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Abstract. Networks of evolutionary processors with an underlying octahedron
graph consist of 7 language processors which are linked to the vertices of the octa-
hedron graph. Notice that they are located in the 6 facets and the core of a cube
graph. Also note that the nodes are only able to perform a type of mutation based
on the words found in that node. Each node is associated with an input filter
and an output filter, defined by some regular language. Rules are applied to all
the words existing in every node. The words, able to pass the output filter of the
respective node, are sent out and they navigate through the graph. Such words
will enter those nodes provided their input filters are satisfied. The computational
power of the network is comparable to Turing machines when the filters are regular
languages. We introduce several variants of octahedron networks, depending on rule
types and the way of computation plus their computational power. Some known
problems are addressed at the end.
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1 INTRODUCTION

Networks of evolutionary processor is a mechanism inspired by cell biology. These
networks have nodes which are very simple processors able to perform just one type
of point mutation (insertion, deletion or substitution of a symbol) [9]. These nodes
are endowed with filters which are defined by some membership or random context
condition. This work is a continuation of the investigation started in [7] and [8].

The computational process described here is not exactly an evolutionary process
in the Darwinian sense. Each processor placed in a node is a very simple processor,
an evolutionary processor. By an evolutionary processor we refer to a processor
able to perform very simple rewriting operations, such as insertion, deletion or sub-
stitution of symbols within a given word. Generally speaking, each node could be
considered as a cell that has genetic information encoded in DNA sequences. This
sequence can evolve by local evolutionary events, which is to say point mutations.
Each node is specialized in just one of these evolutionary operations.

However, the rewriting operations we have considered might be interpreted as
mutations and the filtering process might be viewed as a selection process. Recombi-
nation is missing, but it was asserted that evolutionary and functional relationships
between genes can be captured by taking into consideration local mutations only [20].
Furthermore, we were not concerned here with a possible biological implementation,
though a matter of great importance.

These networks may be used as language generating devices or as computational
ones. Here, we consider them as computational mechanisms and show how an NP-
complete problem can be solved in linear time. The model is similar to P systems,
a new computing model inspired by the hierarchical and modularized cell structure
proposed in [17, 18].

Networks of evolutionary processors [7] are language generating devices [8], if we
look at the strings collected in the output node. We can also look at them as doing
some computation. If we consider these networks with nodes having filters defined
by random context conditions, which seems to be closer to the recent possibilities
of biological implementation, we can use these simple mechanisms to solve NP-
complete problems in linear time. Such solutions are presented for the Bounded
Post Correspondence Problem in [6], for the 3-Colorability Problem in [7] and for
the Common Algorithmic Problem in [15]. As a further step, in [15] the so-called
hybrid networks of evolutionary processors are also considered. Here, deletion nodes
or insertion nodes could have a different working mode (performs the operation at
any position, in the left-hand end or in the right-hand end of the word) and different
nodes are allowed to use different ways of filtering. Thus, the same network may
have nodes where the deletion operation can be performed at arbitrary position and
nodes where the deletion can be done only at right-end of the word.

Informally, at any moment of time, the evolutionary system is described by
a collection of strings, where each string represents one cell. Cells belong to species
and their community evolves according to mutations and division which are defined
by operations on strings. Only those cells are accepted as surviving ones which are
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represented by a string in a given set of strings, called the genotype space of the
species. This feature parallels with the natural process of evolution.

In the paper we present some results regarding a network of evolutionary pro-
cessor based on an octahedron graph from the point of view of their computational
power. This octahedron organization is suitable for a hardware implementation,
similar to those carried out with transition P systems [4, 5], since such cubes can
be connected surface-to-surface to obtain a complex network in a modular way.

Why not use a triangular graph instead of an octahedron graph? The problem
yields in a hardware constraint that is – a triangular graph has 5 processors (4 facets
and the core) therefore 3 bits must be used to address any processor. But 3 bits can
address 8 processors. For this reason an octahedron graph is chosen, this way any
processor can be addressed in its hardware implementation (the 8th bit combination
is used to address the whole system).

2 PRELIMINARIES

Formally, a network of evolutionary processors [6, 7] of size n is a construct Γ =
(V,N1, N2, . . . , Nn, G), where V is an alphabet and for each 1 ≤ i ≤ n, Ni =
(Mi, Ai, P Ii, POi) is the ith evolutionary node processor of the network. The pa-
rameters of every processor are:

• Mi is a finite set of evolution rules of one of the following forms only

– a→ b, a, b ∈ V (substitution rules)

– a→ ε, a ∈ V (deletion rules)

– ε→ a, a ∈ V (insertion rules)

More clearly, the set of evolution rules of any processor contains either substi-
tution or deletion or insertion rules.

• Ai is a finite set of strings over V . The set Ai is the set of initial strings in the
ith node. Actually, in what follows, we consider that each string appearing in
any node at any step has an arbitrarily large number of copies in that node, so
that we shall identify multisets by their supports.

• PIi and POi are subsets of V ∗ representing the input and the output filter,
respectively. These filters are defined by the membership condition, namely
a string w ∈ V ∗ can pass the input filter (the output filter) if w ∈ PIi(w ∈ POi).

Finally, G = ({N1, N2, . . . , Nn}, E) is an undirected graph called the underlying
graph of the network. The edges of G, that is the elements of E, are given in
the form of sets of two nodes. The complete graph with n vertices is denoted by
Kn. By a configuration (state) of an NEP as above we mean an n-tuple C =
(L1, L2, . . . ., Ln), with Li ⊆ V ∗ for all 1 ≤ i ≤ n. A configuration represents the
sets of strings (remember that each string appears in an arbitrarily large number
of copies) which are present in any node at a given moment; clearly the initial
configuration of the network is C0 = (A1, A2, . . . , An).
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A configuration can change either by an evolutionary step or by a communicating
step [6, 7]. When changing by an evolutionary step, each component Li of the
configuration is changed in accordance with the evolutionary rules associated with
the node i. When changing by a communication step, each node processor Ni sends
all copies of the strings it has which are able to pass its output filter to all the node
processors connected to Ni and receives all copies of the strings sent by any node
processor connected with Ni providing that they can pass its input filter.

Theorem 1. Each recursively enumerable language can be generated by a complete
NEP of size 5. [6]

Theorem 2. Each recursively enumerable language can be generated by a star NEP
of size 5. [6]

Theorem 3. The bounded PCP can be solved by an NEP in size and time linearly
bounded by the product of K and the length of the longest string of the two Post
lists. [7]

2.1 Simple Networks of Evolutionary Processors

A simple NEP [6] of size n is a construct Γ = (V,N1, N2, . . . , Nn, G), where, V
and G have the same interpretation as for NEPs, and for each 1 ≤ i ≤ n,Ni =
(Mi, Ai, P Ii, F Ii, POi, FOi) is the ith evolutionary node processor of the network.
Mi and Ai from above have the same interpretation as for an evolutionary node in
a NEP, but

• PIi and FIi are subsets of V representing the input filter. This filter, as well
as the output filter, is defined by random context conditions, PIi forms the
permitting context condition and FIi forms the forbidding context condition.
A string w ∈ V ∗ can pass the input filter of the node processor i, if w contains
each element of PIi but no element of FIi. Note that any of the random context
conditions may be empty, in this case the corresponding context check is omitted.
We write ρi(w) = true, if w can pass the input filter of the node processor i and
ρi(w) = false, otherwise.

• POi and FOi are subsets of V representing the output filter. Analogously,
a string can pass the output filter of a node processor if it satisfies the random
context conditions associated with that node. Similarly, we write τi(w) = true,
if w can pass the input filter of the node processor i and τi(w) = false, otherwise.

Theorem 4. The families of regular and context-free languages are incomparable
with the family of languages generated by simple NEPs. [6]

Theorem 5. The “3-colorability problem” can be solved in O(m+n) time by a com-
plete simple NEP of size 7m + 2, where n is the number of vertices and m is the
number of edges of the input graph. [6]
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3 OCTAHEDRON NETWORK OF EVOLUTIONARY PROCESSORS

Let V be an alphabet over a set of symbols. A string x of length m over an alphabet
V is defined as the sequence of symbols a1a2 . . . am where ai ∈ V for all 1 ≤ i ≤ m.
The set of all strings over V is denoted by V ∗ and the empty string is denoted by ε.

The definition of network of evolutionary processors with an underlying octa-
hedron graph is a restricted variant of previously studied hybrid networks of evo-
lutionary processors (see e.g. [13, 15]), with a special graph structure and without
forbidden filters.

Formally, a network of evolutionary processors with an underlying octahedron
graph (NEP[OCT] for short) is a construct Σ = {V,N0, N1, N2, N3, N4, N5, N6},
where V is an alphabet and processors Ni are connected within a graph in the
following way:

• N0 is connected to all other processors.

• Each processor {Ni|1 ≤ i ≤ 6} is connected to all processors {Nj|j 6= i∧1 ≤ j ≤
6} except the opposite processor Nk where k = i+ (2(imod 2)− 1). Therefore,
each of these processors is also connected to other 5 processors.

The geometrical structure of the underlying graph that connects processors is
a cube as shown in Figure 1. Processor N0 is the cube core that collects desired
results of computation. Each processor has connections with another 5 processors
and therefore, the underlying graph has 7 vertices and 18 edges.
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Figure 1. Geometrical structure of an octahedron network of evolutionary processors

A processor Ni = {Mi, Ai, P Ii, POi} is the ith evolutionary processor of the
network. The parameters of every processor are:

• Mi is a finite set of evolution rules of one of the following forms only:

– a→ b, a, b ∈ V (substitution rules, SubV ),

– a→ ε, a ∈ V (deletion rules, DelV ),

– ε→ a, a ∈ V (insertion rules, InsV ),

Given a rule as above σ and a string w ∈ V , [15] defines the following actions
of σ on w:
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– If σ ≡ a→ b ∈ SubV , then

σ∗(w) = σr(w) = σl(w) =

{
{ubv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

– If σ ≡ a→ ε ∈ DelV , then

σ∗(w) =

{
{uv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

σr(w) =

{
{u : w = ua},
{w}, otherwise

σl(w) =

{
{v : w = av},
{w}, otherwise

– If σ ≡ ε→ a ∈ InsV , then

σ∗(w) = {uav : ∃u, v ∈ V ∗(w = uv)},
σr(w) = {wa},
σl(w) = {aw}

Simply put, the set of evolution rules of any processor contains either substi-
tution or deletion or insertion rules. Context information can be controlled by
using the operation mode α ∈ {∗, l, r}, namely at any position (α = ∗), in the
left (α = l), or in the right (α = r) end of the word, respectively. This way,
context rules [11] and directional context rules [12] are built using the α mode
of processors.

• Ai is a finite set of strings over V . The set Ai is the set of initial strings in the
ith node. We consider that each string appearing in a node of the net at any step
has an arbitrarily large number of copies in that node, so that we shall identify
multisets by their supports.

• PIi and POi are subsets of V ∗ representing the input and output filter re-
spectively. These filters are defined by membership condition, namely a string
w ∈ V ∗ can pass the input filter (the output filter) if ∀x ∈ PIi, w = axb where
a, b ∈ V ∗ (∀x ∈ POi, w = axb where a, b ∈ V ∗).
In other words, given a subset P of an alphabet V ∗ and a word w over V , we
define the predicate:

– ϕ(w;P ) ≡ P ⊆ alph(w)

The construction of this predicate is based on random-context conditions de-
fined by the set P (permitting context). For every language L ⊆ V we define
ϕ(L;P ) = {w ∈ L|ϕ(w;P )}.
For a given processor i, we define:
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– ρi(.) = ϕ(.;PIi)

– τi(.) = ϕ(.;POi)

That is, ρi(w) (or τx) indicates whether or not the string w can pass the input
(or output) filter of processor i. Simply put, ρi(L) (or τi(L)) is the set of strings
of L that can pass the input (or output) filter of i.

We write ρi(w) = true, if w can pass the input filter of the node processor i and
ρi(w) = false, otherwise. We write τi(w) = true, if w can pass the output filter
of the node processor i and τi(w) = false, otherwise.

PIi ⊆ V ∗ is the input permitting context of the processor i, while POi ⊆ V ∗ is
the output permitting context of the processor i [15].

By a configuration of a NEP[OCT] as seen above we we refer to a n-tuple:

C = (L0, L1, . . . , Ln)

with Li ⊆ V ∗ for all 0 ≤ i ≤ n. A configuration represents the sets of strings
(please note that each string appears in an arbitrarily large number of copies) which
are present in any node at a given moment; clearly the initial configuration of the
network is C0 = (A1, A2, . . . , An).

4 DYNAMICS OF OCTAHEDRON NETWORK
OF EVOLUTIONARY PROCESSORS

A configuration can change either by an evolutionary step or by a communicat-
ing step. Computation steps can be defined in a controlled way, that is, first
through an evolutionary step and then a communicating step, or in a parallel non-
deterministic way (when evolution and communication take place at the same time).

When a new evolutionary step occurs, each component Li of the configuration
changes in accordance with the evolutionary rules associated with node i. Formally,
we say that configuration C1 = (L1, L2, . . . , Ln) directly changes to configuration
C2 = (L′1, L

′
2, . . . , L

′
n). This is caused by the following evolutionary step:

C1 ⇒ C2

if L′i is the set of strings obtained by applying the rules of Ri to the strings in Li as
follows:

• If the same substitution rule replaces different occurrences of the same symbol
within a string, all these occurrences are replaced within different copies of the
string. The resulting multiset contains that string in an arbitrary large number
of copies.

• Unlike their common use, deletion and insertion rules are applied only to the
end of the string. Thus, a deletion rule a → ε can be applied only to a string
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which ends by a, (in other words wa), leading to the string w, and an insertion
rule ε → a applied to a string x consists of adding the symbol a to the end
of x, obtaining xa. This is controlled using the operation mode α ∈ {∗, l, r} of
the whole network. Here, we do not consider an operation mode for every rule
as [15] does, all rules have the same operation mode.

• If more than one rule (regardless of its type) applies to a string, then all the
rules are applied to different copies of such string.

By definition, if Li is empty for some 0 ≤ i ≤ n, then L′i is empty as well.
When changing by a communication step, each node processor sends all copies

of the strings to all connected node processors and receives all copies of the strings
sent by any connected node processor, provides that they can pass its input filter.

Formally, we say that the configuration C1 = (L1, L2, . . . , Ln) directly changes
to the configuration C2 = (L′1, L

′
2, . . . , L

′
n) by the communication step written below.

C1 ` C2

if for every 0 ≤ i ≤ n,

L′i = Li \ {w ∈ Li|τi(w) = true} ∪
n⋃

j=0,j 6=i
{x ∈ Lj|τj(x) = true ∧ ρi(x) = true}

A parallel non-deterministic computation step among two configurations C1 and
C2, is represented by C1 |= C2.

C1 |= C2 = (C1 ` C2) ∧ (C1 ⇒ C2)

Let Γ = (V,N1, N2, . . . , Nn) be an NEP[OCT]. By a parallel non-deterministic
computation in Γ we refer to a sequence of configurations C0, C1, C2, . . ., where C0

is the initial configuration and Ci |= Ci+1 for all i ≥ 0.
If the sequence is finite, we have a finite computation. The result of any fi-

nite computation is collected in a particular node called the output node (the core
cube). If one considers the output node of the network as being the node N0, and
if C0, C1, . . . , Ct is a computation, then the set of strings existing in the node N0 at
the last step – the 0th component of Ct – is the result of this computation. The time
complexity of the above computation is the number of steps, which is represented
by t.

Under the present definition, if the evolution and communication do not neces-
sarily alternate, the system becomes non-deterministic in a random way, and the
time complexity considerations become more difficult to prove. That is the reason
a controlled computation is needed.

4.1 Controlled Computation

Let Γ = (V,N1, N2, . . . , Nn) be an octahedron network of evolutionary proces-
sors. By a controlled computation in Γ we refer to a sequence of configurations
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C0, C1, C2, . . ., where C0 is the initial configuration and C2i ⇒ C2i+1 and C2i+1 `
C2i+2 for all i ≥ 0.

Controlled computation can be achieved using a parallel non-deterministic com-
putation by modifying the rules in Ri and filter POi of processor p in the following
way:

• each rule rk ∈ Ri, where k = 1, . . . , card(Ri), the symbol X
(p)
k must be added to

the string w

• output filter PO′i contains all the symbols X
(p)
k , which is to say, PO′i = POi ∪{

X
(p)
1 , X

(p)
2 , . . . , X

(p)
j

}
where 1 ≤ j ≤ k

and adding the following rules to processor p:

• X(l)
k → ε, with l = 1, . . . , n and l 6= p.

In this way a parallel non-deterministic computation becomes a controlled com-
putation as τ(w) = false. This occurs until all rules are applied.

α = r α = l α = ∗
Controlled computation NEP [OCT ]cr NEP [OCT ]cl NEP [OCT ]c∗

Parallel computation NEP [OCT ]pr NEP [OCT ]pl NEP [OCT ]p∗

Table 1. Different kinds of octahedron networks depend on the following rules and dynam-
ics: parallel non-deterministic or controlled

In short, many kinds of octahedron networks can be defined depending on the
rules operational mode(α) and dynamics (controlled and parallel), see Table 1. The
next section shows that all these families are computationally complete. By referring
to their computational power it is clear that:

• NEP [OCT ]cα ⊆ NEP [OCT ]pα

• NEP [OCT ]Xr ⊆ NEP [OCT ]X∗

• NEP [OCT ]Xl ⊆ NEP [OCT ]X∗

where p means parallel non-deterministic computation and c means controlled com-
putation.

Theorem 6. Problems solved using a NEP [OCT ]cα can be solved using a network
NEP [OCT ]pα, where α ∈ {∗, r, l}.

Proof. Given a processor Ni = {Ai, Ri, P Ii, POi} belonging to a NEP [OCT ]cα it
is possible to convert it into a processor N ′i = {Ai, R′i, P Ii, PO′i} which behaves in
a same way within a NEP [OCT ]pα.

This is described in the following way:

• given a rule rk ∈ Ri, where k = 1, . . . , card(Ri), with the notation A→ B, with
1 ≤ k ≤ p, each rule r′k ∈ R′i has the form A→ BXik
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• given the output filter POi, PO
′
i = POi

⋃p
k=1Xip

• the following rules must be added to processor N ′i :

Xlm → ε, with l = 1, . . . , n, l 6= i and m = 1, . . . , card(Rl).

With these new sets, R′i and PO′i, the parallel non-deterministic computation
of an octahedron network of evolutionary processors behaves in the same way as
a controlled computation, since τ(w) = false until all rules are applied. 2

Theorem 7. Problems solved by using a NEP [OCT ]Xr can also be solved by using
a NEP [OCT ]X∗ and problems solved by using a NEP [OCT ]Xl can be solved by
using a NEP [OCT ]X∗, where X ∈ {p, c}.

Proof. It is obvious that abc→ adc where a, (c = ε) ∈ V ∗ is equal to ab→ ad and
ab→ ad where (a = ε) ∈ V ∗ is equal to b→ d. 2

5 COMPUTATIONAL COMPLETENESS

As [2, 3] stated, networks of evolutionary processors with two nodes are unpre-
dictable. They are able to accept or generate all recursively enumerable languages.
Since the structure of octahedron networks of evolutionary processors contains
a complete subgraph on three nodes, the presented finding results are a consequence
of results from [2, 3]. It shows that 3 nodes can generate any recursively enumerable
language with a simple process of encoding. Nevertheless, 4 nodes are enough to
generate all recursively enumerable languages (the graph structure of octahedron
networks also contains a complete subgraph with 4 nodes).

As octahedron networks with finite filters can generate regular languages only, we
shall consider having finite regular languages as filters within octahedron networks
(as filters are subsets of V , they must be finite by definition).

Theorem 8. Each recursively enumerable language can be generated by a network
NEP [OCT ]cr.

Proof. Let G = (N, T, S, P ) be an arbitrary phrase-structure grammar in the
Kuroda normal form [10], namely P contains only rules in the following forms:

A→ a,A→ BC,AB → CD,A→ ε

where A,B,C,D are nonterminals and a is a terminal. We assume that the rules
A → BC and AB → CD of P are labelled in a one-to-one manner by the labels
r1, r2, . . . , rn. We shall refer to the rules as A→ a,A→ ε, A→ BC, and AB → CD
as rules of type 0, 1, 2, and 3, respectively. We construct the following NEP [OCT ]cr:

Γ = (V,N0, N1, N2, N3, N4, N5, N6).
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where

V = N ∪ T ∪ V ′ ∪ {X},
V ′ = {ri, pi, qi, si, ti|1 ≤ i ≤ 5}

and

N0 = (∅, ∅, T ∗, (N ∪ T ∪ V ′ ∪ {X})∗(N ∪ V ′ ∪ {X})(N ∪ T ∪ V ′ ∪ {X})∗),
N1 = (M1, {S}, (N ∪ T )∗ ∪ (N ∪ T )∗{riqi|1 ≤ i ≤ 5}(N ∪ T )∗,

(N ∪ T )∗({ri, sipi, tiqi|1 ≤ i ≤ 5} ∪ {X})(N ∪ T )∗ ∪ T ∗)
with

M1 = {A→ X|A→ ε ∈ P} ∪ {A→ a|A→ a ∈ P} ∪ {A→ ri,

ri → ti|ri : A→ BC ∈ P} ∪ {A→ si, B → pi|ri : AB → CD ∈ P},

N2 = ({ε→ qi|ri : A→ BC}, ∅, (N ∪ T )∗{ri|1 ≤ i ≤ 5}(N ∪ T )∗

(N ∪ T ∪ V ′)∗),
N3 = (M3, ∅, (N ∪ T )∗{sipi, tiqi|1 ≤ i ≤ 5}(N ∪ T )∗, (N ∪ T )∗)

with

M3 = {ti → B, qi → C|ri : A→ BC ∈ P} ∪
{si → C, pi → D|ri : AB → CD ∈ P},

N4 = ({X → ε}, ∅, (N ∪ T )∗{X}(N ∪ T )∗, (N ∪ T )∗),

N5 = (∅, ∅, ∅, ∅),
N6 = (∅, ∅, ∅, ∅).

Note that filters PI and PO are subsets of V ∗ by definition.

There is a more thorough explanation in [7]; the only difference is that such
proof is based on a complete graph with size 5. We stress that nodes N5 and N6

are empty, in which case they only transmit information to other processors. In this
way they behave as a bridge among two given processors. Due to this reason the
cube can be considered a complete graph with size 5 and therefore same proof as [7]
can be applied.

Initially, there are arbitrarily many copies of the string S in the node N1. By
extrapolation, we may assume that a multiset of strings containing at least one
nonterminal and no symbol from V ∪ X, each string appearing in an unbounded
number of copies, is in N1 at a given moment, before an evolutionary step. If there
is one string x in this multiset having at least one occurrence of a nonterminal A
and A→ Y is an evolution rule in M1, then the first occurrence of A in x is replaced
by Y in an infinite number of copies of x, the second occurrence of A in x is replaced
by Y in an infinite number of copies of x, and so on for all the occurrences of A
in x. This process applies to all strings in N1 and to all evolution (substitution)
rules in M1.
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Those strings obtained by an application of a rule A→ Y , Y ∈ T cannot leave
N1 in the next step, which is a communication step, since they cannot pass its output
filter. In this way, the network simulates all the possible one step applications of
the rules of type 0 in two steps.

Those strings obtained by an application of a rule A → ri, for some i, (this
means that there is a rule ri : A→ BC in P ) are sent out and received by either N2

or N4 which are the only nodes able to receive them. More precisely, those strings
containing X are received by N4 and the others by N2. In N4, the symbol X is
removed and the obtained strings are sent back to either N1, provided that they
still contain nonterminals, or N0, if they are terminal strings. Thus, all possible one
step applications of the rules of type 1 are done in four steps. In N2, qj is inserted
to any position in the existing strings in the same way as that discussed above for
the rule A→ Y, for all j such that rj is a rule of type 2. Only those strings having
an occurrence of ri which received an adjacent symbol qi in the righthand side of ri
can leave N2, all the others remaining in N2 forever. The strings leaving N2 cannot
be received by any node other than N1 where the only useful evolution rules which
can be applied to them are those of the form ri → ti. After applying these rules,
the new strings are sent out again. All the other rules applied to the strings just
received by lead to strings obliged to remain forever in N0. The strings sent out are
received by N3 where ti and qi are replaced by B and C, respectively, provided that
the righthand side of the rule ri is BC. In this way, the network simulates all the
possible one step applications of the rules of type 2 in ten steps.

In a similar way, the network simulates all the possible one step applications
of the rules of type 3 in eight steps. More precisely, if one wants to apply the rule
ri : AB → CD, then in N1, in an evolutionary step, an occurrence of A is replaced
by si, these new strings remain in N1 during the next communication step since they
cannot pass the output filter of N1, then in the next evolutionary step an occurrence
of B is replaced by pi, but only those strings containing the subword sipi (this means
that a subword AB was replaced by sipi) can pass the output filter of N1, the others
remaining in N forever.

In short, strings created from the alphabet N ∪T always return N1. The overall
process applies to all strings containing nonterminals while the terminal strings are
sent to N0 where they stay forever. According to those results, we can state for
certain that the language generated by Γ within the output node N0 is exactly
L(G). 2

Theorem 9. Each recursively enumerable language can be generated by an octahe-
dron network of evolutionary processors NEP [OCT ]Xα, X ∈ {c, p} and α ∈ {∗, r, l}.

Proof. According to Theorems 6 and 7, NEP [OCT ]cr is the smallest subset of
NEP [OCT ] variants. By applying Theorem 8 the proof is obvious. 2

Furthermore, unlike other parallel language generating devices, a NEP [OCT ]cr
generates a language in a very efficient way. Namely all strings that can be generated
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by a grammar in n steps are generated together by a NEP [OCT ]cr in, at most, 10n
steps.

6 SOLUTION TO 3-COLORABILITY PROBLEM

Despite their simplicity, networks of evolutionary processors might be used for solv-
ing NP-complete problems. In particular, they can solve the “3-colorability problem”
in linear time and linear resources (nodes, symbols, rules).

Theorem 10. The “3-colorability problem” can be solved with a computational
complexity O(m + n). We use a simple network of evolutionary processors. The
network size is 7m+ 2; n is the number of vertices and m is the number of edges of
the “3-colorability graph” [6].

The main idea consists of building a simple network. First there are 2n steps,
n represents the communication steps when nothing is being communicated, the
strings will remain in N0 until there are not any letters appearing in T anymore.
When this process is finished, the obtained strings encode all possible ways of mark-
ing the vertices. Therefore it is possible to know whether the problem requirements
are fulfilled or not.

The interesting part is that the underlying graph of the above network does not
depend on the number of the instance nodes. In other words, the same underlying
structure may be used for solving any instance of the 3-colorability problem having
the same number of edges. This process is not affected by the number of nodes.

Theorem 11. The “3-colorability problem” can be solved in O(m + n) time by
k networks of evolutionary processors with an octahedron graph (NEP [OCT ]).
NEP [OCT ]p, p = 1, . . . , k modules must be connected using the core processors.
Where n is the number of vertices, m is the number of edges within the “3-colorability
graph” and k = int(4m+1

7
).

If 4m + 1 > 7 then several octahedron networks must be used in order to get
the right number of processors. Communication among such octahedron networks
depends on the problem to solve. In this case, a complete communication scheme
could be used.

Proof. Let G = ({1, 2, . . . , n}, {e1, e2, . . . , em}) be a graph and assume that et =
{kt, lt}, 1 ≤ kt ≤ lt ≤ n, 1 ≤ t ≤ m. We consider the alphabet U = V ∪ V ′ ∪ T ∪ A,
where V = {b, r, g}, T = {a1, a2, . . . , an}, and A = {Â1, Â2, . . . , Ân}.

We construct the following processors of an octahedron network:

• A generator processor:

N0 = {{a1a2 . . . an}, {ai → bÂi, ai → rÂi, ai → gÂi|1 ≤ i ≤ n},
∅, {Âi|1 ≤ i ≤ n}}.



Octahedron Graph of Evolutionary Processors 871

This processor generates all possible color combinations, solutions or not, to the
problem; and it sends those strings to the next processors.

• For each edge in the graph et = {kt, lt}, we have 4 filtering processors (where
i ∈ {kt, lt}):

Ne1t
= {∅, {gÂi → g′ai, rÂi → r′ai}, {Âi}, {g′, r′}},

Ne2t
= {∅, {gÂi → g′ai, bÂi → b′ai}, {Âi}, {g′, b′}},

Ne3t
= {∅, {bÂi → b′ai, rÂi → r′ai}, {Âi}, {b′, r′}},

Ne4t
= {∅, {r′ai → rÂi, g

′ai → gÂi, b
′ai → bÂi}, {ai}, {Âi}}.

We can build an octahedron network with previous nodes in such a way that N0

generates all possible colored strings and then applies rules to objects in processors
Ne1t

, Ne2t
, Ne3t

, Ne4t
to filter such strings for the edge et. Repeating such filtering

process with the rest of edges provides a valid solution to the given problem.

If more than one NEP [OCT ] is needed, then all processors from the first
NEP [OCT ] will be linked to the core processor of the second one, and so on.

An octahedron network with the above architecture can solve the 3-colorability
problem of n cities with m edges.

For the first n steps, that are evolution representatives where nothing is being
communicated, the strings will remain in N0 until there are not any letters appearing
in T anymore. When this process is finished, the obtained strings encode all possible
ways of coloring the vertices.

After this, step 1 is needed to communicate all possible solutions to the next
processors. At this point, for each edge et, the network only keeps those strings
which encode a colorability satisfying the condition for the two vertices of et. This
is performed by means of the nodes Ne1t

, Ne2t
, Ne3t

, and finally Ne4t
in 12 steps. As

we can see, the overall time of a computation is 12m + n + 1. We finish the proof
by referencing that the total number of rules as 18m + 3n + 1. In conclusion, all
parameters of the network are of O(m+ n) size. 2

An ad-hoc simulation has been coded in order to solve the 3-colorability problem.
This software uses the Java threaded model to get a massive parallel simulation of
NEPs. All concurrent access to objects are safe thread due to the implementation
of object locks. All processors, rules and filters run in a separated thread and have
been synchronized via software patterns. It is clear that this simulation does not
achieve a linear computation time O(m + n) since it has been run on a sequential
machine. But it opens up a testing platform of theorems concerning NEP proper-
ties.

Here it is the final configuration of the system at the last node of the network
after the filtering process done in previous nodes which is the solution to the given
problem in Figure 2.
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a

c
d

e

a c

d

e

Figure 2. 3-colorability problem that has been solved using a massive paralell NEP

Processor: Objects: (12) [

rAbCgDbE, gAbCrDbE, gAbCrDrE, rAgCbDgE, bAgCrDgE, rAgCbDbE,

rAbCgDgE, bAgCrDrE, bArCgDrE, gArCbDrE, bArCgDgE, gArCbDbE

]

Where {XY |X ∈ {r(ed), g(reen), b(lue)}, Y ∈ {a, c, d, e}} codes the color of the
cities, that is, X means the color of the city Y in the map. Table below shows all
objects in processor N0 after applying the evolution rules. Such processor has 256
objects, each one is obtained using a given rule. This object set is – theoretically –
obtained in n = 4 steps and contains all possible combinations, solutions or not, to
the given problem.

Processor: Objects:(256)[ acde, rAcde, gAcde, bAcde, acrDe, acgDe, acbDe, arCde, rAcrDe, rAcgDe,

rAcbDe, gAcrDe, gAcgDe, gAcbDe, bAcrDe, bAcgDe, bAcbDe, arCrDe, arCgDe, arCbDe, acdrE, acdgE, agCde,

abCde, rArCde, rAgCde, rAbCde, gArCde, gAgCde, gAbCde, bArCde, bAgCde, bAbCde, agCrDe, abCrDe,

agCgDe, abCgDe, agCbDe, abCbDe, rArCrDe, rAgCrDe, rAbCrDe, rArCgDe, rAgCgDe, rAbCgDe, rArCbDe,

rAgCbDe, rAbCbDe, gArCrDe, gAgCrDe, gAbCrDe, gArCgDe, gAgCgDe, gAbCgDe, gArCbDe, gAgCbDe, gAbCbDe,

bArCrDe, bAgCrDe, bAbCrDe, bArCgDe, bAgCgDe, bAbCgDe, bArCbDe, bAgCbDe, bAbCbDe, arCdrE, agCdrE,

abCdrE, arCdgE, agCdgE, abCdgE, acdbE, rAcdrE, rAcdgE, rAcdbE, gAcdrE, gAcdgE, gAcdbE, bAcdrE,

bAcdgE, bAcdbE, acrDrE, acrDgE, acrDbE, acgDrE, acgDgE, acgDbE, acbDrE, acbDgE, acbDbE, arCdbE,

rAcrDrE, rAcrDgE, rAcrDbE, rAcgDrE, rAcgDgE, rAcgDbE, rAcbDrE, rAcbDgE, rAcbDbE, agCdbE,

abCdbE, rArCdrE, rAgCdrE, rAbCdrE, rArCdgE, rAgCdgE, rAbCdgE, rArCdbE, rAgCdbE, rAbCdbE,

gArCdrE, gAgCdrE, gAbCdrE, gArCdgE, gAgCdgE, gAbCdgE, gArCdbE, gAgCdbE, gAbCdbE, bArCdrE,

bAgCdrE, bAbCdrE, bArCdgE, bAgCdgE, bAbCdgE, bArCdbE, bAgCdbE, bAbCdbE, arCrDrE, agCrDrE,

abCrDrE, arCrDgE, agCrDgE, abCrDgE, arCrDbE, agCrDbE, abCrDbE, arCgDrE, agCgDrE, abCgDrE,

arCgDgE, agCgDgE, abCgDgE, arCgDbE, agCgDbE, abCgDbE, arCbDrE, agCbDrE, abCbDrE, arCbDgE,

agCbDgE, abCbDgE, arCbDbE, agCbDbE, abCbDbE, rArCrDrE, rAgCrDrE, rAbCrDrE, rArCrDgE,

rAgCrDgE, rAbCrDgE, rArCrDbE, rAgCrDbE, rAbCrDbE, rArCgDrE, rAgCgDrE, rAbCgDrE, rArCgDgE,

rAgCgDgE, rAbCgDgE, rArCgDbE, rAgCgDbE, rAbCgDbE, gAcrDrE, gAcrDgE, gAcrDbE, gAcgDrE,

gAcgDgE, gAcgDbE, gAcbDrE, gAcbDgE, gAcbDbE, bAcrDrE, bAcrDgE, bAcrDbE, bAcgDrE, bAcgDgE,

bAcgDbE, bAcbDrE, bAcbDgE, bAcbDbE, rArCbDrE, rArCbDgE, rArCbDbE, rAgCbDrE, rAgCbDgE,

rAgCbDbE, rAbCbDrE, rAbCbDgE, rAbCbDbE, gArCrDrE, gArCrDgE, gArCrDbE, gAgCrDrE, gAgCrDgE,

gArCgDrE, gArCbDrE, gAgCgDrE, gAgCbDrE, gAbCrDrE, gAbCgDrE, gAbCbDrE, gArCgDgE, gArCbDgE,

gAgCgDgE, gAgCbDgE, gAbCrDgE, gAbCgDgE, gAbCbDgE, gArCgDbE, gArCbDbE, gAgCrDbE,

gAgCgDbE, gAgCbDbE, gAbCrDbE, gAbCgDbE, gAbCbDbE, bArCrDrE, bArCgDrE, bArCbDrE, bAgCrDrE,

bAgCgDrE, bAgCbDrE, bAbCrDrE, bAbCgDrE, bAbCbDrE, bArCrDgE, bArCgDgE, bArCbDgE,

bAgCrDgE, bAgCgDgE, bAgCbDgE, bAbCrDgE, bAbCgDgE, bAbCbDgE, bArCrDbE, bArCgDbE,

bArCbDbE, bAgCrDbE, bAgCgDbE, bAgCbDbE, bAbCrDbE, bAbCgDbE, bAbCbDbE ]
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7 CONCLUDING REMARKS AND FUTURE WORK

This paper introduced a variant of hybrid networks of evolutionary processors mod-
els, called octahedron networks of evolutionary processors (NEP[OCT]). The main
idea consists of modular building networks sets of evolutionary processors that
can solve NP problems. An octahedron representation of the underlying graph
is chosen since a network with such configuration has computational complete-
ness, (see Theorems 8 and 9). Different octahedron networks dynamics have been
proposed (NEP [OCT ]cα,NEP [OCT ]pα) in order to obtain a massive parallel non-
deterministic behavior. Therefore different kinds of rules inside the processors belong
to the network (NEP [OCT ]X∗, NEP [OCT ]Xr, NEP [OCT ]Xd, where X ∈ {p, c}).

Next, theoretical research work in this area covers NP problem solutions. Using
these simple mechanisms we can solve NP-complete problems (such as Bounded
Post Correspondence Problem, 3-Colorability Problem and Common Algorithmic
Problem) in linear time following [6] and also [7, 15].
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Figure 3. Different ways to communicate octahedron networks of evolutionary processors:
a) surface-to-surface, b) edge-by-edge, c) inner cube

Networks of evolutionary processors are computation systems based on the
biomolecular processes of living cells. According to this, the investigations are based
on the idea of the imitation of the procedures that take place in nature, and their ap-
plication to machines, can lead to discover and to develop new computation models
which will give place to a new generation of intelligent computers. There are many
papers about software tools implementing different NEP system variants. However,
they are very interesting in order to define hardware implementation of these kinds
of systems. Moreover, evolution of NEP systems is very complicate to be translated
into hardware devices due mainly to inherent behavior of processing capabilities
of rules. Besides that, the non-deterministic maximally parallel manner in which
rules are applied inside processors is more appropriated to be implemented in digital
hardware devices. In the case of NEPs hardware implementations only a few related
papers can be found.

We have proposed a new topology whose underlying architecture is a cube graph
having evolutionary processors placed in its nodes. Being a bio-inspired system:
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how far is this model from the biological reality and engineering possibilities? More
precisely, is it possible to exchange biological material between nodes? Can the
input/output filter conditions of the node processors be biologically implemented?
What about a technological implementation? We hope that at least some answers
to these questions are affirmative.

An interesting research area covers the software simulation, such as [16]. It
will be performed as the first step towards a real hardware implementation of these
computing devices by using models proposed by [4, 5]. Octahedron networks are
computing units and they can be combined (easily in real hardware devices) in
different ways, see Figure 3, in order to solve big problems. Two octahedronds can
be connected by using one processor of each cube (Figure 3 a)), information will be
controlled by these two processors among the communicating path. They can also
be connected using 5 processors of each cube (Figure 3 b)), communication between
the cubes is distributed in several processors. Finally, a recursive building can be
constructed (Figure 3 c)). These models are designed in order to produce modular
hardware devices.
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