control
of the device from enterprise software systems through a web service interface. To
achieve this goal, the following key steps are required:

Hardware adaptation – this calls for addition of the necessary mechanical parts
and actuators to the device, as well as low-level protocol extensions by adding
various electronic circuits so as to allow digital control.

Service logic implementation – the goal in this step is to build a dedicated
server embedded in the augmented device created in the first step. Typically, it
requires some programming effort.

Network enablement – this step involves augmenting the device with a commu-
nication module, typically implementing the TCP/IP protocol stack.

Web service interface development – it is aimed at implementation of the
SOAP or Representational State Transfer (REST) based web services proto-

918 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

Enterprise Systems

Internet of Services

World of Things

Communication

(SOAP/REST)

Communication

(Ethernet/TCP)

Hardware adaptation

Logic

Internet of Things

Figure 2. Generic design of the proposed hardware services

col stack and control logic to expose the functionality of the server to individual
clients or enterprise applications.

Depending on the nature of the device, some of the above steps might be sim-
plified or skipped. For example, various sensor devices might be pre-equipped with
low-level communication protocol implementations by their manufacturers, provid-
ing easy digital access to sensor measurements. As a result, such devices need little
or no hardware adaptation and the provided internal hardware interfaces can be
used “out of the box”. Other devices may already have full networking capabilities
at the time of assembly, which greatly simplifies the final step of the above hardware
service creation process. Similarly, service logic implementation might also be much
less of a challenge in specific situations, e.g. when the device has a built-in central
processing unit (CPU) with a Java virtual machine running on it.

Once augmented in compliance with the above scheme, the device should act as
a server that can be queried directly through the WS interface by the client appli-
cations or used within message-oriented architecture models, such as the Enterprise
Service Bus. No restrictions are assumed as to the semantics and complexity of
the data exchanged. For instance, they can represent simple temperature readouts,
robot movement description vectors or the results of semantic video analysis. Finally,
the proposed methodology promotes construction of highly autonomous devices that
can perform much more than simple environmental data acquisition.

Construction of Hardware Components for the Internet of Services 919

In the following sections we elaborate the above mentioned concepts focusing on
three example categories of devices: control devices, smart cameras, and intelligent
sensor networks. For each category we describe how the four steps of the proposed
hardware service creation process are followed taking the technology-specific con-
straints into account.

3.1 Control Devices

Our environment is full of commodity objects and tools which are regularly used by
people in their everyday lives. More sophisticated devices, such as mobile robots,
are also gaining popularity due to their usefulness in the industry, e.g. for sewage
systems control, as well as in civil defence to examine contaminated ground or for
bomb disposal. All these devices are used to help improve business processes or
routine human activities and offer great potential for delivering different kinds of
services. Usually such tools are controlled manually or by specific custom interfaces.
Below we will show how to achieve the same level of control through a unified SOA-
compliant web service interface for devices such as door locks, light switches, fuse
switches, and a hexapod robot.

All the devices in question require a hardware adaptation based upon the ad-
dition of servomotor actuators which enable the mechanical elements to be moved
automatically, according to the remote user’s needs. These servos take Pulse Width
Modulation (PWM) positional commands, using a digital waveform, and move the
output shaft accordingly. The augmented devices can be controlled directly from
digital circuits using microcontrollers or other types of digital chips.

The nature of the control devices considered here is inherently massively par-
allel. By default all devices work independently, but often should be controlled
simultaneously in real time. This is why the controllers for groups of such devices
(e.g. six legs of a hexapod mobile robot or a group of robots in an industry assem-
bly line) need to allow parallel and independent access to them, even at the level
of individual device features. Regular microprocessors and microcontrollers do not
provide such capabilities as they are usually based on a single physical core that
has to divide time and performance between all control threads. One possible so-
lution to this problem could be to use many processors in a single controller, one
for each control feature. However, taking into account power consumption and elec-
tronic circuit complexity, as well as expected software development problems and
economic considerations, then a better solution is to employ a modern FPGA chip.
An example of the approach, where the FPGA-based adaptive controller of servo
drive is used, we present in [32]. A single FPGA chip, in conjunction with a net-
work adapter, can perform all the necessary tasks for a network-controlled device to
become a full-fledged hardware- implemented SOA service (HSOA). Furthermore,
connecting sensors and effectors to the FPGA makes the service capable of sensing
and influencing the surrounding environment.

Currently available network adapters are already fitted with hardware-imple-
mented TCP/IP protocol stacks. For instance, Digi International Inc. manufac-

920 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

tures wired and wireless interchangeable embedded network modules: Digi Connect
ME and Digi Connect Wi-ME. In fact, when using such off-the-shelf modules, the
developer needs to implement in the FPGA matrix (apart from the HSOA service
functionality) the relevant Hypertext Transfer Protocol (HTTP) and SOAP proto-
cols. This implementation is done directly in a hardware description language (e.g.
VHDL).

The proposed generic design scheme for integration of control devices and its
mapping to the physical realization of the HSOA controller is shown in Figure 3.
A device equipped with servomotors is controlled by the server through the PWM
standard interface. Enterprise applications perceive the device as a web service and
communicate with it over ethernet or wifi.

Enterprise Systems

Internet of Services

World of Things

Communication
(SOAP/REST)

Communication
(Ethernet/WiFi, TCP)

Hardware adaptation

Logic
Internet of Things

mobile robotsactuators

FPGA

Servomotors

PWM

FPGA

Digi
Network
Module

Figure 3. The design schema for a control device (left) and its hardware realization (right)

Figure 4 shows a block diagram of the HSOA board. There are two main com-
ponents: the Digi Connect module which provides network communication, and the
FPGA chip (part number EP3C25 from Altera) which encapsulates service’s logic.
Lower layers of the network module, such as the TCP/IP protocol stack, are imple-
mented by the manufacturer. The remaining application-layer protocols required for
web service functionality (HTTP and SOAP), low-level protocol interfaces (PWM
or other), and the functional logic are implemented in the FPGA matrix.

Construction of Hardware Components for the Internet of Services 921

HSOA Board

DIGI Connect

Network Module

FPGA

Internet

Sensors

&

Effectors

ControlTTL

PWM

I2C

1-Wire

WEB SERVICE

Layer

SOAP Layer

HTTP Layer

Control

Control

Control
Hardware Embedded

TCP/IP stack

Figure 4. Architecture of the HSOA board

The HSOA board is a versatile controller ready for use with a wide range of
devices. It can manipulate, in a uniform way, light switches, door locks or even
mobile robots. An example usage scenario is depicted in Figure 5.

WS

Client

WS

Client

HSOA Board

HSOA Board

HSOA Board

HSOA Board

v

Internet

Control

Control

Control

C
o
n
tr

o
l

Fuses

Door Locks

Light Switches

Mobile Robot

Web Services

Clients

Figure 5. A generic usage scenario for the HSOA board acting as a versatile controller

It should be noted that although certain hardware extensions are necessary in
the course of the proposed HSOA service development process, this extra effort is still
negligible when compared to alternative approaches, e.g. those involving multiple
microcontrollers.

922 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

3.2 Smart Cameras

A smart camera service is a custom hardware-based server intended to be used
for various purposes, e.g. for personal security, access control, visual surveillance or
object localization [33]. Unlike a regular camera which simply records and transmits
a video stream, the smart camera should be able to perform analysis of the image
content and autonomously react to certain events detected in the observed scene.
Moreover, large amounts of rapidly incoming data require the above tasks to be
performed in real (or near-real) time.

In accordance with the proposed generic service design, hardware adaptation is
first carried out to create a server capable of performing a variety of machine vision
tasks. It is a complex digital embedded system that consists of an integrated image
sensor, a high-end FPGA chip (Stratix-II, part number EP2S60 from Altera), a mod-
ern microcontroller (ARM Cortex-M3 core, part number STM32F103RCT6), an ad-
vanced, highly integrated network interface (part number EM1206 from Tibbo), and
several other logic elements. The camera can perform relatively complex computa-
tional tasks, such as motion detection or face recognition. This enables image pro-
cessing to be done in place, eliminating the need for costly and delay-prone image
data transfer over the network.

No internal protocol extensions are necessary as the image sensor used in the
design is equipped with a configurable digital parallel interface. It outputs data in
the YCbCr format. The data are received by the FPGA chip and then directed to
a custom-made luminance (greyscale) extraction module described in Verilog hard-
ware description language (HDL). The extracted greyscale pixel information is writ-
ten to Synchronous Dynamic Random Access Memory (SDRAM) by a specialized
Direct Memory Access (DMA) controller. The hardware platform provides access
to two independent channels of SDRAM, each capable of 332 Mbit/s data trans-
fer. Additional Verilog modules provide frame-level synchronization and start-of-
frame/end-of-frame signalling required by the server program for image processing.

A prototype camera (Figure 6) was designed in the form of a modular cube for
ease of physical hardware upgrade and space efficiency. Most time-critical tasks,
e.g. image content analysis, are carried out in the internal logic of the FPGA chip
(hardware accelerator block in Figure 7). This enables truly parallel implementa-
tion of many algorithms as well as easy integration with one or more embedded
microprocessor cores. The majority of modules in the FPGA’s internal design are
implemented in Verilog HDL. Modules which are properly described in HDL can
be efficiently implemented in the FPGA structure and typically offer a good per-
formance. However, the implementation of complex features in HDLs is often very
difficult, even for developers with the necessary hardware design experience. For
this reason, to implement the selected high-complexity image processing modules,
we decided to use a C-to-HDL compiler, Impulse CoDeveloper [34] from Impulse
Accelerated Technologies.

Simpler tasks that are not time-critical and can be performed in a sequential
manner run as executable C++ code on an embedded microcontroller, internal to the

Construction of Hardware Components for the Internet of Services 923

Enterprise Systems

Internet of Services

World of Things

Communication
(SOAP/REST)

Communication
(Ethernet/WiFi, TCP)

Hardware adaptation

Logic

Internet of Things

FPGA

Parallel YCbCr interface

FPGA

Tibbo
Network
Module

camera

Nios II embedded
processor

Hardware
accelerator

Figure 6. The design schema for a smart camera (left) and its hardware realization (right)

FPGA chip. The Altera’s NIOS-II microcontroller core was chosen for this purpose.
These lower-complexity tasks include, for instance, the operation of the SOAP pro-
tocol (including data transfer to/from the low-level communication module, XML
serialization/de-serialization, and server method invocation), actuator control, and
the synchronization of parallel modules.

The network interface used in our smart camera prototype is based on the ad-
vanced, highly integrated ethernet and wifi modules by Tibbo Technology (EM-1206
model with GA1000 as an extension for the wifi interface). In the basic server version
these modules are used to handle TCP connections and to forward HTTP/SOAP-
enveloped data to the FPGA and back, what provides a basic network connectivity
(Internet of Things). A simplified SOAP protocol is implemented as part of the
server-side program running on the NIOS-II microcontroller. It enables remote in-
vocation of server methods and delivery of image processing results to the service
caller via a web service interface (Internet of Services).

FPGA functionality is fully dependent on the configuration stored in its mem-
ory. This feature allows developers to modify the server’s functionality without any
changes in its underlying hardware. Moreover, when using an additional microcon-
troller (STM32F103 from ST Microelectronics), the above mentioned functionality
replacement can be done remotely, i.e. by means of a network interface.

924 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

Figure 7 shows sample client applications cooperating with the smart camera
service. Upon obtaining the interface description from the Web Services Descrip-
tion Language (WSDL) file, the camera can be accessed directly from an end-user
application or through the Proxy Service mechanism described in Section 4, in both
configurations acting as a web service. There is also an additional, more direct
interface which allows a low-level monitoring, debugging, maintenance and remote
configuration updates by the service’s administrator. The device is equipped with
an integrated image sensor and memory, and it can drive external actuators. There-
fore, its functionality is not restricted to image acquisition and processing. It can also
be used as an autonomous controller that reacts to specific environmental changes,
logging relevant events and sending (on demand) the aggregated information to the
calling application for further analysis.

Administrator’s

application

Device

(server)

Camera

Communication

module

Debug

interface
Actuator

Client application Proxy Service

Web service

changes

Actuator

controller

Environment

reaction

requests/

responses

configuration

control

WSDL

network

Client application

requests/

responses

Figure 7. Architecture of the smart camera service

A wide variety of third-party programming environments required to create a full
set of firmware for the smart camera service induced the need to create an additional
tool to facilitate seamless FPGA configuration and server-side software design. It
is an application that runs on a PC and manages such tasks as generating server
code stubs, generating hardware accelerator module’s HDL code from a C-like spe-
cification, compiling FPGA configuration, generating code for the communication
module, and uploading the compilers’ output to each programmable component.

Construction of Hardware Components for the Internet of Services 925

The software templates generated during this process are intended to be the basic
reference point for the software developers willing to build new web services based
on our smart camera device.

Two example applications involving the above solution are proposed. The first
application is a customizable intruder detection service that can capture and track all
non-accidental motion in the recorded scene. The clients can interact with the server
in several ways via the WS interface. First, a preview of the scene being monitored
can be obtained so as to give the user an idea of what is in the camera’s field of
view. Based on this preview image the client can specify the relative coordinates of
the region of interest (RoI) within which motion is to be sought. Moving objects are
detected and tracked accordingly and a history of motion (storing the identity, time,
and relative position of an object at each time step) is maintained. The server can
be queried for this history within a user-specified time window. Additionally, the
client can instruct the server to activate an alarm in response to intruder detection.

The second application uses a face recognition service for controlling access to
a restricted area. In this scenario the smart camera’s server can recognize a face by
comparing it to the prototype images stored in its internal memory, log the presence
of a recently-identified individual, and allow or deny access to the restricted area
by activating an appropriate actuator, e.g. door lock. The algorithmical core is
based on parallelized Kernel Regression Trees [35] which are efficiently implemented
as a hardware accelerator in the FPGA logic. A separate PC-based application
has been created to train the face classifier from a number of user-provided static
images and pack its parameters into a batch for upload into the device, together
with prototype face images.

The FPGA-based implementation of the Kernel Regression Tree algorithm has
similar performance to a traditional PC-based implementation in terms of algorithm
response time. For example, with 15 parallel recognition processes, the classification
time is ≈ 0.33 s for both cases. However the FPGA-based version of the service is
clocked with 100 MHz signal and requires less than 4 W during normal operation.
In contrast, the PC-based version allows obtaining similar results using a laptop
computer with dual-core 2.9 GHz processor. For detailed test results we refer to [36].

It should be noted that under a conventional design scheme, such as SODA [9]
where the desired functionality is defined based on the external service’s interface,
achieving such a high level of autonomy and complexity of the aforementioned ap-
plications would be difficult. It is due to the fact that for such type of applications
the service’s logic has to be composed from custom-made, task-specific functional
modules and (for maximum performance and minimum response time) as close to
hardware as possible.

3.3 Intelligent Sensor Networks

Wireless Sensor Networks represent a modern technology that can be used to collect
a wide range of data about the surrounding environment [38]. For instance, they
can measure and visualize the distribution of temperature, humidity, or the level

926 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

of pollution over a given area. In this context they are often used in the industry.
Recently, sensor networks have also found their way into business process monitoring
and optimization. Creating services that use WSNs requires a slightly different
approach from the solutions presented above, but it is still based upon the generic
design schema proposed in Figure 2. This approach is illustrated in Figure 8.

In the World of Things realm we consider essentially similar types of devices
and their hardware adaptations as that presented earlier when discussing control
devices (see Section 3.1). However, this adaptation must take specific properties and
limitations of WSN nodes into account. Moreover, since environmental parameters,
such as temperature, atmospheric pressure or oxygen concentration, are measured as
analogue and non-electrical values, the hardware adaptation process must account
for conversion of such signals directly or indirectly into digital values.

When performing hardware adaptation of a WSN node, it should be kept in
mind that off-the-shelf sensor network nodes are usually very small devices with
severe hardware limitations. Therefore, a situation in which their hardware and
software capabilities appear insufficient to meet the assumed requirements is very
likely.

Enterprise Systems

Internet of Services

World of Things

Communication

(SOAP/REST)

Communication

(802.15.4)

Hardware adaptation

Logic

Internet of Things

Actuators
Environmental

Sensors

FPGA

Extension

Board

Smart

Sensor

Mobile

SCA

Figure 8. The design schema for a sensor network device (left) and its hardware realization
(right)

Construction of Hardware Components for the Internet of Services 927

Regardless of whether the role of a WSN node is to influence the environment
or acquire data about it through appropriate detectors, both of these features can
be made available to other network nodes upon implementation of the appropriate
logic. The server created in this way has an area of operation limited only to its own
sensor network. Sensor networks’ operation principles and the hardware limitations
of WSN nodes do not allow direct access to the sensor network services from the level
of enterprise systems. This access is realized through the Mobile Service Component
Architecture (SCA) mechanism, described later on in this section.

As mentioned earlier, off-the-shelf sensor network nodes are usually very small
devices with severe hardware limitations (e.g. limited computational power, limited
range of supported sensors, small number of input/output lines, etc.). Due to these
limitations it is not possible to implement complex tasks within a single node and
share the abilities of that node or the entire sensor network as a set of services.
Obviously, it is possible to build each sensor node of this kind from scratch, accord-
ing to the requirements of the target application. However, this would be a very
difficult and time-consuming task. Instead, we propose an alternative strategy:
building flexible and reconfigurable extensions to existing sensor nodes. We use Sun
Small Programmable Object Technology (Sun SPOT) devices in most of our appli-
cations. The SPOT devices contain a microcontroller with ARM920T core running
at 180 MHz. They have an on-board 2.4 GHz IEEE 802.15.4 radio interface. We
have decided to design an extension board for that particular type of sensor nodes.
For maximum flexibility the board is equipped with an FPGA chip (part number
EP3C25 from Altera). The block diagram of the extension board and its prototype
(connected to a SPOT device) are shown in Figure 9.

Communication between the SPOT device and the FPGA chip can be carried
out using one of the standard interfaces: two-wire interface (TWI), serial peripheral
interface (SPI), universal synchronous-asynchronous receiver-transmitter (USART),
or by an 8-bit bi-directional parallel bus. The method of communication depends
on the current needs of the sensor and the extension board. In addition, the FPGA
chip can provide 36 configurable user input-output (IO) lines and numerous re-
configurable resources within the chip itself. In a simple scenario the FPGA can
be configured to grant the SPOT device direct access to the IO lines. In a more
advanced scenario, the logic inside the FPGA chip can be used to build a sophis-
ticated interface for different kinds of sensors, or to implement an algorithm for
preliminary processing of the data collected by the devices connected through these
IO lines.

The extension board also allows the SPOT device to reconfigure the FPGA.
The new configuration can be stored either temporarily or permanently. In the
former case it persists until the FPGA is powered down or the upload of a new
configuration has started. In the latter case, it is stored in the EPCS16 flash mem-
ory and loaded into the FPGA automatically upon power-up. The configuration
file for the FPGA chip is prepared using the Quartus II software available from
ALTERA. This step should be done by a person with the necessary FPGA design
experience. Proper configuration files for the FPGA chip have been prepared for

928 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

FPGA
CYCLONE III

EP3C25

SPO
T Connector

FPGA
CONFIG
EPCS16

Board
Config

Memory

MAX II
decoder and signal

converter

Ex
te

rn
al

 S
en

or
s

In
te

rf
ac

e
Ad

di
tio

na
l

U
se

r I
/O

SPI bus

FPGA_CS

MEM_CS

JTAG

8 bit I/O

USART

TWI

BD_SEL1
CS_A0
CS_A1
CS_A2

Figure 9. Diagram of a SPOT expansion board

several simple applications, e.g. when the board is used to expose 36 digital I/O
lines. It is possible to share FPGA chip reconfiguration as one of the available
services.

To build services which utilize sensor networks, a specific approach is needed for
three main reasons: the aforementioned limited computational power of each single
sensor node, severe energy consumption restrictions, and a potentially large number
of devices providing a single service, as well as the dynamic properties of their
connections. To address this issue, the Mobile SCA [37] solution is proposed. It is
a middleware layer between SOA services and the low-level communication protocols
used by the mobile devices. From the enterprise systems integration perspective
the proposed system can provide direct access to each component from the web
service layer or add some business logic and expose a higher-level interface. Another
benefit of using mobile SCA is availability to add fault tolerance to the system. It is
possible by using redundant hardware nodes to implement the service functionality.
For further details, the reader should refer to the above article.

A prototype implementation of the proposed architecture has been done using
Sun SPOT devices. To show the flexibility of this architecture, we also provide
a simple test implementation for Sentilla Perk devices. Both device types are able to
run Java code which allows rapid development and deployment of parts of the higher-
level business logic that are to be executed by the devices themselves. Although the
created tools are Java-based, our architecture is generic and independent of the
underlying technology.

Construction of Hardware Components for the Internet of Services 929

4 SOFTWARE INTEGRATION ASPECTS

A critical aspect of the research presented in this paper is the integration of different
kinds of hardware services (using a variety of devices, such as smart actuators, mobile
robots, smart cameras and smart sensors), as well as providing easy access to them
for the potential users. One of the well-established methods of integrating reusable
services is via an Enterprise Service Bus. The main advantages of this approach
include standardization, scalability, reliability, mediation and manageability. The
ESB may also act as a proxy for applications that do not expose a standardized
service interface. Most existing Java implementations of the ESB are based on the
OSGi service platform that allows a reduced complexity, reuse of components, easy
deployment and dynamic component updates.

For the above reason we have decided to handle software integration through
the exposition of hardware services using the Proxy Service – a service engine im-
plemented in Java (Figure 10). The Proxy Service can be deployed within an ESB
or OSGi container, or exposed as a web service reachable via the SOAP/REST
communication standards. In both cases its interface can be specified in the WSDL.

Enterprise Systems

Internet of Services

Comunnication

(SOAP/REST)

Proxy

Service

Figure 10. Software integration through Proxy Service

The WSDL files containing a functional description of hardware services should
be registered in a common repository to enable discovery. For this purpose the
Universal Description, Discovery and Integration (UDDI) registry can be used. It is
also possible to develop a custom WSDL repository containing information about the
shared services. In this case, a description of each service is published using WSDL
in a Common Service Description Repository (CSDR). The user intending to interact
with a given service browses the repository in search for the service’s details, such
as its invocation point and a signature of the operations supported. Upon finding
them, the client application can connect to the hardware service directly [39].

Following the above schema, each of our hardware services is described by an ap-
propriate WSDL file. For each such service it is possible to generate one corre-
sponding Proxy Service with methods identical to those of the original service. All
operations on a Proxy Service are delegated through standard WS requests (SOAP)
to the server appropriate for the target device.

930 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

The operations of our hardware services are accessible through the Proxy Service
mechanism thanks to mediation between the SOAP binding component and the
Remote Service for OSGi (R-OSGi) [40] binding component within the Enterprise
Service Bus. The use of such ESB implementations as Fuse ESB 4.3 or Apache Felix
(installed on mobile devices supporting the Android system) enables direct access to
these services through the OSGi environment. In addition, the R-OSGi technology
allows remote connections to OSGi services. In the proposed scenario this solution
was adopted for Android-enabled devices and the OSGi Felix environment. The
proposed concept is depicted in Figure 11.

Proxy

Service

Apache Felix (OSGi)

R-OSGi SOAP

Fuse ESB 4.3 (OSGi)

Hardware Services

Integration

SOAP

binding

component

R-OSGi

binding

component

Figure 11. Integration of hardware services with the ESB/OSGi environment

In conclusion, the developed mechanism facilitates automatic generation of the
service’s proxy in the OSGi environment based on a standard WSDL. This proxy
enables execution of the remote hardware service’s operations and reception of their
results within Java-based implementations of the enterprise service bus. This, in
turn, allows the functionality of our smart hardware to be treated as commodity
services that can be reused in heterogeneous environments, e.g. on Android-based
mobile devices.

5 CASE STUDY

As a usage scenario for the developed hardware and software solutions presented in
the previous sections, the smart house example is considered. This example should
be treated as a stepping stone towards the broader concept of a smart city where
intelligent buildings, co-managed by software and hardware services, exist alongside
other public resources, such as smart road traffic infrastructure, parking lots or power
stations. The presented approach differs from the body of previous work in that it
introduces generic, fully customizable components that can be easily tuned for use
in various application scenarios. Moreover, unlike in most of the existing solutions,

Construction of Hardware Components for the Internet of Services 931

these components use open communication protocols and can be managed remotely
through the web service interface.

One of the common features of the so-called smart buildings is an intelligent
system for control of lighting and other electrical equipment. Ideally, it should be
adaptable in a way that enables memorizing the preferences or behavioural patterns
of the residents and performing appropriate self-modifications. Another possible
feature is advanced control of heating and ventilation systems which requires some
environmental sensors installed throughout the building. For the convenience of
the residents, especially at an early stage of use, the possibility of switching be-
tween manual and remote control of the installed equipment should be preserved.
Finally, the users should be able to access information about the current state of
the building, as well as to control different elements of the smart infrastructure from
a range of popular electronic devices, e.g. multifunction remote controllers, laptops
or smartphones.

To illustrate the usefulness of the proposed intelligent hardware solutions, we
present a hypothetical middle-size house. Its electrical systems are designed in a way
enabling easy back-conversion into a “conventional” house installation. Almost all
“smart features” of the house are realized using the SPOT-based sensor network.
The architecture of the smart house system is illustrated in Figure 12.

SPOT- based sensor network

Client

Mobile client

Light Control

subsytem

Data acquisition

subsytem

SPOT

BASESTATION

Intruder detection

system

WebService

Repository

Other WS/SOAP

devices in house

PROXY

Switch Remote

control

Motion

detector

Light

point

Remote

control

Venitation

and heating

control

Ventilation with

heat recovery
 Heating system

Server

Web Service

Gateway

Figure 12. Logic model of the smart house

The sensor network used in the above design has been divided into several sub-
systems. The light control subsystem is installed in the main electrical switch board.

932 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

It is developed as a special sensor network node based on a SPOT device equipped
with the aforementioned FPGA extension board. Based on the data collected from
switches and other devices directly connected to them, as well as from other sub-
systems, it exercises control over all light fixtures in the house.

The data acquisition subsystem is a set of SPOT devices distributed throughout
the house. Their task is to collect environmental data from each room. To enable
this, the SPOT device can be additionally equipped with the appropriate external
sensors. The acquired data can be used to control devices belonging to other sub-
systems (e.g. lighting, heating or ventilation). To improve diversity of the collected
data, one of the SPOT devices in the data acquisition subsystem can be connected
to a professional intruder detection system. Data collected by the acquisition sub-
system can also be used to control heating and ventilation in the house. Another
possible application for the nodes in that subsystem is to serve as gateways between
the remote controllers and the rest of the system. The above mentioned remote
controllers are simple wireless control devices, built on top of the SPOTs for the
convenience of the household. Depending on their location they can provide ac-
cess to different basic functions of the house (e.g. light control or room temperature
monitoring).

The SPOT-based sensor network itself cannot expose web services. To enable
this feature, the Mobile SCA middleware, described earlier in this paper, is em-
ployed. The web service gateway (see Figure 12) creates a connection point between
the smart house and the outside world, i.e. it simply exposes the functionality of the
smart house as a set of web services. These services are registered in the web service
repository and can be accessed by other devices in the house directly or through the
proxy service, the latter being dedicated for mobile clients. In a future development
a trust model of accessing services can be introduced. A way of implementing those
features is described in [41].

In specific situations the HSOA board can augment the infrastructure of a smart
building. It could be used as a local, independent hardware controller node, accessi-
ble over the network trough a web service interface. In addition, the smart camera
service could help improve the alarm system or contribute to energy savings by
detecting when particular rooms are not occupied and switching off the lights ac-
cordingly.

In Figure 13 we present a simple example of interaction between the selected
element of the intelligent house’s infrastructure and the end user equipped with
a smartphone. Let us assume that the tenant would like to remotely control the
anti-burglar lock in the main door or in the garage gate. The important aspect
here is to avoid changing the mechanical structure of the lock (which usually holds
special safety certificates) and to maintain the possibility of a regular, manual use.
Therefore, a special hardware extension based on a servomotor is implemented.
As a result, the user or another service can remotely instruct the hardware con-
trol server to open, close or check the state of the lock. This server, together
with the aforementioned servomotor extension, constitutes the hardware web ser-
vice.

Construction of Hardware Components for the Internet of Services 933

Any client who possesses a reference to the service can download the appropriate
WSDL interface description so as to create custom control methods for the anti-
burglar lock. Alternatively, based on this WSDL file, an OSGi service can rapidly
be generated using the Proxy Service mechanism. This service can then provide
the equivalent anti-burglar lock control functionality for a mobile Android-based
device.

Door lock

Web

Service

Servo motor
Hardware control

server

Client

Interface:

OPEN

CLOSE

GET_STATE

Mobile

Client

Web Service

OSGi

Proxy

Service
Internet

Figure 13. Remote control of an anti-burglar lock

6 FURTHER RESEARCH

The presented web services are complex embedded devices which consist of multi-
ple hardware and software modules. Like many large systems, they can be further
developed and upgraded. Security is the first issue that arises when considering
practical implementations of the presented system. Typical solutions can be used
in this field, e.g. Virtual Private Networks (VPN) with secure tunneling protocols.
Further improvements would require an implementation of Hypertext Transfer Pro-
tocol Secure (HTTPS) which is possible yet very difficult for small embedded sys-
tems. Another, much simpler solution that can be used to provide a good degree
of data security is a utilization of a well-known block encryption algorithm such
as Advanced Encryption Standard (AES) for encrypting the most sensitive data
payloads.

The experimental smart camera service (refer to Section 3.2) is particularly
interesting in the scope of further development. Its large hardware capabilities allow
authors to improve the performance of the currently implemented image processing
algorithms and implementing other ones.

934 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

7 CONCLUSIONS

Practical issues involved in integrating the domain of commodity objects and the
technology underlying the Internet of Things are still challenging. Addressing known
problems such as the heterogeneity of physical communication, security [41], diver-
sity of data link protocols or identification schemas does not suffice to effectively
explore the advantages of a global communication between physical devices and en-
terprise software systems. This is due to inherent differences in the levels of logical
abstraction. While enterprise systems are designed according to the SOA paradigm,
the control of low-level device operations is still governed by the fairly dated imper-
ative programming model.

In this paper we show that this gap can be successfully bridged by exposing
physical appliances as services accessible via high-level protocols, such as SOAP or
REST. Our approach leads to a coherent architecture model where things are visible
as software services in the outside world. This, in turn, facilitates integration with
the existing applications built in accordance with the SOA paradigm. Unlike in the
SODA model [9], the service’s logic can be defined directly at a device level, which
minimizes the risk of suboptimal resource utilization.

The proposed development methodology is generic and could be applied to
a wide spectrum of devices and sensors. It effectively hides the heterogeneity of
the World of Things, allowing flexible access to objects with constrained computa-
tional or communication resources. As a consequence, we can build systems with
distributed intelligence where a significant part of the required processing can be
performed locally. The net result is an increase in IoT systems’ scalability which is
another important advantage of the proposed solution.

Our original contribution, apart from the aforementioned generic architecture
and a corresponding methodology for implementing and provisioning hardware SOA
services, also includes a set of specific prototype devices for environment monitor-
ing and actuator control. Such devices can be successfully exploited in a smart
building/smart city management scenario. The solutions presented in this paper
had been practically tested in an experimental set-up deployed at the Department
of Computer Science of the AGH University of Science and Technology, Kraków,
Poland. The experimental set-up utilized the described various multiple sensors
and actuators to provide access to a “guarded” zone.

Acknowledgements

The research presented in this paper was partially supported by the European
Union in the scope of the European Regional Development Fund program num-
ber POIG.01.03.01-00-008/08 and by the Polish Ministry of Science and Higher
Education under AGH University of Science and Technology Grant 11.11.230.015
(statutory project).

Construction of Hardware Components for the Internet of Services 935

REFERENCES

[1] Ashton, K.: That ‘Internet of Things’ Thing. RFID Journal, 2009.

[2] Atzori, L.—Iera, A.—Morabito, G.: The Internet of Things: A Survey. Com-
puter Networks, Vol. 54, 2010, No. 15, pp. 2787–2805.

[3] Zhang, K.—Han, D.—Feng, H.: Research on the Complexity in Internet of
Things. Proceedings of the 2010 International Conference on Advanced Intelli-
gence and Awareness Internet (AIA 2010), Beijing, China, October 23–25, 2010,
pp. 395–398.

[4] Park, J. H.—Woungang, I.—Ma, J.—Kawsar, F.: Ubiquitous Computing for
Communications and Broadcasting. International Journal of Communication Sys-
tems, Vol. 25, 2012, No. 6, pp. 689–690, doi: 10.1002/dac.1386.

[5] Ning, H.—Hu, S.: Technology Classification, Industry, and Education for Future
Internet of Things. International Journal of Communication Systems, Vol. 25, 2012,
No. 9, pp. 1230–1241, doi: 10.1002/dac.2373.

[6] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, 2005.

[7] Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media, Cali-
fornia, 2004.

[8] Rimal, B. P.—Choi, E.: A Service-Oriented Taxonomical Spectrum, Cloudy Chal-
lenges and Opportunities of Cloud Computing. International Journal of Communica-
tion Systems, Vol. 25, 2012, No. 6, pp. 796–819, doi: 10.1002/dac.1279.

[9] de Deugd, S.—Carroll, R.—Kelly, K.—Millett, B.—Ricker, J.: SODA:
Service Oriented Device Architecture. IEEE Pervasive Computing, Vol. 5, 2006, No. 3,
pp. 94–96.

[10] Patel, R.—Rajawat, A.—Yadav, R. N.: Remote Access of Peripherals Using
Web Server on FPGA Platform. Proceedings of the 2010 International Conference
on Recent Trends in Information, Telecommunication and Computing, Kochi, India,
March 12–13, 2010, pp. 274–276.

[11] Maciá-Pérez, F.—Gil-Mart́ınez-Abarca, J. A.—Ramos-Morillo, H.—Mo-
ra-Gimeno, F. J.—Marcos-Jorquera, D.—Gilart-Iglesias, V.: Wake on
LAN over Internet as Web Service System on Chip. IEEE Transactions on Indus-
trial Electronics, Vol. 58, 2011, No. 3, pp. 839–849.

[12] Schall, D.—Aiello, M.—Dustdar, S.: Web Services on Embedded Devices.
International Journal of Web Information Systems, Vol. 2, 2006, No. 1, pp. 45–50.

[13] Groba, C.—Clarke, S.: Webservices on Embedded Systems – A Performance
Study. Proceedings of the 1st International Workshop on the Web of Things,
Mannheim, Germany, 29 March–2 April 2010, pp. 726–731.

[14] Bucci, G.—Ciancetta, F.—Fiorucci, E.—Gallo, D.—Landi, C.: A Low
Cost Embedded Web Service for Measurements on Power System. Proceedings of the
IEEE International Conference on Virtual Environment, Human-Computer Interface
and Measurement Systems, Giardini Naxos, Italy, July 18–20, 2005, pp. 7–12.

[15] Machado, G. B.—Siqueira, F.—Mittmann, R.—Vieira e Vieira, C. A.: Em-
bedded System Integration Using Web Services. Proceedings of the International

936 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

Conference on Networking, International Conference on Systems and International
Conference on Mobile Communications and Learning Technologies, Morne, Mauri-
tius, April 23–29, 2006, pp. 18–24.

[16] van Engelen, R. A.—Gallivan, K. A.: The gSOAP Toolkit for Web Services
and Peer-to-Peer Computing Networks. Proceedings of the 2nd IEEE International
Symposium on Cluster Computing and the Grid, Berlin, Germany, May 22–24, 2002,
pp. 128–135.

[17] Cuenca-Asensi, S.—Ramos-Morillo, H.—Llorens-Mart́ınez, H.—Maciá-
Pérez, F.: Reconfigurable Architecture for Embedding Web Services. Proceedings
of the 4th Southern Conference on Programmable Logic, San Carlos de Bariloche,
Argentina, March 26–28, 2008, pp. 119–124.

[18] Chang, C. E.—Mohd-Yasin, F.—Mustapha, A. K.: An Implementation of Em-
bedded RESTful Web Services. Proceedings of the 2009 Conference on Innovative
Technologies in Intelligent Systems and Industrial Applications, Monash, Malaysia,
July 25–26, 2009, pp. 45–50.

[19] Gonzalez, I.—Sanchez-Pastor, J.—Hernandez-Ardieta, J. L.—Gomez-
Arribas, F. J.—Martinez, J.: Using Reconfigurable Hardware Through Web Ser-
vices in Distributed Applications. Proceedings of the 14th International Conference on
Field Programmable Logic and Applications, Leuven, Belgium, 30 August–1 Septem-
ber 2004, Lecture Notes in Computer Science, Vol. 3203, 2004, pp. 1110–1112.

[20] Gent, G. J.—Smith, S. R.—Haviland, R. L.: An FPGA-Based Custom Copro-
cessor for Automatic Image Segmentation Applications. Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, 1994, pp. 172–179.

[21] Baumann, D.—Tinembart, J.: Designing Mathematical Morphology Algorithms
on FPGAs: An Application to Image Processing. Proceedings of the 11th Inter-
national Conference on Computer Analysis of Images and Patterns, Rocquencourt,
France, September 5–8, 2005, pp. 562–569.

[22] Neoh, H. S.—Hazanchuk, A.: Adaptive Edge Detection for Realtime Video Pro-
cessing using FPGAs. Proceedings of the 2004 Global Signal Processing Expo and
Conference, Santa Clara, USA, September 27–30, 2004, pp. 27–30.

[23] Djemal, R.—Demigny, D.—Tourki, R.: A Real-Time Image Processing with
a Compact FPGA-Based Architecture. Journal of Computer Science, Vol. 1, 2005,
No. 2, pp. 207–214.

[24] Kryjak,T.—Gorgoń, M.: Pipeline implementation of Peer Group Filtering in
FPGA. Computing and Informatics, Vol. 31, 2012, pp. 727–741.

[25] Ben Atitallah, A.—Kadionik, P.—Masmoudi, N.—Levi, H.: FPGA Imple-
mentation of a HW/SW Platform for Multimedia Embedded Systems. Design Au-
tomation for Embedded Systems, Vol. 12, 2008, No. 4, pp. 293–311.

[26] Verdone, R.—Dardari, D.—Mazzini, G.—Conti, A.: Wireless Sensor and
Actuator Networks. Technologies, Analysis and Design. Elsevier LTD, 2008.

[27] Liu, C. X.—Liu, Y.—Zhang, Z. J.—Cheng, Z. Y.: High Energy-Efficient and
Privacy-Preserving Secure Data Aggregation for Wireless Sensor Networks. Interna-
tional Journal of Communication Systems, Vol. 26, 2013, pp. 380–394.

Construction of Hardware Components for the Internet of Services 937

[28] Dargie, W. W.—Poellabauer, Ch.: Fundamentals of Wireless Sensor Networks.
Theory and Practice. John Wiley & Sons LTD, United Kingdom, 2010.

[29] Delicato, F. C.—Pires, P. F.—Pirmez, L.—Batista, T.: Wireless Sensor Net-
works as a Service. Proceedings of 17th IEEE International Conference and Workshops
on Engineering of Computer Based Systems (ECBS), Oxford, England, March 22–26,
2010, pp. 410–417.

[30] IEEE Std 1076-2008: IEEE Standard VHDL Language Reference Manual. The In-
stitute of Electrical and Electronics Engineers, Inc., New York, USA, January 26,
2009.

[31] IEEE Std 1364-2001: IEEE Standard Verilog Hardware Description Language. The
Institute of Electrical and Electronics Engineers, Inc., New York, USA, September
28, 2001.

[32] Horla, D.: Minimum Variance Adaptive Control of a Servo Drive with Unknown
Structure and Parameters. Asian Journal of Control, Vol. 15, 2011, No. 1, pp. 120–131,
doi: 10.1002/asjc.479.

[33] Gao, D.—Zhu, W.—Xu, X.—Chao, H. C.: A Hybrid Localization and Tracking
System in Camera Sensor Networks. International Journal of Communication Sys-
tems, 2012, doi: 10.1002/dac.2492.

[34] Pellerin, D.—Thibault, S.: Practical FPGA Programming in C. Prentice Hall,
2005.

[35] Ruta, A.—Li, Y.: Learning Pairwise Image Similarities for Multi-Classification Us-
ing Kernel Regression Trees. Pattern Recognition, Vol. 45, 2012, No. 4, pp. 1396–1408.

[36] Ruta, A.—Brzoza-Woch, R.—Zieliński, K.: On Fast Development of FPGA-
based SOA Services - Machine Vision Case Study. Design Automation for Embedded
Systems, Vol. 16, 2012, No. 1, pp. 45–69.

[37] Bachara, P.—Zieliński, K.: Service Component Architecture Extension for Sen-
sor Networks. Scalable Computing: Practice and Experience, Vol. 12, 2011, No. 1,
pp. 121–135.

[38] Ku lakowski, P.—Calle, E.—Marzo, J. L.: Performance Study of Wireless Sen-
sor and Actuator Networks in Forest Fire Scenarios. International Journal of Com-
munication Systems, 2012, doi: 10.1002/dac.2311.

[39] Rodriguez, J. M.—Crasso, M.—Mateos, C.—Zunino, A.: Best Practices for
Describing, Consuming, and Discovering Web Services: A Comprehensive Toolset.
Journal of Software: Practice and Experience, 2012, doi: 10.1002/spe.2123.

[40] Rellermeyer, J. S.—Alonso, G.—Roscoe, T.: R-OSGi: Distributed Applica-
tions Through Software Modularization. In Middleware 2007, LNCS 4834.

[41] Liu, Y.—Chen, Z.—Xia, F.—Lv, X.—Bu, F.: An Integrated Scheme Based on
Service Classification in Pervasive Mobile Services. International Journal of Commu-
nication Systems, Vol. 25, 2012, No. 9, pp. 1178–1188, doi: 10.1002/dac.2330.

938 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

Pawe l Bachara is a Ph.D. student in the Department of Com-
puter Science at AGH University of Science and Technology,
Krakow, Poland. His current research is focused on integrating
sensor network devices into software systems built according to
the SOA paradigm. His experience as a Sun Campus Ambas-
sador has given him a deep knowledge of Java and Java Enter-
prise technologies.

Robert Brzoza-Woch received his M.Sc. degree in electronics
and telecommunication from the AGH University of Science and
Technology, Krakow, Poland, in 2009. Currently he is a Ph.D.
student at the Department of Computer Science, AGH Univer-
sity of Science and Technology. He has a broad experience in
hardware and software design for intelligent wireless sensor net-
works, remote condition monitoring systems and pervasive com-
puting. During the last several years his professional activity
revolved around single-chip microcontrollers with particular em-
phasis on FPGA hardware design using VHDL and Verilog hard-

ware description languages. He is also an author of numerous commercial articles and
books popularizing general electronics knowledge, mostly in the field of digital design and
embedded systems.

Jacek D lugopolski is Assistant Professor in the Department
of Computer Science at AGH University of Science and Tech-
nology, Krakow, Poland. In the past, he cooperated with the
Krakow University of Technology, Poland and with the Oli-
vetti & Oracle Research Lab, Cambridge, UK. He has broad ex-
pertise in assembly languages, digital hardware systems, FPGA
technology, VHDL hardware description language, embedded
systems and microprocessors. His current research is focused
on a hardware implementation of data acquisition, data process-
ing and control systems algorithms using FPGA microchips and
VHDL language.

Construction of Hardware Components for the Internet of Services 939

Piotr Nawrocki is Assistant Professor in the Department of
Computer Science at AGH University of Science and Technol-
ogy, Krakow, Poland. His scientific interests focus on computer
networks and mobile systems. He has participated in several
EU research projects including MECCANO, 6WINIT and Uni-
versAAL. He is the author or co-author of 17 papers in the areas
of computer networks, telemedicine and mobile systems. His
current research interests focus on Mobile SOA and his current
responsibilities include the supervision of many master’s degree
candidates. He is a member of the Polish Information Processing
Society (PTI).

Andrzej Ruta received his M.Sc. in computer science from the
AGH University of Science and Technology, Krakow, Poland, in
2006. In 2009 he received his Ph.D. degree in machine vision
from the School of Information Systems, Computing & Mathe-
matics, Brunel University, Uxbridge, United Kingdom. Between
2009 and 2012 he held a position of Teaching Assistant and then
Assistant Professor at AGH University of Science and Technol-
ogy where he did research on embedded implementation of image
processing services. He currently works as engineer and team
leader at Samsung Poland R & D Center where he coordinates

research activities in the field of machine perception, especially image, speech and biosig-
nal processing. His research interests include intelligent data analysis, computer vision,
machine learning and pattern recognition. He is an author of numerous publications in
these areas.

Wojciech Zaborowski received his Ph.D. degree in computer
science at the AGH University of Science and Technology, De-
partment of Computer Science, Krakow, Poland in 2009. He
also holds M.Sc. degree in electronic devices design. Currently
he is Assistant Professor at the Department of Computer Science
at AGH University of Science and Technology. He has a broad
expertise in digital hardware systems, FPGA technology, em-
bedded systems and microprocessor architectures. His current
research focuses on sensor networks and FPGA-based systems.

940 P. Bachara, R. Brzoza-Woch, J. D lugopolski, P. Nawrocki et al.

Krzysztof Zieli�nski is the Head of the Department of Com-
puter Science at AGH University of Science and Technology,
Krakow, Poland. His research focuses on networking, mobile and
wireless systems, distributed computing, and service-oriented
distributed systems engineering. He is the author of over 200
papers in these topic areas. He was the Project/Task Leader
of numerous EU-funded projects, e.g. PRO-ACCESS, 6WINIT,
Ambient Networks. He served as an expert for the Ministry
of Science and Education. He is an active member of IEEE,
ACM and Polish Academy of Sciences. He served as a program

committee member, chairman and organizer of several international conferences including
MobiSys, ICCS, ICWS, IEEE SCC and many others.

