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Abstract. The aim of this paper is to integrate the strong points of statistical
debugging and program slicing techniques for efficient program fault localization.
The dynamic slices could be inappropriately large including redundant information
considering that the statements are not ranked according to their fault relevance
in the computed slice. On the other hand, the conventional statistical debugging
techniques do not consider the dependence relationships between the faulty code
(i.e., the cause) and the erroneous output (i.e., the effect). This information is
very useful during the debugging. In this paper, a new method Stat-Slice for lo-
cating the latent bugs in programs is presented which could find a wider range of
bugs, e.g. the omitted code faults, the header file faults, and etc., comparing with
other techniques. Unlike the traditional program slicing techniques, the proposed
method computes the backward dynamic slices of several failing and passing runs.
Using K-means clustering in addition to a new ranking and pruning technique, we
prioritize statements according to their likelihood to be the cause for failure. Our
experiments on Siemens, grep, gzip, and flex test suites manifest that ranking state-
ments according to their suspiciousness has considerably reduced the effort for fault
localization.
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1 INTRODUCTION

Producing a bug free program is the ideal goal of software companies. Even so-
phisticated testing teams with best efforts cannot test all feasible execution paths of
a program due to its large size and complexity. Therefore, some latent bugs go unde-
tected which may cause crashes or unexpected results. The existence of undetected
bugs in the released software programs necessitates the process of fault localization
to make the software more robust and reliable. Due to the intricacy and inaccuracy
of manual fault localization, a vast amount of research has been done to develop
automated techniques which assist developers in finding bugs [1, 3, 4, 5, 6, 7, 8].

The question is how to find the origin of failure by considering the program
incorrect output(s). If there is a control/data dependence between the faulty state-
ment(s) and the output statement, the backward dynamic slice, namely BDS, of the
output in a single failing execution may contain an execution instance of the faulty
statement [1, 14, 15]. Therefore, a backward dynamic slicing technique could be
helpful to find the origin of failure if it is located in the slice. However, since the size
of BDS could be large and the statements in the slice are not ranked according to
their relevance with the failure, a programmer should spend a considerable effort to
examine the statements in the slice with an equal chance to find the origin of failure
[9, 14, 16, 17]. In order to rank the statements of a slice, in [15] a pruning based
approach is introduced which gives a confidence value to the statements included
in BDS according to their likelihood of being faulty. However, it is applicable when
a program has multiple output values where, prior to an incorrect output value,
some other outputs produce correct results. In some situations, the faulty state-
ment(s) is not included in the BDS [2]. Therefore, some other statements which
are not included in the BDS but have influence on the unexpected result should
also be considered by the programmer in locating the fault. Although relying on
a single failing run is the main advantage of the slicing techniques, they can merely
find a fault that is related to the corresponding incorrect output, and hence they
are incapable to find other existing fault(s) in a program.

To address the mentioned deficiencies, the traditional statistical debugging me-
thods collect runtime data from a big number of runs and contrast the behavior
of the correct and incorrect executions to locate faults [6, 7, 8, 12]. Typically, the
runtime behavior is determined by evaluating simple Boolean expressions called
predicates (e.g. the directions of branches, the results of function calls, assignment
statements, etc.) at various program points [13]. A main advantage of the statis-
tical debugging techniques is their ability to rank the predicates according to the
likelihood of being relevant to the faulty code [6]. However, they may require a large
number of passing and failing executions for their analysis [15]. Furthermore, since
ranking is performed on predicates, in many cases the exact location of faults are not
pinpointed by a statistical technique and only the fault relevant predicates, those
predicates that manifest the effect of faults, are identified. Therefore, the program-
mer should scrutinize the code manually to find the origin of failure [21]. On the
other hand, the conventional statistical debugging techniques do not consider the
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dependence relationships between the faulty code (i.e., the cause) and the erroneous
output (i.e., the effect). This information is very useful during the debugging.

In this paper, we propose the following novel approach, namely Stat-Slice. First,
the backward dynamic slicing technique is applied on a small number of failing and
passing executions. Then, each program run is converted into an execution vector,
also called program spectrum, where each element of the vector corresponds to
a specific statement of a given program. In each run, a particular statement could
have three different states:

1. it is included in the BDS,

2. executed but not included in the BDS and

3. non-executed.

We expand the BDS by computing two proposed conditional probabilities to iden-
tify whether an executed statement that is not in the BDS, has the potential to
impact the failing/passing result of the program. The result is an expanded back-
ward dynamic slice, EBDS. These execution vectors are clustered according to their
Euclidean distances to identify different failing and passing execution paths with the
aim of pruning irrelevant data, reducing manual code scrutinization for pinpointing
the failure origin, and finding multiple faults in the program. Finally, we compute
the binary correlation of each statement with the failing and passing state of the
program and rank them according to the computed fault relevance score. Stat-Slice
is evaluated on faulty versions of Siemens, gzip, grep, and flex programs and the re-
sults manifest the high performance of the technique in localizing bugs. In summary
the following contributions are made in this paper:

1. We rely on a fewer passing runs compared with traditional statistical techniques.

2. Stat-Slice considers those statements which have full data and control depen-
dence with the program output result. Therefore, it can find a wider range of
faults comparing with other fault localization techniques.

3. Each program execution is converted to an execution vector according to the
computed BDS. The clustering of execution vectors helps to identify different
execution paths. It helps locating multiple bugs in the program and reduces
manual code inspection.

4. Stat-Slice detects 80 faults in Siemens suite with less than 10 percent manual
code inspection. It also finds bugs with a very small amount of code examination
in larger programs, gzip, grep, and flex.

5. The proposed expanded backward dynamic slice, EBDS, enables us to identify
the faulty statements which are not included in the backward dynamic slice of
the program output.

The remaining part of this paper is organized as follows. In Section 2, a moti-
vating example is presented. An overview of the method including some definitions
is described in Section 3. The experiments and results are shown in Section 4.
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Some related works are presented in Section 5. Finally, the concluding remarks are
mentioned in Section 6.

2 EXAMPLE

In this section, a motivating example is presented to demonstrate the capability
of the proposed statistical fault localization technique along with the power and
precision of backward dynamic slicing to pinpoint faults with high accuracy. Stat-
Slice takes advantage of a statistical method to rank statements by contrasting the
backward dynamic slices of failing and passing runs. The example provides an overall
step by step description of Stat-Slice and demonstrates all stages of our proposed
approach.

The program in Figure 1 a) receives two 2∗2 matrices, x1 and x2, and two flags,
flag1 and flag2, as its input parameters. If the value of flag1 is positive, the program
checks whether x1 and x2 are invertible. If they are both invertible, the program
also checks whether one of them is the inverse of the other. If the value of flag2
is positive, it checks whether the multiplication matrix, x3, is invertible. We have
seeded two different faults in the program. As shown, the first faulty statement is
located in line 18 of the program in which the programmer by mistake has written
x1[0][1] instead of x2[0][1]. The second fault is in line 19 where x1[0][0]! = 1 is
written instead of x3[0][0]! = 1.

These are the instances of semantic faults which cause failure (i.e. incorrect out-
put) for specific input parameters. The output statement is in line 34. Figure 1 b)
contains ten different test cases, specified by TC#1 to TC#10, and their corre-
sponding backward dynamic slices computed from the output statement at line 34
and the statements included in the slice are marked by ‘∗’. Because the output
statement in line 34 is included in the BDS of all test cases, by default, it is not
shown in the Figure 1.

Note that the passing test case TC#10 is a coincidental correct test case [27]
for which the execution of the faulty statement does not cause any program failure.
Generally, coincidental correct test cases mislead the statistical fault localization
techniques and should be removed from further analysis as mentioned below. As
shown in the Figure 1, the BDS’s for the test cases TC#7 and TC#10 are identical
although they have different termination states. Since the BDS may contain the
faulty statement(s), we mask the last passing test case with the failing one and
exclude it from our further analysis.

It can be shown that the size of a backward dynamic slice is typically large
according to the program size. In our example, for the faulty statements in lines 18
and 19, the backward dynamic slices for the failing test cases contain 23 lines of code,
in average. Therefore, the programmer should manually examine a considerable
portion of the code to locate the failure origin(s). The Stat-Slice ranking method
assigns the highest score, i.e. 1, to the faulty statements and locates the failure
origins without any need for manual inspections. In the remaining parts of this
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a)

b)

Figure 1. a) A sample program code with two seeded faults. The faults are located in
statement 18 and 19 and the result statement is in statement 34. b) Ten test cases
in addition to the computed backward dynamic slices for each test case.

paper, we describe how Stat-Slice ranks the statements in Figure 1 and gives the
highest score to the faulty statements.

3 OVERVIEW OF THE METHOD

In this section the main idea of the proposed Stat-Slice technique is described in
detail. First some basic definitions are depicted in Section 3.1 and the detail of the
proposed technique is indicated in Section 3.2.



828 S. Parsa, M. Vahidi, F. Zareie

3.1 Basic Definitions

In order to combine the idea of the backward slicing technique and the statistical
fault localization methods, we assume that for each single failure in the program,
there exist at least one failing run and a number of passing runs. Providing test cases
is not a difficult task, since we could collect runtime data from end users or generate
random test cases. To illustrate details of the proposed Stat-Slice technique, some
basic definitions should be described at the first place.

Definition 1. Given program P and a set of test cases TcP : each test case tcj
consists of input parameters, Ij, and the corresponding desired output, Oj. After
executing P on tcj, ExeP (tcj), the output result would be O′

j, ExeP (tcj) = O′
j.

Test case tcj is called failing test case, tcfailj , if: Oj 6= O′
j and otherwise it is named

passing test case, tcpassj . Therefore, the set of test cases in TcP is split into two

disjoint categories: TcpassP for the passing test cases and TcfailP for the failing test
cases.

Definition 2. Running program P with test case tck generates a dynamic depen-
dence graph, Gk

P (N,E), in which N is the set of nodes and E is the set of directed
edges: Each node Sl ∈ N represents the lth execution instance of the statement S
in the program and an edge from the node Tγ to Sτ stands for a dynamic data or
control dependence from the τ th execution instance of the statement S to the γth

execution instance of the statement T .

In other words, each program statement may be executed several times in a single
run. For instance, the number of executions of a statement in a loop body depends
on the number of loop iterations. Therefore, it is important to know whether an exe-
cution instance of a statement relates to the failure. If an execution instance of the
statement S uses the data provided from an execution instance of the statement T ,
there is a directed edge from T to S and we say that S is data dependent to T .
Similarly, if the execution of S is a direct result of outcome of the statement T , we
say S is control dependent to T and there is a directed edge from T to S. The nodes
of Gk

P (N,E) are also known as the code coverage for the test case tck, since they
are source-code statements that are executed when P is run with tck.

Definition 3. Let Gk
P (N,E) be a dynamic dependence graph for the program P

running tck. The backward dynamic slice of Sl, BDSkP (Sl), contains the nodes (i.e.
statements) in Gk

P (N ;E) which are captured by backward traversal of the graph
from Sl to the last reachable node. The remaining part of Gk

P (N,E) contains the
nodes which are executed but are not included in BDSkP (Sl).

In other words, BDSkP (Sl), includes the node Sl, all the execution instances
having control or data dependence with Sl, as well as the union of the backward
dynamic slices of the control and data dependent elements. Since, the failure in
a failing run of a given program is mostly manifested as a wrong output value, the
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backward dynamic slice of the value frequently captures the faulty code responsible
for producing the incorrect value [15]. Therefore, for each failing program run, the
execution instances corresponding to the erroneous output statements are identified
and the backward slices of such instances are computed.

3.2 Method

The aim of Stat-Slice is to analyze the control and data dependence between the
program output and the other parts of a given program in failing and passing runs
to pinpoint the faulty statement(s). An appropriate technique for extracting the
mentioned data and control dependence is computing the backward dynamic slices,
BDS, starting from the output statement.

To find and rank the statement(s) according to their likelihood of being faulty,
it is required to contrast the statements in the failing versus passing runs. Since, we
want to consider the presence or absence of a given statement in the corresponding
BDS when contrasting the passing and failing runs, we convert each execution to
a vector where each element of the vector corresponds to a program statement. We
assign values to the elements of the vector according to the presence or absence of
the element in the BDS of the corresponding execution. Computing the BDS and
constructing the vectors is described in Section 3.2.1. Converting a given program
run into a vector has some advantages. Presenting the executions in an Euclidean
space enables us to find the similar failing and passing executions according to their
corresponding BDS and the executed statements. Therefore, we can cluster the vec-
tors according to their similarities in the Euclidean space and identify the different
execution paths in the program, as described in Section 3.2.2. Clustering the exe-
cution vectors helps us to compute the expanded backward dynamic slice (EBDS),
prune the irrelevant data including the coincidental correct test cases, find multiple
bugs, provide a visual presentation of the program runs and reduce the amount of
manual code inspection. By computing EBDS, described in Section 3.2.3, we can
find those faults which are not located in BDS. To compute EBDS, we calculate two
conditional probabilities to find out whether the given statements, which are exe-
cuted but are not included in BDS, have a potential to affect the program result. By
clustering the execution vectors, we also prune the irrelevant data which may mis-
lead Stat-Slice in accurate ranking of the statements, as described in Section 3.2.4.
Then, as presented in Section 3.2.5, for each statement, the Pearson correlation be-
tween two binary variables is computed and the statements are scored and ranked
according to their likelihood of being faulty. The first binary variable specifies the
observation of the statements in BDS of different runs. The second variable specifies
the termination state of the program, failing/passing. Finally, we assign the high
scored statements to each cluster and report them to the programmer, as described
in Section 3.2.6.



830 S. Parsa, M. Vahidi, F. Zareie

3.2.1 Computing BDS and Constructing the Execution Vectors

The first phase of Stat-Slice includes analyzing a given program and identifying
the output statement(s) to find out which points generate the undesired results.
Some programs may have multiple outputs and the debugger should identify the one
producing the incorrect values. The main concern is how to consider the dynamic
data and control dependence between the program output point and the faulty
code when analyzing the different failing and passing runs. Since, we do not know
the location of the faulty code, we compute the backward full dynamic slice, BDS,
starting from the output statement and later we expand the BDS to include more
suspicious statements.

Assume that program P has an output statement, OP , with k execution in-
stances, OP = {op1, op2, . . . , opk}, and it generates incorrect values for some spe-
cific test cases. Here, for simplicity we choose a single execution instance of OP
that has an erroneous value in at least one single execution of P . For such opj,
the backward dynamic slice is computed for the failing test case tcfailm , BDSmP (opj),
and the passing test case tcpassn , BDSnP (opj). For programs with more than one
incorrect output, simply the union of backward slices for all incorrect outputs is
computed.

At this point, a preprocessing is done on our data set to remove the redundant
and irrelevant data. As mentioned in Section 2, if there are passing test cases which
have identical BDS with the existing failing test cases, we exclude the passing BDS
from our further analysis.

Assume BDSAll
P (opj) contains the union of all slices computed with the existing

passing and failing test cases. Therefore, BDSAll
P (opj) contains the statements which

have been observed in at least one backward dynamic slice. With these assumptions,
we define the Euclidean execution space as follows.

Definition 4. Given BDSAll
P (opj), a set of all distinct statements extracted from

the failing and passing backward dynamic slices of the program P , we define Prog-
Space(P ) as the Euclidean space of n-tuples {x1, x2, . . . , xn, } where each tuple rep-
resents a dimension (also called feature) in the space. Each xj stands for one and
only one specific element in BDSAll

P (opj) and can only have three values {−1, 0, 1}.
In other words, each statement in BDSAll

P (opj) constructs a dimension in Prog-
Space(P ).

For simplicity, in the remaining part of the paper we assume there is a single
output statement and the existence of multiple output statements does not change
the algorithm.

Definition 5. Each program run executed by a given test case tck, regardless
of its failing or passing state, can be represented as the execution vector V k

P =
{X1, X2, . . . , Xn} in Prog-Space(P ) space, where k is an index for the correspond-
ing test case tck and Xi is the value of the dimension xi that might be:
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Xi =


1 if

(
xi ∈ BDSkP (opj)

)
0 if

(
xi ∈

{
Gk
P (N,E)− BDSkP (opj)

})
−1 if

(
xi ∈

{
All.StP −Gk

P (N,E)
})

,

where All.StP represents all the statements in the program P . Xi = 1 means that
the statement xi is included in the backward dynamic slice of the corresponding run.
In contrast, Xi = 0 specifies that the statement is executed but not included in the
BDS and Xi = −1 means that the statement is not executed in that particular run.
Table 1 shows the execution vectors for the nine test cases of the example shown
in Figure 1. It is clear that all the statements which marked by ‘∗’ in Figure 1
have the value of 1 in the Table. Note that the statements in lines 1 to 10 of the
program code are executed by all the nine test cases, hence have the value of 1, and
for simplicity we do not show them in the Table.

# TC#1 TC#2 TC#3 TC#4 TC#5 TC#6 TC#7 TC#8 TC#9

11 1 1 1 1 1 1 1 1 0

12 1 1 1 1 1 1 1 1 −1

13 1 1 1 1 1 1 1 1 −1

14 1 1 1 1 1 1 1 1 −1

15 1 1 1 1 1 1 1 1 −1

16 1 1 1 1 1 1 1 1 −1

17 0 0 1 1 1 1 1 1 −1

18 −1 −1 0 1 1 0 1 0 −1

19 −1 −1 −1 1 1 −1 0 −1 −1

20 −1 −1 −1 1 1 −1 −1 −1 −1

21 −1 −1 −1 −1 −1 −1 1 −1 −1

22 −1 −1 −1 −1 −1 −1 1 −1 −1

23 −1 −1 1 −1 −1 1 −1 1 −1

24 −1 −1 1 −1 −1 1 −1 1 −1

25 1 1 1 1 1 1 0 0 −1

26 0 1 0 0 1 1 −1 −1 −1

27 −1 1 −1 −1 1 1 −1 −1 −1

28 1 −1 1 1 −1 −1 −1 −1 −1

29 1 −1 1 1 −1 −1 −1 −1 −1

30 −1 −1 −1 −1 −1 −1 −1 −1 1

31 −1 −1 −1 −1 −1 −1 −1 −1 1

T.S. pass pass pass fail fail fail fail pass pass

Cluster #1 Cluster #2

Table 1. The execution vectors for the example in Figure 1

Given program P , we call two program runs executed by the test cases tcm and
tcn similar if their corresponding execution vectors, V m

P and V n
P , are close together

according to a predefined threshold in the Euclidean space, Prog-Space(P ).
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3.2.2 Clustering the Execution Vectors

Assuming that the existing passing and failing executions are presented as two failing
and passing labeled execution vectors in Prog-Space(P ), we have applied k-means
clustering method to identify the different execution paths for the effective ranking
of the program statements. There are different reasons for clustering the execution
vectors:

1. Identifying the different execution paths to find multiple faults in the program.
This capability is evaluated on multiple faulty versions of gzip and grep programs
in Section 4.4.1.

2. Computing the expanded backward dynamic slice (EBDS) according to the vec-
tors in each cluster.

3. Pruning the irrelevant data by integrating all failing vectors in each cluster into
a single failing vector.

4. Reducing the amount of manual code inspection by assigning high scored state-
ments to each cluster.

In the following definition, we describe the way that the execution vectors are
clustered using the k-means technique [25].

Definition 6. Given a set of m execution vectors for program P , without regarding
the failing or passing label of the vectors, k-means aims to partition the m vectors
into k sets (k ≤ m) CL = {cl1, cl2, . . . , clk} according to the following within-cluster
function which minimizes the sum of squared Euclidean distances:

arg min
CL

k∑
i=1

∑
V k
P ∈cli

‖V k
P − ci‖2, (1)

where ci is the center of the execution vectors in cluster cli and V k
P is an execution

vector corresponding to tck in Prog-Space(P ). The execution points in each cluster
share the common executed and slice included statements and therefore they are
approximately related to a particular program execution path. The clusters which
contain at least one failing execution point are considered for further analysis and
we ignore the remaining clusters. After clustering the execution vectors, we prior-
itize the clusters according to the number of including failing vectors. The more
failing vectors in a given cluster the more priority the cluster may have. The pri-
ority assignment to the clusters is done in the final stage of Stat-Slice, described in
Section 3.2.6, when we allocate the high scored faulty statements to the clusters to
reduce the amount of manual code inspection.

As could be seen in Table 1, two clusters can be identified in the execution space
of our example, presented in Section 2. Each cluster is surrounded by a grey box
in the Table, where the first cluster contains the execution vectors corresponding to
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test cases TC#1 to TC#6 and the second cluster contains the vectors of test cases
TC#7 to TC#10. Since Cluster#1 contains three failing vectors while Cluster#2
has a single failing vector, the first cluster achieves higher priority in comparison
with the second cluster.

3.2.3 Computing the Expanded Backward Dynamic Slice (EBDS)

As mentioned in Definition 5, the value of the statements (i.e. features) which are
executed in a specific run but are not included in the corresponding backward dy-
namic slice is zero. Although, such statements do not appear in the backward slice
of an incorrect output statement, in some cases they could be responsible for the
program failure. Those statements might be included in the relevant slice of an
incorrect output [2] and therefore if they found to be suspicious, it is required to
include them in the ranking model. A good example is the faulty statement, line 18,
which is executed by test case TC#6 but is not included in the corresponding BDS.
This is because the if condition in line 18 is not evaluated as true, by mistake, and
therefore the else part, line 23, is included in the BDS, as shown in Table 1. To have
precise ranking model, this statement should be included in the backward dynamic
slice of the output and a mechanism is required to consider the statement in our
analysis. To decide whether a statement should be included in a slice, we consider
two conditional probabilities for identifying the suspicious statements.

The aim is to convert the existing zero values to either 1 (have potential to be
faulty statement) or −1 (no potential to be faulty statement) by computing two
conditional probability functions for the execution vectors in each cluster. With
this conversion, we do not miss statements which have the potential to be faulty. It
is worth noting that the conversion occurs after the clustering and the real value of
features in the execution space does not actually change. In other words, if the zero
value of a given vector (1, 0, 1) is converted to −1, the position of the vector in the
Euclidean space is not altered at all. This conversion is performed as a preprocessing
step for the ranking stage, described in Section 3.2.5.

For each cluster in the execution space, first we identify those statements that
have at least one zero value for some execution vectors. Let λ be such statement. We
compute the probability of λ being 1 for the failing test cases, P (λ = 1|fail), and the
passing test cases, P (λ = 1|pass), separately. If the computed probability values
are less than 0.5, we assume that the corresponding statement has no significant
effect on the output statement(s) and its zero value is converted to −1. Otherwise,
if the probability is more than 0.5, it may affect the output statement(s) and hence
the zero value is converted to +1. If the computed probability is exactly 0.5, for
failing vectors the zero value is converted to 1 and for passing vectors it will be
converted to −1. With this technique, we expand BDS to the suspicious statements
of the relevant slice without computing the relevant slices, directly, to reduce the
computational cost and decrease the number of irrelevant statements.

When the value of a statement is zero in all passing or failing execution vectors
in a given cluster, we act conservatively: if the value of the statement is zero in all
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passing vectors, the zero value is converted to −1; if the value is zero in all failing
vectors, we convert the value to 1.

To better understand the computation of EBDS, consider the execution vectors
of the running example in Table 1. The converted vectors are shown in Table 2
where due to simplicity, only statements having zero values in some test cases are
shown. The previous zero value is shown by grey color with an arrow leading to the
converted value. The statements with the new value 1 are added to the BDS of the
corresponding test case and make EBDS. As could be seen in Table 2, statement 17
in cluster#1 has zero value for test cases TC#1 and TC#2. Since, in one out of
the three passing execution vectors in the same cluster, the value of the statement
in a single test case, TC#3, is 1, the passing conditional probability would be
P (λ = 1|pass) = 1/3 and thereby the zero values are converted to −1. A similar
passing conditional probability is computed for statement 26 and the zero values
of test cases TC#1 and TC#3 are converted to −1. Another example is the zero
value of statement 18 for failing test case TC#6 in cluster#1. Because the value of
the statement in two other failing test cases is 1, the failing conditional probability
would be P (λ = 1|fail) = 2/3 and consequently the zero value becomes 1. Similar
to statement 18, the zero value of statement 26 in TC#4 is converted to 1 because
the statement in two other failing test cases TC#5 and TC#6 has the value of 1.

# TC#1 TC#2 TC#3 TC#4 TC#5 TC#6 TC#7 TC#8 TC#9

11 1 1 1 1 1 1 1 1 0→ −1

17 0→ −1 0→ −1 1 1 1 1 1 1 -1

18 -1 -1 0→ −1 1 1 0→ 1 1 0→ −1 -1

19 -1 -1 -1 1 1 -1 0→ 1 -1 -1

25 1 1 1 1 1 1 0→ 1 0→ −1 -1

26 0→ −1 1 0→ −1 0→ 1 1 1 -1 -1 -1

T.S. pass pass pass fail fail fail fail pass pass

Cluster #1 Cluster #2

Table 2. The converted vectors resulted from converting the zero valued statements in the
execution vectors of Table 1. The previous zero value is shown by grey color. The
statements with the new value 1 are added to the BDS of the corresponding test
case

In cluster#2, there is a single failing vector. Therefore, the zero value of state-
ments 19 and 25 is converted to 1. For statements 18 and 25 of TC#8, the computed
passing probability is exactly 0.5 and hence the converted value is −1. A similar
conversion is done for statement 11 of TC#9.

In Section 4.5.1, we compare the fault localization performance of Stat-Slice
using both EBDS and the relevant slices on a subject program. In the same section,
we also discuss the privileges of using EBDS for fault localization in comparison
with using the relevant slices.
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3.2.4 Pruning the Irrelevant Data in Each Cluster

In order to increase the precision and accuracy of the technique, it is better to
prune useless test cases as much as possible and prevent Stat-Slice to be misled
by the irrelevant and noise data. To this end, we first integrate all the failing test
cases of each cluster into a single failing execution vector. This process simplifies
the ranking stage, described in the subsequent section. Note that the pruning is
performed on the vectors in EBDS, computed in the previous stage, for which the
corresponding elements are either +1 or −1.

To integrate the failing vectors of a cluster into a single failing vector, we act
as follows. Given clusterγP as the γth cluster in Prog-Space(P ), if there are only two
failing execution vectors in clusterγP : V m

P = (X1, . . . , Xsize) and V n
P = (Y1, . . . , Ysize)

where Xi and Yi are the values of feature xi and yi in vector V m
P and V n

P , respectively;
and size is the size of the vectors; If Xi 6= Yi, meaning that one of them is −1 and
another is +1, the one with value +1 also becomes −1. In other words, the elements
with value +1 are masked by their corresponding −1 elements in another vector. We
do this because if a particular statement is not executed in one failing run while it
is executed in a similar failing run, it is very unlikely that this statement be a cause
of failure. If there are more than two failing vectors in the cluster, we use majority
voting technique. For a given statement s, if its value in the majority (or half) of
the failing vectors is 1, the value of s in the integrated vector would be 1; otherwise,
it would be −1. By applying this process on all failing vectors in each cluster, we
achieve a representative failing vector which has the overall characteristics of all
existing failing vectors in that cluster.

Consider the running example in this paper. In the second cluster there is
a single failing vector and hence it is the representative failing vector in the cluster
and there is no need for the integration. But for cluster#1 we have three failing
vectors as shown in Table 1. The integrated failing vector, considering the converted
values in Table 2, is shown in left hand side of Table 3.

Having a certain number of clusters, each has one specific failing vector; the
aim is to select those passing vectors in each cluster which could help us to rank
the statements, effectively. In order to consider the diversity in our ranking model,
for each failing vector, we find Λ passing execution vectors which are the nearest
and Λ passing vectors which are the furthest to the failing vector of each cluster.
The parameter Λ is a pre-specified number specified by the test pool characteristics,
more described at the end of this section.

The reason for selecting the close passing test cases to a failing execution is
straightforward. It is based on the idea of the nearest neighbor [5]. With two simi-
lar passing and failing test cases, the differences in the executed statements are very
likely to be the faulty code. However, in some cases, it is common that a failing
and a passing test case are completely different in terms of their computed back-
ward dynamic slices but both of them provide useful data for statistical debugging.
A good example is the passing vector corresponding to TC#9 in which the faulty
statement(s) is not included in the corresponding BDS. Considering the slices of
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the failing vector in cluster#1 and the mentioned passing vectors, the two execu-
tion vectors are far from each other in the execution space. However, both of them
should be considered in the ranking phase, to achieve precise results. This is why
we also consider far distance vectors in each cluster, for better performance of the
fault localization algorithm.

To identify the appropriate vectors, we define a set for candidate vectors, S-Set,
which is initially empty. Now for each selected vector in the cluster, its corresponding
altered vector is inserted into the set. For clusterγP in the execution space, firstly the
failing vector is inserted into the set, and then the altered vectors corresponding to
the Λ nearest and the Λ furthest passing vectors in terms of their Euclidean distance
with the failing point are inserted into the set. After the process, the S-Set contains
δ number of failing vectors and 2 ∗ Λ ∗ δ number of passing points where δ is the
number of clusters including a failing vector in the space. Note that in our running
example there are few passing vectors in each cluster. Therefore, we consider all of
them in the ranking model.

3.2.5 Ranking the Statements According to Their Fault Relevance

Stat-Slice can be categorized as a spectrum-based fault localization technique.
A program spectrum is an execution profile, reflecting the dynamic behavior of
the program, that specifies which elements are executed within a specific execution.

The spectrum-based fault localization techniques capture the testing coverage
data (i.e. program spectra). They analyze them using an appropriate similarity
coefficient, as a fault suspiciousness metric, to identify those elements of the program
which are more correlated to the failure. Similar to [30], we concentrate on block hit
spectra which contain a binary flag for each block of code (i.e. an individual program
statement) indicating whether a statement is executed in a specific run. The hit
spectra of M test cases and N statements can be summarized in a M ∗ (N + 1)
matrix where each row represents a particular test case and the first N columns
correspond to N different blocks (i.e. statements). The last column indicates the
passing or failing state of each test case. Note that in our algorithm, M and N
indicate the sizes of S-Set and BDSAll

P (opj) (defined in Definition 4), respectively.
Through the analysis of the spectra matrix, the spectrum based fault localization
techniques attempt to find the program blocks which are more likely to be the cause
of failure.

In recent years, there has been a variety of fault metrics applied in the spectrum
based fault localization techniques. Some of the well-known metrics are Taran-
tula [8], Jaccard and Ochiai [30]. For a given statement s the fault metric of Taran-
tula (φsTarantula), Jaccard (φsJaccard) and Ochiai (φsOchiai) are shown in relations (2),
(3) and (4), respectively.

φsTarantula =
nE.F.

nNE.F.+nE.F.

nE.F.

nNE.F.+nE.F.
+ nE.P.

nE.P.+nNE.P.

(2)
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φsJaccard =
nE.F.

nE.F. + nNE.F. + nE.P.
(3)

φsOchiai =
nE.F.√

(nE.F. + nNE.F.) ∗ (nE.F. + nE.P.)
(4)

In these relations, nE.F. and nE.P. are the number of failing and passing runs
in which the statement s is executed, respectively. Similarly, nNE.F. and nNE.P. are
the number of failing and passing runs in which the statement s is not executed,
respectively.

As could be seen, the three mentioned metrics compute the suspiciousness of
a given statement s based on a simple assumption: the more failing runs in which
s is executed the more likelihood of s being faulty. The mentioned metrics have
achieved desirable results in many cases. However, apart from Tarantula, the rest
do not consider the passing ratio of the executed statement

(
i.e. nE.P.

nE.P.+nNE.P.

)
in

their ranking model. Although Tarantula considers the passing ratio of the exe-
cuted statement in its denumerator, it cannot assign an appropriate suspiciousness
score to the faulty statements in some situations. Therefore, as shown in [30], it
has got a lower performance comparing with Ochiai and Jaccard metrics. Note
that for an identical number of failing and passing test cases, the Tarantula for-
mula becomes nE.F.

nE.F.+nE.P.
which is similar with Ochiai and Jaccard in the numer-

ator and the difference between the three relations would be in their denumera-
tors.

To improve the accuracy of the fault localization process, we have applied the
Pearson correlation as our fault suspiciousness metric, shown in relation (5):

φsX,Y =
(nO.F. ∗ nNO.P.)− (nNO.F. ∗ nO.P.)√

(nO.F. + nO.P.) ∗ (nO.F. + nNO.F.) ∗ (nO.P. + nNO.P.) ∗ (nNO.F. + nNO.P.)

(5)
where nO.F. and nO.P. specify the number of times that s is observed in the slice of
the failing and passing executions, respectively. Similarly nNO.F. and nNO.P. depict
the number of times that s is not observed in the slice of the failing and passing
executions, respectively.

The denominator in (5) is used for normalization which causes the scores to be
in the range of −1 to 1. If the denominator becomes zero, by default the numerator
value is considered as the correlation value.

The Pearson correlation [26] is an appropriate metric to compute the discrimi-
native power of a statement between the failing and passing runs.

Unlike the mentioned metrics, Pearson considers two factors when assigning the
fault suspiciousness score to different statements:

1. The number of times in which the statement is observed in the EBDS of the
failing runs and the number of times in which the statement is not observed in
the EBDS of the passing runs.
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2. The number of times in which the statement is observed in the EBDS of the
passing runs and the number of times that the statement is not observed in the
EBDS of the failing runs.

A given statement is identified as fault suspicious if the amount of the first factor
is high whilst the second factor has got a small value. In other words, the larger
difference between the two factors, the more likelihood of the statement being faulty.
This is because the statement with the highest score is the one for which its presence
in the EBDS of a run increases the chance of the termination state to be failing. In
contrast, when the statement is not presented in a slice, the corresponding program
termination state is more likely to be passing. Considering both factors at the same
time is the key power of Stat-Slice which results in high accuracy of the technique.

All eligible statements in the S-Set are assigned scores according to the (5) and
ranked in a descendent order. To show how the scores are computed for different
statements, consider the example in Figure 1. The left hand side of the Table shows
the EBDS for nine test cases and the right hand side shows the value of four items,
nO.F., nO.P., nNO.F., nNO.P., required to compute the Pearson correlation, for each
statement. The last column demonstrates the computed value as the score of the
corresponding statement. As shown in the Table, the faulty statements 18 and 19
have got the highest score (i.e. 1).

3.2.6 Assigning the High Ranked Statements to the Clusters

As mentioned earlier, we have clustered the execution vectors for several reasons.
One significant reason is reducing the amount of manual code inspection. By clus-
tering the execution vectors, we are able to distinguish different execution paths in
a given program.

As mentioned in Section 3.2.2, after performing the clustering technique on the
program execution vectors, we prioritize clusters according to their relevance to
the program failure. To this end, we assign priority to a cluster including a larger
number of failing execution vectors comparing with other clusters (we are talking
about the initial clusters before integrating the failing vectors in a single vector).
Now we are ready to assign the scores to the clusters in the execution space. At this
point, we want to know which fault suspicious statement, identified in the previous
stage, should be examined first to find out whether it is the actual cause of the
failure. The process is done hierarchically such that we first investigate the cluster
with the highest priority and examine whether the statement with the highest score
in that cluster is the actual cause of failure. If it is the cause of failure, we report it
to the user. Otherwise, we go to the second rank cluster to examine the highest score
statement, not seen previously, in that cluster and so on. The process continues until
we find the cause of failure or all the clusters are searched with their highest scored
statements. In the latter situation, in a hierarchical process the second high scored
statement of the clusters are examined according to the priority of the cluster and
so on. With this level based strategy, we try not to lose any suspicious statement
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related to a particular execution path (i.e. cluster) and simultaneously reduce the
manual code scrutinization.

4 EXPERIMENTAL RESULTS

In this section, the effectiveness of Stat-Slice is empirically evaluated. To this end,
we compare Stat-Slice with some outstanding statistical debugging techniques in the
context of software fault localization. We have also compared our performance with
‘Pruning with confidence’ slicing technique [15] which has compared its capability
with other slicing techniques and thereby we do not include other slicing methods,
here. The evaluation is performed on Siemens, gzip, grep, and flex [23] programs.
The test pool for each program contains a number of faulty versions and each version
includes at least one type of fault. A brief description about each benchmark is
presented in Table 4. For each program, a number of failing and passing test cases
are available. However, for our experiments we consider a few number of test cases to
simulate conditions in which we are not provided with a large number of executions.

Application Versions Procedures Lines Test Cases Description
print-tokens 7 20 472 4 056 lexical analyzer
print-tokens2 10 21 399 4 071 lexical aralyzer
replace 32 21 512 5 542 pattern replacement
schedule 9 18 292 2 650 priority scheduler
schedule2 10 16 301 2 680 priority scheduler
tcas 41 8 141 1 578 altitude separatton
tot-info 23 16 440 1 054 information
gzip 6 146 6 582 217 measure
grep 6 104 15 633 809 file compressor
flex 5 162 12 418 525 lexical analyzer

Table 4. A brief description of the subject programs

To compute the backward dynamic slices, we used the dynamic slicing framework
introduced in [22, 24]. The framework instruments a given program and execu-
tes a gcc compiler to generate binaries and collects the program dynamic data to
produce its dynamic dependence graph. The framework contains two main tools:
Valgrind [20] and Diablo [19]. The instrumentation is done by Valgrind memory
debugger and profiler which also identifies the data dependence among the statement
execution instances. The Diablo tool is capable to produce program’s control flow
graph from the generated binaries. Finally we used the WET tool to compute the
backward dynamic slices from an incorrect output value. To perform clustering, we
used WEKA machine learning and data mining tool [22] which is an open source
software. The experiments are conducted on 2.4 GHz Intel Core 2 Quad CPU with
3.50 GB RAM running linux UBUNTU 6.06 with gcc 2.3. The test pools are obtained
from Software Repository Infrastructure (SIR) [18]. Before presenting the results,
some important issues should be mentioned:
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1. An important factor to measure the effectiveness of a ranking algorithm is the
number of faults that could be located according to the amount of code inspec-
tion by the programmer. The manual code inspection is measured using the
well-known PDG-based T -score evaluation framework which is used in previous
works [5, 6, 8]. We have also presented our results according to a conventional
slicing evaluation framework.

2. The dynamic slicing framework does not work properly on tot info program and
it only produces a limited data dependence graph and no control dependence
data. Therefore, the results for tot info have been partially collected considering
this limitation.

3. Due to the segmentation faults we could not run some versions of the Siemens
programs and hence we could not detect their faults.

4. For statements with the same fault relevance score, the priority is with the
statement which is closer to the output statement.

4.1 Experiments on the Siemens Programs

In this section, we first present our results on six programs of Siemens according to
the T -score evaluation framework in Figure 2. In the subsequent parts of the section,
we compare the performance of Stat-Slice with some fault localization techniques.
With T -score less than one percent, Stat-Slice finds 48 faults which outperforms
other fault localization techniques.

The dynamic slicing techniques for fault localization use some measurements
other than the T -score, to evaluate their performance. These measurements are: the
size of the program (i.e. LOC), the executed statements in average (i.e. Avg(Exec)),
the maximum amount of code explored to reach the faulty code (Max(EFS)), the
minimum amount of code explored to reach the faulty code (i.e. Min(EFS)), the
average amount of code explored to reach the faulty code (i.e. Avg(EFS)). The per-
formance of Stat-Slice according to these measurements for six programs of Siemens
suite is presented in Table 5.

Program LOC Avg
(Exec)

Max
(EFS)

Min
(EFS)

Avg
(EFS)

Avg(EFS)/
LOC

Avg(EFS)/
Avg(Exec)

print-tokens 726 142 11 2 8 0.011 0.056

print-
tokens2

570 170 27 1 9 0.015 0.052

schedule 412 137 5 1 4 0.009 0.029

schdeule2 374 122 42 3 13 0.034 0.10

replace 564 110 40 1 8 0.014 0.07

tcas 173 53 28 1 3 0.017 0.053

Table 5. The performance of Stat-Slice according to the slicing measurements on Siemens
suite
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Figure 2. The performance results of Stat-Slice on Siemens programs: a) tcas, b) replace
c) printtokens d) printtokens2 e) schedule f) schedule2

Figure 3 shows two examples for the omitted code fault and the macro statement
fault which are located in Figures 3 a) and 3 b), respectively, and Stat-Slice has
detected both of them precisely. The omitted code fault simulates a semantic fault
for which a programmer by mistake omits the required code or does not include it
in its right place. In Figure 3 a) the red code, in line 177, represents the omitted
code in function get token(tp) which is commented out. Stat-Slice reports line 176
as the fault suspicious statement with the highest score. Since the omitted code is
not included in the dynamic program slice, it cannot be captured by conventional
slicing techniques. For the fault in Figure 3 b), Stat-Slice reports the exact location
of the fault in the macro statement, line 18.

As mentioned earlier, the full slicing techniques are incapable to locate faults
which are included in the relevant slices of the output. As an example, consider the
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Figure 3. An example of the omitted code fault and the macro statement fault

version 4 of the program Schedule, where the fault is located in line 207 as shown in
Figure 4 a). The corresponding output statement has 13 instances, integer values,
in each single run as shown in Figure 4 b). The test case No. 34, in the test pool
provided from [18] is a failing test case for which the program output statement
does not produce a correct value in the instance 11 and 12 of its output as shown
in Figure 4 b). The correct value is also shown in the Figure. While the faulty
statement, line 207, is not included in the BDS of the output point for some test
cases, the EBDS does it contains and Stat-Slice captures the fault with the highest
score.

Figure 4. An example from version 4 of Schedule program where the faulty statement is
not in BDS of a specific failing test case

4.2 Comparison with the Spectrum Based Fault Localization Techniques

As described in Section 3.2.5, Stat-Slice can be categorized as a spectrum based fault
localization technique. In this section, we empirically compare the performance of
our technique with Tarantula, Jaccard and Ochiai. The experimental results on the
Siemens suite show that, with less than one percent manual code inspection, Ochiai,
Jaccard, and Tarantula have detected 28, 17, and 13 percent of faults, respectively.
With the same T -score, Stat-Slice has detected 36 percent of faults which outper-
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forms other spectrum based fault localisation techniques. For T -score less than 10 %,
Stat-Slice has detected 67 percent of faults comparing with Tarantula, Jaccard and
Ochiai which have found 52, 55 and 59 percent of faults, respectively. The result of
this comparison is shown in Figure 5.
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Figure 5. Performance comparison between Stat-Slice and three other spectrum based
fault localization techniques on Siemens suite

There are some reasons which justify the outperformance of Stat-Slice comparing
with other spectrum based fault localization techniques. While the spectrum based
fault localization techniques consider all program statements as the program spectra,
Stat-Slice limits the program spectra to the statements which are observed in EBDS
of the program output result. Therefore, many irrelevant and misleading statements
are excluded for the further analysis, improving the performance of Stat-Slice. The
second reason is pruning the irrelevant passing test cases (e.g. coincidental correct
test cases) by clustering the execution vectors and finding the nearest and furthest
passing vectors to the representative failing vector of each cluster. The third reason
is our fault metric, Pearson, which outperforms the previous fault localization met-
rics, on our subject programs. To study the effect of Pearson on the performance
of Stat-Slice, we have conducted an experiment in Section 4.5.2, in which Pearson
ranking metric of Stat-Slice is substituted by three mentioned metrics, Ochiai, Jac-
card and Tarantula and the fault localisation performance of Stat-Slice is analysed
using all four mentioned metrics, so called Stat-Slice(Pearson), Stat-Slice(Ochiai),
Stat-Slice(Jaccard), and Stat-Slice(Tarantula).

4.3 Comparison with Other Fault Localization Techniques

A full comparison between the four fault localization techniques, shown in Figure 6,
reveals that Stat-Slice outperforms Ochiai, Liblit, and Sober.

As mentioned before, ‘Pruning with Confidence Value’ (CV) technique [15] ranks
the statements in a single failing execution based on their relevance to the failure. It
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Figure 6. A full comparison between Stat-Slice and Ochiai, Liblit (2005), Sober on Siemens
suite

assumes that the given program has multiple output values and prior to an incorrect
output value there exist some correct output values in the same run. Therefore, it
is applicable in particular programs. Since all programs of Siemens do not have
this characteristic, the evaluation of CV technique is performed on some versions
(i.e. only 24 out of 132 versions) of five programs. The comparison results for those
incomplete five programs are presented in Figure 7.
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Figure 7. The result of CV and Stat-Slice on some versions of 5 programs in Siemens suite:
printtokens, printtokens2, schedule, schedule2 and replace
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4.4 Experiments on gzip and grep Programs

In this section we evaluate the scalability of Stat-Slice on reasonably large programs.
To this end, we have chosen gzip and grep programs with 6 582 and 15 633 lines of
code, respectively [23, 24]. In each test pool, provided from software infrastructure
repository [18], there is a folder called ‘versions.seeded’ containing five faulty versions
with different seeded faults. Each faulty version has a header file ‘FaultSeeds.h’
containing some fault macros. By enabling each macro in the program code, the
corresponding fault is expanded in the code. To specify which fault is seeded into
the program we use the notation ‘prog-name.vx.y’, in which prog-name, x and y
specify the program name (i.e. grep or gzip), the faulty version number and the
order of the macro statement in ‘FaultSeeds.h’, respectively.

The faulty versions we select for our experiments are specified in Table 6. Ta-
ble 6 also presents the performance of Stat-Slice according to the slicing techniques
measurements for fault localization. As shown in the Table, with very small amount
of manual code inspection, we could locate all the existing faults in two programs. In
some versions, the actual location of faulty statement is very close to the statement
reported by Stat-Slice.

Program LOC Max (EFS) Min (EFS) Avg (EFS) Avg(EFS)/LOC

grep

preg v1.11

15 633 10 1 4 0.0003
gvep r3.2
grep v4.10
grep v4.12

gzip

gzip v1.5

6 582 37 2 13 0.002
gzip v4.6
gzip v5.6
gzip v5.13

Table 6. The performance of Stat-Slice according to the slicing measurements on gzip and
grep

4.4.1 Finding Multiple Faults in gzip and grep Programs

As described in Section 3.2.2, one advantage of clustering the execution points is to
find multiple faults in programs. To evaluate the performance of Stat-Slice in finding
multiple faults, we have conducted an experiment on multiple faulty versions of gzip
and grep programs. To build the multiple faulty versions in these programs, we have
enabled more than a single fault macro in a version at the same time. For example
to make a 2-fault version of grep, we have enabled the first and 11th fault macro of
the first version (i.e. grep.v 1.1 + grep.v 1.11). By clustering the execution vectors,
the passing and failing test cases are partitioned according to different individual
faults in a program. Therefore, for each individual fault the corresponding failure
origin may achieve the highest fault relevance score. Without clustering, it is unclear
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which failing test case is relevant to a specific fault in the program. Hence, due to
the mixture of failing test cases correspond to different faults in the program, the
failure origins cannot be detected easily.

For more convincing, we have compared the performance of Stat-Slice and two
well-known multiple fault localization techniques in finding multiple faults on 2-fault
and 3-fault versions of gzip and grep programs. We name these two techniques
Parallel Debugging [33] and MulBug Finder [34]. The Parallel Debugging technique,
proposed by Jones et al. applies clustering technique on failing test cases based on
behavior models and fault localization information of program spectra. Each cluster
relates to a specific fault and the including failing test cases are combined with the
passing test cases to build a specialized test suite relevant to the corresponding
fault. Then it applies the Tarantula ranking model [8] on the specialized test cases
of each cluster to find the corresponding single fault in that cluster. The MulBug
Finder algorithm proposed by Zheng et al. uses a bi-clustering technique to partition
predicates according to their presence in different failing and passing runs. The
correlation among predicates are computed using some conditional probabilities. It
also uses a voting system which assigns a vote to a predicate according to its presence
in failing runs. After computing the votes for each predicate, it ranks the predicates
based on their impact on the failure outcome of the program.

Te results shown in Table 7 reveal that due to the clustering and pruning the
irrelevant data, Stat-Slice locates multiple faults with much smaller T -score values in
comparison with two other multiple fault localization techniques. Our experiments
also show that the use of backward dynamic slicing information in addition to the
proposed ranking model are the reasons for outperformance of Stat-Slice in finding
multiple faults in programs.

4.5 Evaluating the Different Aspects of Stat-Slice

As described in Section 3, Stat-Slice has different phases. Each phase has a signi-
ficant effect on the performance of Stat-Slice, as mentioned in Sections 3.2.1, 3.2.2,
3.2.3, 3.2.4, 3.2.5 and 3.2.6. Some important aspects of Stat-Slice are evaluated in
the previous sub-sections. In this section we experimentally evaluate some other key
aspects of Stat-Slice.

The experiments are done on flex program. We have activated 30 faults in the
program and made 30 faulty versions. We have also randomly generated several
passing and failing test cases in addition to the existing test cases in the test pool
provided from [18]. Flex is a lexical analyser with 12418 lines of code. The organi-
zation of this section is as follows.

In Section 4.5.1 we have compared the performance of Stat-Slice using both
EBDS and backward relevant slices. In Section 4.5.2 we have studied the effect
of Pearson metric on fault localization in comparison with other fault metrics. In
Section 4.5.3 the impact of the cluster numbers on the performance of Stat-Slice is
evaluated.
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grep gzip
2 faults grep.1.1

grep.1.11
grep.1.11
grep.1.15

grep.1.1
grep.1.15

grep.1.11
grep.1.12

gzip.1.5
gzip.1.13

gzip.1.13
gzip.1.14

gzip.5.10
gzip.5.5

gzip.5.6
gzip.5.13

Stat-Slice
(T-Score)%

0.22 0.15 0.07 0.22 0.02 0.05 0.24 0.03

MulBug
Finder [47]
(T-Socre)%

0.31 0.29 0.21 0.41 0.14 0.16 0.25 0.05

Parallel De-
bugging [46]
(T-Score)%

0.37 0.21 0.11 0.33 0.25 0.11 0.24 0.05

3 faults grep.v1.1
grep.v1.12
grep.v1.15

grep.v1.11
grep.v1.12
grep.v1.15

gzip.v1.5
gzip.v1.13
gzip.v1.14

gzip.v1.3
gzip.v1.5
gzip.v1.13

Stlt-Saice (e-
ScorT)%

0.41 0.26 0.05 0.15

MulBug
Finder [47]
(T-Score)%

0.53 0.41 0.08 0.26

Parallel De-
bugging [46]
(T-Score)%

0.58 0.32 0.15 0.21

3 fluats grep.v4.5
grep.v4.7
grep.v4.10

grep.v4.4
grep.v4.10
grep.v4.12

gzip.v5.6
gzip.v5.10
gzip.v5.13

gzip.v5.5
gzip.v5.6
gzip.v5.13

Stat-Slice
(T-Score)%

0.30 0.07 0.32 0.04

MulBug
Finder [47]
(T-Score)%

0.33 0.10 0.45 0.28

Parallel De-
bugging [46]
(T-Score)%

0.31 0.12 0.35 0.20

Table 7. The performance of Stat-Slice, MulBug Finder and Parallel Debugging in finding
multiple faults in gzip and grep programs

4.5.1 Computing EBDS Versus Backward Relevant Slice

According to our experiments on flex, gzip and grep programs, the time overhead of
computing the relevant slices, in average, is between 5 to 15 percent more than the
full dynamic slicing. The time overhead for computing the relevant slice of a single
failing test case could be easily neglected. However, since Stat-Slice must compute
the backward relevant slices for larger number of passing and failing test cases, the
imposed time overhead is not trivial.

For small and middle size programs, the difference between the timing of dy-
namic and relevant slicing is insignificant and can be easily ignored. But for large
scale programs considering numerous failing and passing test cases, the difference
could be considerable.

But the more important issue is the size of the dynamic and relevant slices.
As mentioned in [4] for the predicate faults compared to full dynamic slices, the
relevant slices are 2–181 % larger in size. Again for large number of failing and
passing test cases, this difference could be significant and considerable. Note that
we are trying to reduce the number of fault candidate statements for our analysis



Statistical Based Slicing Method for Prioritizing Program Fault Relevant Statements 849

as much as possible. The large number of statements increases the dimensionality
of the execution space affecting size and the contents of the execution vectors, the
identified clusters, the nearest and furthest passing to failing vectors, scoring the
statements according to the Pearson ranking model and prioritizing the statements.
Therefore, by using EBDS we attempt to avoid introducing redundant and irrelevant
data into the slices.

For more convenience, to show that the existence of the irrelevant statements
in the relevant slices may mislead our ranking model, we have evaluated Stat-
Slice based on both expanded dynamic slices (Stat-Slice (EBDS)) and the rele-
vant slices (Stat-Slice (RelSl)) to find out which one achieves more accurate re-
sults.

The results in Figure 8 show the amount of code inspection to find all faults in
flex program. As could be seen, both Stat-Slice(EBDS) and Stat-Slice(RelSl) achieve
promising results on flex program. However, the results of Stat-Slice(EBDS) is much
better than Stat-Slice(RelSl). With T -score less than 1 %, Stat-Slice(EBDS) finds
9 faults, while Stat-Slice(RelSlice) locates only 6 of them.
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Figure 8. The performance comparison of Stat-Slice(EBDS) and Stat-Slice(RelSl) on flex
program

4.5.2 The Effect of Pearson Metric on the Fault Localization Performance

In Section 4.2 we have compared the performance of Stat-Slice and three other
spectrum based fault localization techniques, Tarantula, Ochiai, and Jaccard. How-
ever, the focus of that experiment is not the effectiveness of Pearson in compari-
son with other mentioned metrics. In this section, we evaluate the performance of
Stat-Slice using different fault metrics. In other words, we substitute the Pearson
metric with other mentioned metrics to evaluate the impact of Pearson on the perfor-
mance of Stat-Slice. The resultant techniques are named Stat-Slice(Tarantula), Stat-
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Slice(Jaccard), and Stat-Slice(Ochiai) which are compared with Stat-Slice(Pearson).
The result of this comparison on flex program is shown in Figure 9.
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Figure 9. The performance comparison of Stat-Slice(Tarantula), Stat-Slice(Jaccard), Stat-
Slice(Ochai) and Stat-Slice(Pearson)

As shown in the Figure, Stat-Slice(Pearson) outperforms other techniques. Some
reasons for this outperformance are described in Section 3.2.5.

4.5.3 The Effect of the Cluster Numbers on the Fault
Localization Performance

As described in Section 3.2.2, the choice of k (i.e. the cluster numbers) highly de-
pends on the data distribution in the Euclidean distance. In this section, we show
the impact of choosing k on the performance of Stat-Slice.

Our experiments on the flex program show that the best result is achieved when
k is 15 as shown in Figure 10, k = 13 and k = 17 are in the next stages, respectively.
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Although, the larger number of clusters may decrease the mean squared error
in typical data sets, in our application the larger number of clusters may introduce
undesired passing and failing test cases into the ranking model decreasing the per-
formance of the fault localization algorithm. The small number of the clusters, on
the other hand, may throw away the desired failing and passing test cases, result
in poor ranking model of the method. Therefore, the exact number of clusters may
highly affect the performance of our fault localization technique.

This experiment also shows the impact of the clustering on the performance of
Stat-Slice. As could be seen in Figure 10, for k = 1, when there is a single cluster
(i.e. equivalent to no clustering), the performance is considerably poorer comparing
with other values of k.

5 RELATED WORK

Some related work has been described earlier. However, we consider some other
major works in this section. Firstly, we discuss about the dynamic slicing techniques
and some variants in Section 5.1 and in the second part of this section, Section 5.2,
we consider other related work in this regard.

5.1 Slicing Techniques

Although it has been shown that dynamic slicing substantially reduces the number of
program statements to be examined, the absolute number of statements might still
be large and many of the statements in the slice are unlikely to be fault relevant [14,
16, 17].

To reduce the size of the dynamic slices, Zhang et al. [14] integrates the dy-
namic backward slicing with the idea of delta debugging [10]. To reduce the fault
candidate set using the delta debugging method, a minimal failure-inducing input
is identified. A minimal failure-inducing input is a part of the input that is found to
be responsible for failure. Then the forward slice starting from the failure-inducing
input is computed and intersected with the backward dynamic slice of an incorrect
output.

In their later work [9], a bidirectional dynamic slice is computed for a specific
identified decision making statement known as a critical predicate. The critical
predicate is a conditional branch statement which is likely to be responsible for the
failure execution and if an execution instance of that predicate is switched from
one outcome to another (e.g. a true outcome is reversed to false or vice versa),
the program produces a desirable output. The bidirectional dynamic slice contains
statements in both forward and backward slices of a critical predicate.

To produce even smaller slices, in [17] the intersection of slices from three differ-
ent points is computed; these points are: critical predicate, failure-inducing input
and incorrect output. In a similar work [16] a set of values which have been used
in an execution instance of a statement in a failing execution is replaced with some
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other values to analyze whether the program result changes from incorrect to correct
output. If that happens, the statement is marked as a faulty statement.

Nonetheless, none of the mentioned techniques are able to rank the statements
according to their fault relevance and thereby a human debugger should examine all
the reported statements with the same chance to find the failure origin. Moreover,
a minimal failure-inducing input cannot be computed for all types of programs.
In many situations, all input parameters may have some impact on the program
result (i.e. cause failure) and cannot be simplified and isolated any further. On
the other hand, the techniques that rely on critical predicate switching [9] or value
replacement [16] may have scalability problems for large programs with huge amount
of data values. In the predicate switching case, there might be many predicates in
a program and a failure output may be the cause of more than a single critical
predicate [14]. Thereby, identifying the critical predicates among a large number of
predicates does not seem to be trivial and straightforward.

Another limitation of the slicing techniques is their dependence on a single failing
execution. Hence, they only identify a fault that is related to that failure and cannot
detect other unknown faults of a program. They are also incapable to find multiple
bugs. Furthermore, due to the nature of the slicing, some types of bugs (e.g. omitted
code) are hardly to capture [24].

5.2 Other Fault Localization Techniques

Zeller has proposed Delta Debugging [10] which analyzes the differences in the pro-
gram state between the successful and failing executions to isolate bugs. The result
is simplified minimal failure-inducing input. An extended approach in [11] checks
the program memory states and generates a cause transition chain to find the re-
sponsible variables for the program failure [21].

In [7] a logistic regression technique is applied to find the bug predictors. In [13]
a combination of predicates is analyzed to check whether a combined set of predicates
are relevant to the failure. The mentioned regression methods are applied on the
predicates rather than the statements, as performed in Stat-Slice, and they require
reasonably large number of failing and passing test cases to build accurate models.
Furthermore, Stat-Slice takes advantage of the dependence relationships between the
faulty code (i.e., the cause) and the erroneous output (i.e., the effect) by computing
the backward dynamic slices which is not considered in the previous statistical fault
localization techniques.

In [31] the fault localization is done using neural network models. The program
spectrum for each test case (i.e. the executed statements) as well as the fail/pass
termination state of the program are fed to the neural network to build a classifier
which models the relationship between the statement coverage data and the execu-
tion result. After training the network, for each single statement, a virtual test case
is designed and is given to the network to assess the output value of the network as
a fault suspiciousness indicator of the statement. The statements are then ranked
according to the likelihood of containing a bug.
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Wong et al. [32] have proposed a heuristic based statistical analysis technique
which uses the statement coverage data for each test case and the corresponding ter-
mination state (i.e. pass or fail) to find the location of faults. To this end, a crosstab
technique is built for each executable statement and the calculated statistic is used
to score the statement according to its fault suspiciousness. The crosstab is used
to analyze the relationship between two categorical variables, covered/not covered,
and two other categorical variables, passed/failed. To find the dependence between
the execution of a statement and the program termination state, a null hypothesis
test based on chi-square is applied.

Debugging parallel programs is discussed in [28]. It shows that the problems arise
from the nature of parallel programs such as communication and synchronization
limit the applicability of sequential debuggers. It proposes a three phase record & re-
play mechanism to achieve the required debugging data. The three phases are
tracing the order of occurred events, increasing the amount of tracing to build an
event graph display, and obtaining the required data for sequential re-execution of
target process.

Zhang et al. in [29] study the impact of using the non-parametric techniques on
fault localization in comparison to parametric hypothesis testing methods. Their
predicate based fault localization framework compares the differences in program
spectra in failing and passing runs. They use the Wilcox on signed-rank test and the
Mann-Whitney test as their non-parametric testing methods and the Student’s t-test
and the F -test as two parametric hypothesis testing methods. Their experiments
conducted on Siemens and Space test suite reveal that the non-parametric tests
outperform the parametric hypothesis testing methods.

In [35] the topic of testing and debugging of distributed programs is investigated.
It motivates the need for testing and debugging activities by depicting the problems
involved in developing distributed applications.

6 CONCLUSIONS

In this paper, a new ranking technique for program fault localization is presented.
Stat-Slice combines the features of backward dynamic slicing and statistical fault
localization techniques to locate a wider range of faults with less amount of man-
ual code inspection. Unlike the statistical fault localization techniques which rely
on a large number of passing and failing runs, our proposed technique uses fewer
numbers of test cases. Stat-Slice converts each program run to a vector according
to three possible states of including statements,

1. included in the backward dynamic slice,

2. executed but not included in the backward dynamic slice, and

3. non executed.

To identify different program execution paths, we cluster the vectors according to
their similarity in Euclidean space. By pruning the vectors and using the proposed
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ranking model, all eligible statements are given score based on their likelihood to be
faulty. In different stages of the technique, we try to exclude the irrelevant state-
ments from the ranking model while increasing the chance of pinpointing the exact
origin of failure. The experiments are conducted on Siemens, flex, gzip and grep
suites. We have compared our results on Siemens with different fault localization
techniques and show that due to the nature of Stat-Slice and using a small number
of runs, we could find bugs more accurate than other techniques. We have also
shown that, Stat-Slice is scalable in terms of the program size and supports our
claim by presenting our results on large size programs. We have evaluated the ef-
fects of different methods within our technique on fault localization performance of
Stat-Slice. We have also conducted experiments on multiple fault versions and the
results demonstrate the significant superiority of Stat-Slice compared with similar
techniques.
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