
Computing and Informatics, Vol. 34, 2015, 959–972

QUANTIFYING PRODUCTIVITY
OF INDIVIDUAL SOFTWARE PROGRAMMERS:
PRACTICAL APPROACH

Mehmet Suleyman Unluturk

Department of Software Engineering, Yasar University
Universite Cad. No. 37-39 Bornova, 35100, Izmir, Turkey
e-mail: mehmet.unluturk@yasar.edu.tr

Kaan Kurtel

Department of Software Engineering, Izmir University of Economics
Sakarya Cad. No. 156 Balcova, 35330, Izmir, Turkey
e-mail: kaan.kurtel@ieu.edu.tr

Abstract. Software measurement is a crucial part of a good software engineering.
Software developers quantify the software to see if the use cases are complete, if the
analysis model is consistent with requirements and if the code is ready to be tested.
Software project managers assess the software process and the software product
to determine if it is going to be finished on time and within budget. Customers
evaluate the final product if it meets their needs. Overall, the main purpose of
software engineering is to make software systems controllable and foreseeable, ac-
tivities with a solid method rather than intuitional, complicated or unprincipled.
Software measurement studies are about quantifying the software engineering en-
tities and attributes, both of which aim to support software development efforts
and quality improvement. In this paper, we quantify a set of relationships using
the current size, defect and object-oriented software metrics practically and prag-
matically. Our paper proposes a method to measure the productivity of individual
software programmers. Furthermore, this method provides a common opinion for
understanding, controlling and improving the software engineering practices.

Keywords: Programmer productivity quantification, personal software process,
software measurement

960 M.S. Unluturk, K. Kurtel

1 INTRODUCTION

According to Tom DeMarco [1], “you cannot control what you cannot measure”.
Many industrial product companies should measure their own productivity and
then, optimize their operations accordingly. Despite the importance of measur-
ing programmer’s productivity in the software industry, software companies are
showing little enthusiasm to spend effort and allocate less resource to measurement.
The major reason for the project leaders to be reluctant in this subject are pos-
sible difficulties and potential unsuccessful results. In detail, during the software
development, we can encounter some typical problems regarding measurement and
evaluation as given below [2–5]:

1. Measurement is a process, and thus it is time consuming, not well understood,
and difficult to apply.

2. When the measurement process is prolonged, the already obtained information
quickly loses its value and as a result continuous improvement cycle slows down.

3. Software programmers consider that software development is more important
than measurement and collecting data.

4. It is in the nature of the software industry to produce software programs and
launch them to the market very quickly.

To conclude, according to our observations that are related to the software
development practices, the engineers do not want or are not very enthusiastic about
measuring their software products, except for some of the critical system applications
such as defense, health-care, and finance. It is due to these dynamics that the
concept of measurement in software development may sometimes be ignored.

These dynamics encourage us to find a way to measure the performance of
a software programmer in a practical and relatively cost-effective way. In other
words, the results must provide motivation and volition to the software project
leaders.

In this paper, we will try to answer the following question: How do we measure
the programmer’s productivity efficiently and effectively? In order to answer this
question, we present a new judgmental-based measurement function as a fresh ap-
proach where we pragmatically estimate the productivity of an individual software
programmer.

This study includes three sections. The second section talks about the planning
of the measurement process that includes the measurement function for a software
developer’s productivity, and the third section represents empirical calculations into
the model projects. The last section depicts the conclusion and the future work.

2 PLANNING THE MEASUREMENT PROCESS

The measurement process defines three data collection points and related measure-
ment activities for four key measures during a single project that are strongly related

Quantifying Productivity of Individual Software Programmers: Practical Approach 961

by a part of the software development life cycle. The three data collection points
are represented in Roman numerals and different color pattern elements in Figure 1.
At the first data collection point, we capture the LOC and the net task hour’s data
during the coding effort of software developers that includes code changes, deletes
and reuses. At the second data collection point there are defects that might appear
during in-house testing after the delivery of codes to the testing team. At this stage,
the testing squad tests the codes, and at the end of the testing process, the number
and/or types of defects are collected from the software initial and intermediate re-
leases. These three measures (LOC, time and defects) are iteratively obtained and
cumulatively calculated. Fourth and the last measure, named weighted methods,
are collected as the weighted methods just before the eventual release of the project
(Figure 1) which shows the delivered codes’ difficulty level.

LOC

Defects

code

Weighted

methods

Time

The initial and

intermediate releases
The eventual releaseCode revisions

I II III

DeploymentTestingCoding
Specification

and Modelling

Figure 1. The iterative measurement activities and the data collection points

Input: Net Task Hours

The Net Task Hours for an individual programmer is represented in formula (1)
that calculates the difference between hours spent for coding and hours spent for
interruption time consisting of hours spent for answering and composing e-mails,
calling, etc. anything other than coding.

Net task hours = Task hours − Hours spend for interruption time (1)

Output 1: Lines of Code

The line of code (LOC) is the first simple measure in our work. The LOC
counts provide information about the source size of a software program and it
is a valuable metric for comparing the amount of effort as well as estimating
the software programmer’s productivity. The LOC is the oldest and the widely
used method in complicated, real time or embedded systems. Furthermore, the
LOC is used when organizations have large LOC-based historical data and the
developer is comfortable with the LOC-based measurement [6, 7]; in addition it
allows a simple comparison with data from many other projects. This is espe-
cially important for companies where they can easily compare current project

962 M.S. Unluturk, K. Kurtel

data with the earlier project data or can hold a record about its programmers’
efforts on project. These development effort records can also be kept for later
use and the LOC is a stable productivity measure for any company.

Output 2: Weighted Defects

The second output is the weighted defects (Figure 1). A software defect is
defined as a product anomaly, such things as omissions and imperfections found
during the early life cycle phases and faults contained in software sufficiently
mature for test or operation [8].

We identify and classify defects during the testing phase. We do not collect any
defect data during the construction, because a software programmer makes many
errors or faults in the construction phase and fix these errors during the cod-
ing phase. If the defects are too many, then time for collecting these measures
might increase. Consequently, it affects negatively the productivity of a pro-
grammer. Another benefit of measuring defects in the deployment phase is that
the programmer can eliminate the potential negative impacts of data collection
processes during the coding; he/she can focus on the quality of the codes.

In this proposal, the software defects are classified into three categories, namely
serious, medium and trivial, according to [8] (Table 1).

Defect type Weights

Serious 10
Medium 3
Trivial 1

Table 1. Relative defect weights

We will calculate the weighted defects according to the below equation:

Weighted Defects = 10 ∗ total # of Serious Defects

+ 3 ∗ total # of Medium Defects (2)

+ total # of Trivial Defects.

Then, we use this quantity and divide it by the LOC to find the weighted defects
density:

Weighted Defects Density = Weighted Defects/LOC. (3)

We define the quality of code created by this individual programmer as:

Quality = 1 − Weighted Defects Density. (4)

If Quality calculation becomes negative because the programmer’s weighted de-
fects are more than his/her LOC, then we will accept that this calculation yields
to zero value. We also further define the LOC as the quantity factor:

Quantifying Productivity of Individual Software Programmers: Practical Approach 963

Quantity = LOC. (5)

However, we derive the cumulative formula in the below Equation (6) when the
iterative software development life cycle (in Figure 1) is taken into consideration:

A =
n∑

i=1

(Qualityi ∗ Quantityi) /Net Task Hoursi (6)

where n is the number of iterations. The iteration includes the developer’s
coding phase and the testing team’s testing phase of the developer’s code (Fig-
ure 1). During the iteration i, the net task hours spent for the coding phase for
an individual programmer is given as Net Task Hoursi.

Output 3: Weighted Methods

The third output that we want to focus on is the number of methods that are
created by an individual programmer (Figure 1). We calculate the weighted
methods of an individual programmer which is important for project managers
to know how difficult or complicated the created code is. An important point for
this measure is the collection point. We collect data just before the deployment
process. The methods created by an individual programmer can be divided into
five classifications [9]:

• Constructors – methods which instantiate an object.

• Destructors – methods which destroy an object.

• Modifiers – methods that change the state of an object. A modifier method
will contain references to one or more of the properties of its own class or
another class.

• Selectors – methods that access the state of an object but make no changes
to this state. These are the methods used to provide public access to the
data that is encapsulated by the object.

• Iterators – methods that access all parts of an object in a well-defined order.
These may be used to visit each member in a collection of objects, performing
the same operation on each member.

We will use the below relative weighting table to calculate the weighted methods
for the methods created by an individual programmer (Table 2). Where N is
the total number of methods for an individual programmer.

Weighted Methods = (3 ∗ (total# of constructors + total# of destructors)

+ 5 ∗ total # of selectors

+ 9 ∗ total # of iterators

+ 15 ∗ total # of modifiers) ∗ (1/N) (7)

where N is the total number of methods for an individual programmer.

964 M.S. Unluturk, K. Kurtel

Method type Relative Weights

Constructor 3
Destructor 3
Selector 5
Iterator 9
Modifier 15

Table 2. Relative method weights

The Productivity Measurement Formula

The productivity measurement function is the combination of A (Equation (6))
and Weighted Methods (Equation (7)) and is given below:

Software Engineering Productivity Index = A ∗ Weighted Methods. (8)

One can deduce from the above equation that the productivity can be further
improved by decreasing the # of weighted defects. If # of weighted defects gets
close to zero, then (1 − # of Weighted Defects/LOC, Equation (4)) gets close
to 1 which is the maximum value for the Quality, then A (Equation (6)) will be
increased. The next section provides empirical data on actual use. Two senior
projects were used to do the productivity calculations. In the final section, the
conclusion and the future work are presented.

3 EMPIRICAL CALCULATIONS

3.1 Model Projects

After providing the productivity formula in Section 2, the empirical calculations
were carried by the senior project group of students under the supervision of the
authors. Two projects were done by the same programmer and the productivity
of this programmer for these projects was calculated by three senior level students.
Due to the difficulty of getting expert opinions (we did not need a high level of
engineering experience to do the productivity calculation of these two projects), we
decided to use three senior level students. Moreover, in literature, there are many
projects in which students were used to do empirical calculations [10–12].

The first project was developed as an M.Sc. senior project in the game program-
ming domain that was named 1453, and it was inspired by the early centuries of the
Ottoman Empire, which depicts the conquest of Istanbul in 1453. The game runs on
MS Windows, and was developed using C++ programming language. The second
project was also developed by the same student as a term project in the health
care domain that was named ‘Hasta (Patient) la vista’. The aim of this project is
basically to manage the records of health care institutions and their journal system.
The project was also developed using C++ programming language for MS Win-

Quantifying Productivity of Individual Software Programmers: Practical Approach 965

dows operating systems. These two projects were coded by the same programmer
and were written in the same programming language, C++.

3.2 Data Collection

In this phase, we have defined the data collection and analysis procedures under the
guidance of the ISO/IEC 15939 Software engineering measurement process stan-
dard [13]. During this phase, three senior level students worked in the measurement
process of these two projects.

The time, LOC, defect and method recording logs were obtained under the
guidelines presented by the PSP [14]. The following 8 tables present the time,
LOC, defects and methods data for both projects. The LOC data was counted
automatically by Imagix 4D software tool [15] as each individual part of the program
was committed by the programmer, and the screenshot for the software tool is also
shown in Figure 2. In [16], a neural network methodology is utilized in prediction
of defect density of subsequent software product releases.

Figure 2. An Imagix 4D screenshot for the project 1453

In Tables 3 and 4, time recording sample logs are given. Interruption time was
included because phone calls or checking e-mails and so on come accross during
the projects development. We can notice that the same programmer spent more
time in the game development than in the hospital information system application.
Neither the programmer, nor the authors had previous experience with the game
development and this increased the number of hours spent for the 1453 project.

In Tables 5 and 6, the LOC counts were given for each project. Hasta la vista
project was written from scratch and the programmer did not reuse any lines of code

966 M.S. Unluturk, K. Kurtel

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2006/05/05–2006/05/31
Platform: MS Windows Project name: Hasta la vista
Programmer: Kaya Oguz Language: C++

Commit Name Date Task Hour Interruption Time Delta Time

R45 2006/05/12 60 min 9 min 51 min
R46 2006/05/13 30 min 5 min 25 min
R47 2006/05/13 30 min 5 min 25 min
R49 2006/05/13 30 min 5 min 25 min
R50 2006/05/13 30 min 5 min 25 min
R52 2006/05/13 30 min 5 min 25 min

Table 3. The PSP time recording log for project Hasta la vista

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2007/03/06–2007/03/10
Platform: MS Windows Project name: 1453
Programmer: Kaya Oguz Language: C++

Commit Name Date Task Hour Interruption Time Delta Time

R17 2007/03/06 120 min 18 min 102 min
R20 2007/03/06 120 min 18 min 102 min
R21 2007/03/08 120 min 18 min 102 min
R22 2007/03/08 120 min 18 min 102 min
R23 2007/03/10 180 min 27 min 153 min
R24 2007/03/10 120 min 18 min 102 min

Table 4. The PSP time recording log for project 1453

from anywhere else. On the other hand, in the game development, he reused some
third-party game development libraries. These LOCs are shown in Table 6 (LOC-
Reused: 1207). Even if there were third party libraries available, the programmer
still ended up coding as many lines of code as he did in the Hasta la vista project. As
the complexity of the program increases, the LOC count for the program increases
as well.

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2006/05/13–2006/05/13
Platform: MS Windows Project name: Hasta la vista
Programmer: Kaya Oguz Language: C++

Commit Name Date LOC-Added LOC-Reused LOC-Modified

R46 2006/05/13 67 171
R47 2006/05/13 64 75
R49 2006/05/13 24 7
R50 2006/05/13 35 111
R52 2006/05/13 48 28

Table 5. The PSP LOC recording for project Hasta la vista

Quantifying Productivity of Individual Software Programmers: Practical Approach 967

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2007/03/05–2007/03/11
Platform: MS Windows Project name: 1453
Programmer: Kaya Oguz Language: C++

Commit Name Date LOC-Added LOC-Reused LOC-Modified

R17 2007/03/06 1 207
R20 2007/03/06 1 889
R21 2007/03/08 649 4
R22 2007/03/08 22
R23 2007/03/10 125 77
R24 2007/03/10 99
R25 2007/03/11 20
R27 2007/03/11 127
R28 2007/03/11 3 381

Table 6. The PSP LOC recording for project 1453

In Tables 7 and 8 depict some of the defects in each project. The programmer
had some problems with the database programming and Hasta la vista project used
the database heavily; on the other hand, 1453 project did not use a database at all.
As a result, most defects have come from the database as indicated in Table 7. In
1453 project, most defects were related to the screen (Table 8), and the 1453 game
should be able to draw the screen objects in real-time.

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2006/05/05–2006/05/30
Platform: MS Windows Project name: Hasta la vista
Programmer: Kaya Oguz Language: C++

Number Beginning Date Fix Time Priority Description

1 2006/05/07 2006/05/11 Serious Compilation problem
2 2006/05/07 2006/05/11 Medium Windows setting problem
3 2006/05/14 2006/05/17 Trivial Field information
4 2006/05/14 2006/05/18 Medium Search error
5 2006/05/18 2006/05/20 Medium History error
6 2006/05/19 2006/05/20 Trivial Invalid character problem
7 2006/05/19 2006/05/22 Medium Lack of delete bottom problem
8 2006/05/28 2006/05/30 Medium Toolbar problem

Table 7. The PSP defect recording log for project Hasta la vista

In Tables 9 and 10, the method types for each project are given. We can see that
modifiers and selectors are nil for the game development since they all had come
from the third party software components. On the other hand, since the programmer
did everything by himself and did not use any third party component for the Hasta
la vista project, modifiers and selectors have corresponding values in Table 9 for
Hasta la vista.

968 M.S. Unluturk, K. Kurtel

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2007/04/10
Platform: MS Windows Project name: 1453
Programmer: Kaya Oguz Language: C++

Number Beginning Date Fix Time Priority Description

1 2007/04/03 2007/04/10 Medium Combobox problem
2 2007/04/03 2007/04/10 Medium TextView scroollbar problem
3 2007/04/03 2007/04/10 Trivial Scrollbar color problem
4 2007/04/03 2007/04/10 Medium Interruption problem
5 2007/04/03 2007/04/10 Medium Mouse cursor problem

Table 8. The PSP defect recording for project 1453

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2006/05/05-2006/05/31
Platform: MS Windows Project name: Hasta la vista
Programmer: Kaya Oguz Language: C++

Function Name Constructor Destructor Modifier Selector Iterator

Database 2 6
Main 1
mainWindow 2
statsTabs 1
WindowInspection 1
WindowQuickRecord 2
WindowPatient 2
historyTabs 2
searchTabs 3
linkTabs 2

Table 9. The PSP method recording for project Hasta la vista

Student(s): D. Eskici, I. Erdonmez, T. B. Kurtoglu Date: 2007/05/24
Platform: MS Windows Project name: 1453
Programmer: Kaya Oguz Language: C++

Function Name Constructor Destructor Modifiers Selector Iterators

Application 1 1
BaseBuilding 1

BaseGraphObject 1
BaseObject 1
BaseUnit 1 1
Buildings 4

BOJanizary 2 1
BOHome 1

Table 10. The PSP method recording for project 1453

Quantifying Productivity of Individual Software Programmers: Practical Approach 969

The measurement results of the productivity measures – details are given in the
Equations from (1) to (8) – are presented in Table 11. It is noticed that the net task
hours is less for the 1453, because of the third party software components used by the
programmer in the 1453 project. Since the game development was complicated, the
LOC count was still high for the game development. Because of the weaknesses in
the database programming area, the number of defects in the Hasta la vista project
was higher than that of the 1453 project. Hasta la vista had also more method
count than that of the game development since the programmer did the Hasta la
vista from scratch and did not use any third party software components.

Data Collection and Hasta
Base Measure Unit

Calculation Method la vista
1453

Declaration of programmer.
B1-Net task hours Hour

PSP used.
3 264 1 574

By using Imagix 4D and
B2-Lines of code Line

PSP together.
8 504 5 869

The defects are classified into
B3-Weighted defects Defect three categories and counted 42 30

by using PSP. (Equation (5))

The methods are classified into
B4-Weighted methods Method five categories and counted 3.23 6.82

by using PSP. (Equation (10))

Table 11. The base measures obtained from the projects

We computed the derived measures taken from the measurement results exhib-
ited in Table 12. Following that, the final values obtained are shown in Table 12.
We took i as one while calculating A (Equation (6)). The programmer did not go
through any other iteration to fix the defects in these two projects since the authors
were satisfied with the performance of the programs.

Data Analysis and Hasta
Derived Measure Unit

Interpretation la vista
1453

D1-Weighted

Defect Density
B3/B2 Close to 0 is better 0.0049 0.0051

D2-Quality 1-(B3/B2) Close to 1 is better 0.9951 0.9949

The higher is the
D3-Productivity D2*B2*B4/B1

better
8.38 25.29

Table 12. Derived measures

970 M.S. Unluturk, K. Kurtel

3.3 Evaluate of the Measurement

According to Table 12 we can see that the programmer was three times more produc-
tive in the second project (1453) than in the first project (Hasta la vista). Reusing
third party software components in the 1453 project caused the programmer to
have less number of net task hours, LOC, weighted defects and methods compared
to those of the Hasta la vista project. This increased the productivity of the pro-
grammer for the 1453 project. Furthermore, according to Table 7 (Defect recording
log), the programmer had some defects in the database programming, and he needed
some training on the field.

4 CONCLUSIONS AND FUTURE WORK

Measurement of the software productivity provides an important information about
the software product and the productivity of an individual software engineer. The
benefits of the formula are given below:

• Both embedded and big software companies can use this formula.

• This measure provides some advantages such as it can be done with different
people and still generate the same result.

• Companies can compare the existing productivity position and the future posi-
tion, because they usually use the same high-level languages in their projects.

• This formula can be used in any object-oriented software development project.

• This formula can give information about the reliability of the software product.

For future work, the formula will be applied by two well-known companies in
Turkey. These companies are specialized in the application software area. The first
company is in the home appliances sector, and about 50 programmers provide ser-
vice to the international electronic manufacturers for embedded systems. The second
cooperation provides us a number of services that add value to its customer’s logis-
tics services by 35 software professionals; also, this company changes its hardware
platforms and software applications, and manages a large scale migration project.
Each company has development, testing, maintenance and measurement teams, and
uses the Microsoft platform and tools, and also C++ programming language. This
collaboration will provide us an opportunity to improve the applicability, practica-
bility, accountability, and cost-effectiveness of the formula to further measure the
programmer’s productivity.

Acknowledgments

We would like to thank Ph.D. candidate Mr. Kaya Oguz for sharing his projects.
We would like to thank Engineers Demet Eskici, Irem Erdonmez and Tomris Beril
Kurtoglu for their kind assistance with the data. We would also like to thank
Mr. John Blattner from Imagix 4D for sharing the software.

Quantifying Productivity of Individual Software Programmers: Practical Approach 971

REFERENCES

[1] DeMarco, T.: Controlling Software Projects. Yourdon Press, New York, 1982.

[2] IEEE Std. 1061. IEEE Standard for a Software Quality Metrics Methodology. IEEE,
NY, USA 1988.

[3] Ebert, C.—Dumke, R.—Bundschuh, M.—Schmietendorf, A.: Best Practices
in Software Measurement. Springer-Verlag, Berlin, 2005.

[4] Zuse, H.: A Framework of Software Measurement. Walter de Gruyter, Berlin, 1998.

[5] Abran, A.: Software Metrics and Software Metrology. Wiley-IEEE Press, 2010.

[6] Galorath, D.D.—Evans, M.W.: Software Sizing, Estimation, and Risk Manage-
ment. Auerbach Publications, 2006, pp. 63.

[7] Olek, L.—Ochodek, M.—Nawrocki, J.: Enhancing Use Cases with Screen De-
signs. A Comparison of Two Approaches. Computing and Informatics, 2010, Vol. 29,
No. 1, pp. 3–25.

[8] IEEE Std. 982.1-2005, IEEE Standard Dictionary of Measures of the Software Aspects
of Dependability.

[9] Minkiewicz, A.: Measuring Object-Oriented Software with Predictive Object
Points. Proceedings Applications in Software Measurement (ASM ’97), Atlanta, 1997.

[10] Basili, V.R.—Shull, F.—Lanubille, F.: Building Knowledge through Families
of Experiments. IEEE Transactions on Software Engineering, Vol. 25, 1999, No. 4,
pp. 456–473.

[11] Kitchenham, B.—Pfleeger, S.—Pickard, L.—Jones, P.—Hoag-
lin, D.C.—El-Emam, K.—Rosenberg, J.: Preliminary Guidelines for Empirical
Research in Software Engineering. IEEE Transactionson Software Engineering,
Vol. 28, 2002, No. 8, pp. 721–734.

[12] Cuadrado-Gallego, J. J.—Sicilia, M.A.: An Algorithm for the Generation of
Segmented Parametric Software Estimation Models and Its Empirical Evaluation.
Computing and Informatics, Vol. 26, 2007, No. 1, pp. 1–15.

[13] ISO/IEC 15939: 2007, Systems and Software Engineering – Measurement Process,
International Organization for Standardization-ISO, Geneva, 2007.

[14] Humphrey, W. S.: PSP: A Self-Improvement Process for Software Engineers.
Addison-Wesley, Reading, MA, 2005.

[15] The Imagix 4D web site. Availaible on: http://www.imagix.com, May 15, 2014.

[16] Kumar, V.—Sharma, A.—Kumar, R.: Applying Soft Computing Approaches to
Predict Defect Density in Software Product Releases: An Empirical Study. Comput-
ing and Informatics, Vol. 32, 2013, No. 1, pp. 203–224.

972 M.S. Unluturk, K. Kurtel

Mehmet Suleyman Unluturk got his M.Sc. and Ph.D. de-
grees in electrical and computer engineering from Illinois Insti-
tute of Technology, Chicago, USA in 1992 and 1997, respectively.
He worked as a software engineer for Panasonic (Chicago) and
General Electric (Chicago) for 11 years. He has expertise in the
field of nurse call systems, electronic medical records, RFID, and
real time location systems. In his free time, he works on neu-
ral network techniques for the organic-conventional food classi-
fication, bio-crystallization, and detection of antibiotics in milk
products. Currently, he is Associate Professor at the Depart-

ment of Software Engineering of the Yasar University.

Kaan Kurtel received his Ph.D. degree in computer science
from Trakya University, Turkey, in 2009 studying the software
product measurement and maintenance. Currently, he is Assis-
tant Professor at the Department of Software Engineering of the
Izmir University of Economics. His research interests focus on
software quality, software measurement, software maintenance,
web services engineering, and health care systems.

