
Computing and Informatics, Vol. 34, 2015, 877–910

USE CASE SPECIFICATION USING THE SILABREQ
DOMAIN SPECIFIC LANGUAGE

Dušan Savić, Sinǐsa Vlajić, Saša Lazarević
Ilija Antović, Vojislav Stanojević, Miloš Milić

Faculty of Organizational Sciences
University in Belgrade
Jove Ilica 154
11000 Belgrade, Serbia
e-mail: {dules, vlajic, slazar, ilijaa, vojkans, mmilic}@fon.bg.ac.rs

Alberto Rodrigues da Silva

INESC-ID, Instituto Superior Técnico
Universidade de Lisboa
e-mail: alberto.silva@tecnico.ulisboa.pt

Abstract. The software requirements engineering process is a part of a software
development process and one of the key processes in software development. The
elicitation, analysis, specification and validation of software requirements occur dur-
ing the requirements engineering process. Use cases are used as a technique for
functional system specification. Different notations can be used for a use case spec-
ification. In this paper, we present SilabReq Domain Specific Language (SilabReq
DSL) for use case specification. On the one hand, we develop this language to de-
scribe the use cases in clear and precise way through the meta-model, and on the
other hand to specify the use cases to be readable and understandable for all stake-
holders in the software development project. This allows us to develop different
transformations to get the structure and the behavior of the system from defined
use cases. In this paper apart from the SilabReq DSL, we present some of these
transformations.

Keywords: Software requirements, use case specification, model transformation,
UML, domain specific language



878 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

1 INTRODUCTION

The development of information systems is a complex and social process that involves
many interactions among different stakeholders. To make this process successful, it
is necessary to understand the system requirements and document them in a suitable
manner. There are different definitions of requirements, namely:

1. a property that must be exhibited in order to solve some real-world problem
[17];

2. needs and constraints placed on a software product that contribute to the solu-
tion of some real-world problem [20] or descriptions of the services provided by
the system and its operational constraints [35].

Still according to the IEEE definition, a requirement is

1. a condition of capability needed by a user to solve a problem; or

2. a condition or a capability that must be met or possessed by a system to satisfy
a contract, standard specification or other formally imposed document [16].

Requirements may be presented in different ways. Herman and Svetinovic [8]
make a distinction between requirements and their presentation. They define ontol-
ogy for the representation of requirements and emphasize two forms of requirement
representation as follows: a descriptive requirements presentation and a model based
presentation of the requirements. Software requirements are a set of functions that
the system should provide for users of the system. Depending on the level of abstrac-
tion, we can distinguish between user and system requirements. User requirements
are the requirements of high-level abstractions representing functions the system
should provide. On the other hand, system requirements are a detailed specifica-
tion of these functions. Furthermore, both user and system requirements can be
functional and nonfunctional. Functional requirements define the required system
functions, while non-functional requirements define all other requirements, which are
primarily related to quality requirements like usability, reliability and others [35].

The result of the requirements development specification process is a clear and
precise specification of the system to be implemented. Since use cases are used as
a technique to specify the desired function of the system, the problem of the use
case specification and the use case notation are main problems that we consider in
this paper. According to the UML, “a use case is the specification of a set of actions
performed by a system, which yields an observable result that is, typically, of value
for one or more actors or other stakeholders of the system [27]”. However, UML
does not define the specification of these actions. The focus of this paper is a more
detailed specification of these actions.

Model-Driven Development (MDD) is a software development paradigm that
emphasizes the importance of models during the entire software development pro-
cess [24]. The aim of MDD is to use models throughout the software development
process at different levels of abstraction. Therefore, models are used not only to



Use Case Specification Using the SILABREQ Domain Specific Language 879

document some part of a system; but models are first-citizen in software develop-
ment. MDD process usually starts by developing a requirements model, which is
defined by describing user’s needs in a computational independent way. Then, this
model can be refined into one or more models that describe the system without con-
sidering technological aspects. Finally, these models are either refined into design
models that describe the system by using concepts of a specific technology and are
then translated into a code; or are directly derived to a code if they contain enough
information to implement the software system in a precise and complete way [45].

However, despite the importance of requirements engineering as a key success
factor for software development projects [42, 43, 44, 29], there is still a lack of MDD
“method” that would cover the full development lifecycle, from the requirements
engineering level to the code generation level or writing level [23]. The integration
of use cases within the MDD process [25] requires a rigorous definition of the use
case specification, particularly description of sequences of actions step, pre- and
post-conditions, and relationships between use case models and domain models [4].

In this paper, we propose the SilabReq language to specify use cases. SilabReq
is a domain specific language (DSL) that allows to specify user and system actions
in a clear and precise way. This language uses a text specific syntax. By defining
the use case actions in a clear and precise way, the use case model is described
more formally. Additionally, by applying transformations from the source use case
model, it is possible to get different models that can describe the structure of the
system, or the system behavior as a set of functions that the system should provide.
The paper is organized as follows. Section 2 presents the related works. Section 3
describes SilabReq DSL, namely its concrete and abstract syntax. Section 4 explains
different system models that can be created from the SilabReq DSL use case model.
The models are obtained as a result of the use case model transformation which is
described by SilabReq DSL, in particular models describing the system boundary, or
its structures and the behavior of the system, as well as models which can be used
for visual monitoring of the use cases execution. The usage of the SilabReq DSL is
shown in some use cases in the system of the electronic office.

2 RELATED WORK

Requirements are mostly documented using natural languages as structured para-
graphs of text. However, natural language requirements specification tends to be
ambiguous, unclear, and inconsistent [35]. In fact, it is difficult clearly define data,
function and behavior perspectives of these requirements because they overlap. On
the other hand, documenting requirements using semi-formal models requires a spe-
cific modeling language (such as UML, SysML, ReqIF, ANDORA) for each partic-
ular perspective.

The specification of requirements is a difficult task because different stakehold-
ers with different technical knowledge read the requirements. People prefer to use
textual specification of requirements, but these representations are not suitable for



880 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

automatic transformation or for reusing. We need a structured language for require-
ments specification that should be understandable by most stakeholders but also that
should be precise enough to enable automatic transformations. That means this lan-
guage should be defined by meta-model or grammars in order to enable automatic
or semi-automatic processing.

UML has become a standard language for modeling software systems and many
people have used it for requirements specification. However, some authors have
argued that UML has some deficiencies as a semiformal requirements specification
language [7]. For example:

1. UML specification defines a use case as a sequence of actions, but the specifica-
tion of actions is not clearly defined, and consequently, different notations are
used to describe these actions; or

2. UML uses different types of diagrams (e.g. interaction diagram or activity dia-
gram) to describe the interactions within a use case. On the other hand, different
authors such as Rolland [31], Cockburn [6], and Li [22] have also proposed tex-
tual descriptions of use cases.

Different forms or templates to specify use cases defined by different authors
usually contain common elements that can be found in almost all templates. In
practice, two templates emerged as the most commonly used:

1. Cockburn’s use case template [6], and

2. Rational Unified Process use case template [18].

Smia lek suggests a different notation for the use case description [40]. He sug-
gests that we need to have different notations for different stakeholders and he relates
certain notation of use cases with user’s role in software development process. He
emphasizes that the ideal notation for the use cases description should be “rich” be-
cause different stakeholders have different views on the use case. Smia lek suggests
several views of the use case, namely:

1. user’s point of view,

2. analyst’s point of view,

3. designer’s point of view,

4. user interfaces designer’s point of view and

5. tester’s point of view.

Smia lek proposes five different notations for the use cases description that are
based on structured text, interaction diagrams and activity diagrams. He also de-
fines a meta-model for structured textual representation of use cases that is based
on simple grammatical sentences. These sentences are in the form of “subject-
verb-direct object”, but can also appear in the form of “subject verb-indirect ob-
ject” [40].



Use Case Specification Using the SILABREQ Domain Specific Language 881

Furthermore, formalisms based on formal specification languages, such as Petri
nets [19] or Z [36] have been used for the use cases specification. The main blemish
of formal notations is that they are very difficult to be understood by non-technical
stakeholders.

There are requirements specification languages (RSL) that use the natural lan-
guage in a controlled way. RSL [37] is a semiformal natural language that employs
use case for specifying requirements. RSL has been developed as a part of the ReD-
SeeDS project [38]. ReDSeeDS approach covers a complete chain of model-driven
development: from requirements to coding [39]. Olek et al. [30] developed language
called ScreenSpec that can be used to quickly specify screens during the requirements
elicitation phase.

Some [41] defines the abstract syntax of a textual presentation of use cases.
Some emphasizes that certain elements (formalisms) of the UML languages such as
actions or activities are formally defined through a meta-model. He defines a meta-
model to describe the interaction between system users and the system. His work
was inspired by a variety of guidelines how to write use cases and various defined
forms (templates) [5, 11].

The goal of ProjectIT [32, 34] is to provide a complete software development
workbench with the support for a project management, requirements engineering,
analysis, design and code generation activities. ProjectIT-Requirements is the com-
ponent of the ProjectIT architecture that deals with requirements issues. The main
goal of the ProjectIT-Requirements is to develop a model for the definition and doc-
umentation of requirements which, by raising their specification rigor, facilitates the
reuse and fastens the integration with development environments driven by models.
When different types of requirements are taken into account, this project uses soft-
ware requirements, that can be more easily “converted” into software design models
by MDD approaches [12, 33].

RSLingo [13] is a linguistic approach for improving the quality of requirements
specification based on two languages and a mapping between them. The first lan-
guage is the RSL-PL (Pattern Language), an extensible language for defining lin-
guistic patterns dealing with information extraction from requirements written in
the natural language [10]; and the second one is RSL-IL (Intermediate Language),
a formal language with a fixed set of constructs for representing and conveying
RE-specific concerns [14].

UML tools like IBM Rational Software Architect or EclipseUML do not support
the description of the internal structure of use cases. On the other hand, tools
focusing on textual use cases descriptions like CaseComplete leave out the use case
constructs defined by the UML specification. NaUTiluS [9] presents an extensible,
Eclipse-based toolkit, which offers integrated UML use case modeling support, as
well as editing capabilities for their textual descriptions. NaUTiluS consists of a set
of plug-ins that are embedded in the ViPER platform.

The subject of the research presented in this paper is a specification of the
functional systems requirements described by the use cases. Since the use cases are
defined as a sequence of actions between one or more system users and systems, the



882 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

subject of this paper is how to specify these actions. Use cases contain one main
scenario and zero or more alternative scenarios while each scenario contains one or
more use case actions. We divide these actions in two categories:

1. actions performed by the users and

2. actions performed by system and formally described by using SilabReq Domain
Specific Language.

Both categories contain different types of actions. In the category where the user
performs actions, we identified actions types such as:

1.1 Actor Prepare Data to execute System Operation (APDExecuteSO) and

1.2 Actor Calls System to execute System Operation (ACSExecuteSO).

On the other hand, in the category in which actions are performed by the system,
we identified two action types such as:

2.1 System executes System Operation (SExecuteSO) and

2.2 System replies and returns the Result of the System Operation execution (SR-
ExecutionSO).

These actions are specified in requirements specification document using SilabReq
DSL. SilabReq DSL has been developed using Xtext framework [35]. By defining
the use case actions in a clear and precise way, the use case model is described more
formally. In this way, by applying different transformations of the use case model, it
is possible to get different models that can describe system boundary, the structure
of the system or system behavior as a function that the system should provide.

3 LANGUAGE FOR USE CASE SPECIFICATION

This section is an overview of the SilabReq DSL, namely of its history, concrete and
abstract syntax.

3.1 About Silab Initiative

Silab initiative was initiated in the Software Engineering Laboratory at the Faculty
of Organizational Sciences, University of Belgrade, in 2007. The main goal of this
project was to enable automated analysis and processing of software requirements
in order to achieve automatic generation of different parts of a software system.

Initiative Silab was divided in SilabReq and SilabUI projects that were developed
separately. SilabReq project considered the formalization of user requirements and
their transformations into different UML models in order to facilitate the analyses
process and to assure the validity and consistency of software requirements. SilabReq
language is the main part of this project. On the other hand, SilabUI project
considered impacts of the particular elements of software requirements and data



Use Case Specification Using the SILABREQ Domain Specific Language 883

models on resulting user interfaces in order to develop a software tool that enables
automatic generation of user interfaces based on the use case specification and the
domain model.

When both subprojects reached the desired level of quality, they were integrated
in a way that some results of SilabReq project can be used as an input for SilabUI
project. As a proof of concept, Silab initiative has been used for the Kostmod 4.0
project, which was implemented for the needs of the Royal Norwegian Ministry of
Defense [3].

The SilabReq project includes the following components (Figure 1): SilabReq
Language, SilabReq Transformation and SilabReq Visualization.

SilabReq 
Language

SilabReq 
Transformation

SilabReq 
Visualisation

SilabReq 
project

Figure 1. Main components of the SilabReq project

The SilabReq language is a controlled natural language for the specification use
cases. The SilabReq transformation is responsible for transforming software require-
ments into different models. Currently, we have developed transformations that
transform a SilabReq model into an appropriate UML model. These transforma-
tions are:

1. SilabReqConceptModel transformation generates domain model (T1),

2. SilabReqSystemOperation transformation generates system operations,

3. SilabReq transformation generates UML use case model (T3),

4. SilabReq-Sequence generates UML sequence model,

5. SilabReq-StateMachine generates UML state-machine model (T2) and,

6. SilabReq-Activity generates UML activity model (T4).

Figure 2 presents some of these transformations.
All these transformations are defined through Kermeta language for meta-model-

ing. Kermeta is a model-oriented language where the meta-model is fully com-
patible with OMG Essential Meta-Object Facility (EMOF) meta-model [28] and
Ecore meta-model, and is part of the Eclipse Modeling Framework (Eclipse Model-
ing Framework EMF) [2].

The SilabReq visualization component is responsible for visual presentation of
the specified software requirements. Therefore, we can present SilabReq use cases
specification through UML use case, UML sequence, UML activity or UML state-
machine diagram.



884 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

SilabReq meta-model

SilabReq model

instance

Class uml meta-
model

Use case uml 
meta-model

Activity uml 
meta-model

State machine uml 
meta-model

Uml meta-model

State machine uml 
model

Use case uml model

Class uml model

Activity uml model

instance

instance

instance

instance

T1

T2

T4

T3

presents
presents

presents
presents

UML use-case 
diagram

UML state 
machine 
diagram

UML activity 
diagram

UML class 
diagram

Figure 2. SilabReq transformations

3.2 Defining the SilabReq Language

Kleppe defines the language as “a set of rules according to which the linguistic ut-
terances of L are structured, optionally combined with a description of the intended
meaning of the linguistic utterances” [21]. In accordance to the Kleppe definition,
when defining a programming language it is necessary to define the rules that are
used to create a different structure of the language (language syntax), while defin-
ing the meaning of the terms (semantics of the language) is optional. Defining the
syntax of the language involves defining concrete and abstract syntax of the lan-
guage. The abstract syntax of the language describes the concepts that appear in
the language and their relationships regardless of a manner of their presentation.
On the other hand, the concrete syntax provides a representation of the language
concepts defined by using abstract syntax, which allows us to use them to create
a user-friendly language expression.



Use Case Specification Using the SILABREQ Domain Specific Language 885

Different approaches for languages definition use different formalisms to define
abstract and concrete syntax of these languages. Fondement and Baar [15] used
the formalism meta-model for definition of both abstract and concrete syntax. The
concrete syntax can be described by a separate meta-model, while the connection
between the elements of the meta-model of concrete syntax and the elements of
the meta-model of abstract syntax is realized through the model transformation.
For example, XText framework uses meta-model and grammar formalisms. This
framework uses the BNF grammar for describing the concrete syntax of languages.
On the other hand, based on the BNF grammar, the XText framework creates
a meta-model that describes the abstract syntax of the language.

SilabReq DSL was developed with XText framework, which is a framework for
the development of both domain-specific and programming languages that use the
text concrete syntax. This framework is based on openArchitectureWare generator
framework, the Eclipse Modeling Framework and ANTLR (Another Tool for Lan-
guage Recognition parser generator) [1]. SilabReq definition starts with definition
of the context free grammar of the language that is described using the extended
Backus Naur form.

The remainder of this section presents both the abstract and the concrete syntax
of SilabReq language. The abstract syntax is described by the formalism meta-
model, while the concrete syntax is described through XText grammar.

3.3 Defining the Syntax of SilabReq Language

A use case model includes the use cases, actors of the system and the relationship
between them. SilabReq language extends the use case model with a concept that
we call the Concept (see Figure 3).

Concept

-name
-conceptDescription

RequirementsCaseModelActor

-name
-description

UseCase

-name
-useCaseName

conceptDataUC

0..1

0..*

data

actors

0..*

ucactor

usecases

0..*

0..*

Figure 3. Use case model in SilabReq DSL



886 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

The Concept presents business entity and it was introduced to find objects
and/or their properties (attributes). The founded objects are candidates for the
domain (conceptual) class.

Furthermore, the Concept is introduced to specify the data that the user enters
on one hand, and to specify the data that the system shows to user, on the other
hand.

Nakatani et al. [26] say that most use cases that are identified in business system,
are primarily related to the CRUD operations that are executed over the domain ob-
jects. According to their study, and based on our experience in developing software
systems, we noticed that each use case is connected to a single entity or business
entity, over which the observed (current) use case is executed.

Therefore, we created the following grammar defining the use case model using
the RequirementsUseCaseModel rule, the user over the Actor rules, the concept over
the Concept rule and the use case through UseCase rule. Below is the grammar of
the RequirementsUseCaseModel rule.

RequirementsUseCaseModel:

(actors+=Actor)+

(data+=Concept)*

(usecases+=UseCase)+;

Actor:

"Actor:" name=ID description=STRING? ;

Concept:

"DataConcept:" name=ID conceptDescription=STRING?;

In SilabReq DSL a use case is defined by using the scenario that consists of one or
more blocks of actions (Figure 4).

The use case scenario is defined through UseCaseFlow rule, while the block of actions
in the scenario is defined by CompleteActionBlock rule. The use case scenario consists of
one or more blocks of actions. Each block of actions contains:

1. Actions performed by the user of the system, which are defined by the UserActionBlock
rule and,

2. Actions performed by the system, as defined by SystemActionBlock rule.

UseCase rule is used to define the use cases. The use case definition begins by speci-
fying a unique identifier and the use case name. Both attributes are required. After that,
the use case definition continues by stating:

• Users of the system (ucactor) who participate in use case and

• Concept (conceptDataUC ) in which a use case is executed.

The number of users who use a certain use case can be one or more. The user of
the system and the Concept are defined in the use case model, so we just make a choice
and establish the links (cross references) to a defined object (concrete user or concrete
concept). The use case definition is finished with the definition of the use case scenarios
over UseCaseFlow rule.



Use Case Specification Using the SILABREQ Domain Specific Language 887

UseCase

-name : EString
-useCaseName : EString

UseCaseFlow CompleteActionBlock

UserActionBlock SystemActionBlock

useCaseFlow
0..1

completeActionBlock

0..*

0..1 0..1
userActionBlock systemActionBlock

-description : EString

Figure 4. UseCaseFlow with CompleteActionBlock

The CompleteActionBlock rule is used to define a block of actions to execute by the
user of the system described by UserActionBlock rules and actions performed by the
system, described by SystemActionBlock rule. This block of actions is seen as a whole
and each block of actions must contain an action performed by the user of the system and
actions performed by the system.

CompleteActionBlock:

(userActionBlock=UserActionBlock)

(systemActionBlock=SystemActionBlock);

3.3.1 The User Actions

The user actions are described by UserActionStepType rule. This rule is an abstract parser
rule that is implemented through:

• DirectiveStep rule that we use to describe UML include relationship (described using
Include rule) and UML extend relationship (described using ExtensionPoint rules)
between the use cases, or

• UserActionStep rules that we use to describe the actions performed by the user as we
have defined using the ActionUserActionStep rule, and actions that we use to describe
the control structure defined by ControlUserActionStep rule.

The Figure 5 describes meta-model of the action that are executed by the user.
The user immediately executes two types of actions: actions that the user uses to

prepare data for execution of the system operations, which is defined by APUSOActionStep



888 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

U
se
rA
ct
io
nB
lo
ck

C
om

pl
et
eA
ct
io
nB
lo
ck

U
se
rA
ct
io
nS
te
pT
yp
e

us
er

A
ct

io
nB

lo
ck

0.
.1

ac
tio

nS
te

pT
yp

e
0.

.*

D
ire
ct
iv
eS
te
p

U
se
rA
ct
io
nS
te
p

C
on
tr
ol
U
se
rA
ct
io
nS
te
p

A
ct
io
nU
se
rA
ct
io
nS
te
p

Ex
te
ns
io
nP
oi
nt

In
cl
ud
e

-n
am

e 
: E

S
tri

ng
-u

se
C

as
eN

am
e 

: E
S

tri
ng

Figure 5. Meta-model of the user actions

rule, and the actions which the user uses to call system to perform the system operations,
defined by the APSOActionStep rule. The actions that the user performs can be executed
iteratively, so we have defined UserIterateActionStep rule to describe it. Also, the actions
that the user performs can be executed under certain conditions for which we have defined
UserIFActionStep rule. The Figure 6 shows the meta-model of these actions.

When we define the action that the user uses to prepare data for executing the system
operations (APUSOActionStep), we use Data rules to describe these data. The Figure 7
describes the meta-model for the description of these data.



Use Case Specification Using the SILABREQ Domain Specific Language 889

U
se

rA
ct

io
nS

te
p

C
on

tro
lU

se
rA

ct
io

nS
te

p
A

ct
io

nU
se

rA
ct

io
nS

te
p

U
se

rIt
er

at
eA

ct
io

nS
te

p
U

se
rIf

A
ct

io
nS

te
p

-s
te

pN
um

be
r :

 E
in

t
-a

ct
io

n 
: E

S
tri

ng

A
P

U
S

O
A

ct
io

nS
te

p
A

P
S

O
A

ct
io

nS
te

p

-n
um

S
te

p 
: E

in
t

-a
ps

oA
ct

io
n 

: E
S

tri
ng

-s
te

pN
um

be
r :

 E
in

t
-a

pu
so

A
ct

io
n 

: E
S

tri
ng

A
P

U
S

O
A

ct
io

nS
te

p

-d
es

cr
ip

tio
n 

: E
S

tri
ng

D
at

a

A
P

S
O

O
pe

ra
tio

n

N
ew

O
pe

ra
tio

n
E

xi
st

O
pe

ra
tio

n
-n

am
e 

: E
in

t
-d

es
cr

ip
tio

n 
: E

S
tri

ng

A
ct

or

-n
am

e 
: E

S
tri

ng
-d

es
cr

ip
tio

n 
: E

S
tri

ng

ac
to

rIn
S

te
p

0.
.1

ap
so

O
pe

ra
tio

n
0.

.1

na
m

e
0.

.1

ap
us

oA
ct

io
nD

at
a

0.
.*

ap
us

oA
ct

io
nD

es
cr

ip
tio

n

0.
.1

Figure 6. Meta-model of action that user executes immediately



890 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

ChooseData

DataConceptAttribute Param

Data

-paramName : EString
-paramDescription : EString

chooseData
0..1

Concept AttributeConcept

name viewAttribute0..1 0..*

-name : EString
-conceptDescription : EString

-name : EString
-attributeDescription : EString

Figure 7. Meta-model of Data rules

The grammar of the SilabReq DSL contains two rules used to define the description of
the different types of data that the user enters. The DataConceptAttribute rule describes
the data entered by the user, which are candidates for the domain concepts, and domain
attributes of the concept. The Param rule specifies other data entered by the user, which
are required for execution of the system operations.

When we define the action that the user uses to call the system to execute the system
operation that is defined by APSOActionStep rule, the user specifies the operation that
the system should execute (name and description of the operation). The Figure 8 describes
the meta-model of this action.

ApsoOperation

NewOperation ExistOperation

APSOActionStep

-name : EString
-description : EString

apsoOperation
0..1

-numStep : EInt
-apsoAction : EString

name0..1

Figure 8. Meta-model of the system operation



Use Case Specification Using the SILABREQ Domain Specific Language 891

3.3.2 The System Actions

The use case actions that the user performs are defined through SystemActionBlock rule.
The system executes three types of actions. The first type of action is used to validate data
that the system accepts from the user. When the system executes the data validation, it is
necessary to define the data for the validation and the validation method. The validation
method is defined by a descriptive attribute that describes how the system validates the
data. Another type of action is used to define the operations that the system executes, it is
defined by APSOOperation rule. The third type of action represents the system response
to the user and it is defined by IAResponse rule. Corresponding grammar is presented
bellow.

SystemActionBlock:

"SYSTEM ACTIONS:"

"VALIDATE: "

(rules=[Concept] "rule" description=STRING )*

"EXECUTE: "

systemOperation=APSOOperation

"RESPONSE:"

(ia=IAResponse)

"END SYSTEM ACTIONS";

Furthermore, the Concept is introduced to specify the data that the user enters on
the one hand, and to specify the data that the system shows to user, on the other hand.

There are two different possibilities when the system executes the system operations:

• system operation is executed successfully and the system shows the answer to the user

• system operation generates an exception and the system shows an error to user.

The SilabReq DSL uses the SuccessfulResponse rule for a successful answer to the user,
while it uses the ErrorResponse rule for an exception answer to system. When the system
defines the response to the user, it returns a message. A message can contain only the
text, only the required data or the text with the required data. The Figure 9 shows the
meta-model for description of the response generated by the system after the execution of
the system operations. In addition, the Figure 9 shows the grammar for these rules.

The ErrorResponse rule defines the response to the system when the execution of
a system operation generates an exception. The Figure 10 presents the meta-model of
ErrorResponse rule with an appropriate grammar.

The answer that the system returns to the system in the case of an unsuccessful
execution of the system operation is defined by using a message (messageDescription) and
the action that follows (errorAction). The action that follows can break the execution of
the use case scenarios (interrupt scenario) or can be referenced by the previously defined
action (goto step).

3.4 Models Based on the Use Case Specification

Model-Driven Engineering (MDE) is a software development approach based on models.
Using models in software development requires a formal and complete definition of these



892 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

Si
ng
le
Va
lu
e

R
et
ur
nC
on
ce
pt

-n
am
e

-d
es
cr
ip
tio
n

Va
lu
e

D
at
aC
on
ce
pt
A
ttr
ib
ut
e

fil
lD
at
e

0.
.1

A
ttr
ib
ut
eC
on
ce
pt

-n
am
e

-a
ttr
ib
ut
eD
es
cr
ip
tio
n

C
on
ce
pt

-n
am
e

-c
on
ce
pt
D
es
cr
ip
tio
n

na
m
e
0.
.1

vi
ew
A
ttr
ib
ut
e

0.
.*

co
nc
ep
tID

0.
.1

M
es
sa
ge
C
on
ce
pt

M
es
sa
ge
Te
xt

-m
es
sa
ge
D
es
cr
ip
tio
n

Su
cc
es
sf
ul
R
es
po
ns
eM
es
sa
ge

re
sp
on
se
C
on
ce
pt

0.
.*

re
sp
on
se
Te
xt

0.
.1

M
es
sa
ge

-m
es
sa
ge
N
um
S
te
p

re
sp
on
se

0.
.1

IA

m
es
sa
ge

0.
.1

Su
cc
es
sf
ul
R
es
po
ns
e

ia 0.
.1

Figure 9. Meta-model of system successful response



Use Case Specification Using the SILABREQ Domain Specific Language 893

ErrorAction

ErrorOption
errorAction

0..* ErrorResponse

erOption
0..*

-stepNumber

-messageStep
-optionNumber
-messageDescription

Figure 10. Meta-model of system error response

models. The model definition is done through a meta-model. Therefore, the meta-model
is a model of the model and defines the rules for creating models. Meta-models can
be defined by meta-model languages such as MOF, EMOF, Ecore. Furthermore, model
transformations are one of the key mechanisms in MDE. The model can be executed
through its transformation into the code of a programming language (code generation), or
by creating an interpreter (model interpretation). There are different approaches in model
transformation. We can roughly identify five categories for the model transformation such
as:

• model transformation using general-purpose programming languages (e.g. Java)

• model transformation with tools for transformation (e.g. Graph Transformations, or
XSLT)

• model transformation with tools for transformation models (e.g. OMG QVT, ATL,
MTL)

• model transformation with tools for meta-modeling (e.g. Kermeta, Metacase or Xac-
tium).

In this paper we present a set of transformations that we use to create models that
show the system boundary (UML use case model), the structure (UML class model) and
behavior (UML state machine model) of the system. These transformations are defined
in the Kermeta language [2]. Kermeta is a model-oriented language, which meta-model
is fully compatible with Essential OMG Meta-Object Facility (EMOF) meta-model and
Ecore meta-model, both supported by the Eclipse Modeling Framework.

User requirements are usually defined by a natural language in some form of text.
The reason for defining user requirements in the form of text comes from the fact that
the natural language is understandable by all stakeholders in the software development
and does not require additional technical knowledge. On the other hand, the system
requirements are described more formally. One way to present system requirements is
through a set of models. Most often, these models are describing graphical representations
of the observed problems, namely by the business processes, the flow of documents or data,
the architecture of the system, and describe the context of system.



894 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

Therefore, as these models are mostly visual and graphical, they become more under-
standable in relation to a natural language because of ambiguity that may cause misunder-
standing of the observed problems. In a software development process, the use of models
is desirable in all its phases. It is almost impossible to imagine the phase analysis of the
system without using graphical models. As the analysis phase defines the system specifi-
cations, the use of the models is extremely important at this stage in order to explicitly
describe a system. For example, in the analysis phase it is very important to determine
the boundaries of the system and determine what the system is and what its environment
is. The context diagram that is commonly used in structural analysis is a model that
shows the context of the system. In this paper, the system and the system context are
represented through the UML use case diagrams.

The conceptual model can describe the logical structure of a software system. The
conceptual model contains classes and associations between these conceptual classes. In
this paper, we identified the conceptual classes based on the use case specification. We
identified conceptual classes as well as their attributes and associations that exist between
them.

3.4.1 The System Context

One of the aims of the software requirements engineering is to define the functional re-
quirements of the system. The system functional requirements are described using the
use cases. The use cases can be visually presented through the UML use case diagram.
The use case diagram does not show the details of the use cases themselves, but clearly
describes the boundary of the system, defines the system actors and shows the relationship
which exists between users of the system and the use cases, and relationships between the
use cases. Therefore, the use case diagram provides an excellent conceptual overview of
the system and the system boundaries.

We defined the SilabReqUC transformation that transforms SilabReq use case model
(specified textually) into UML use case model (visually represented through UML use case
diagrams). The Figure 11 shows this transformation.

SilabReq meta-model

SilabReq model

instance

Use case meta-model

Use case UML model

instance

UML meta-model

SilabReqUC

Figure 11. SilabReqUC transformation of use case model

The key elements of this transformation will be explained through several use cases
such as Register new book for certification (UC1) and Search books for certification (UC2)



Use Case Specification Using the SILABREQ Domain Specific Language 895

in the electronic office system. The explanation begins with a specification of both use cases
in SilabReq language, followed by an explanation of the transformation and presentation
of results of the transformation.

The counter worker (actor) executes the use case UC1. This use case (UC1) is extended
by UC2, in the case when user first wants to review existing books to be certified, and
after that enters a new book for certification. The user enters the following data for the
book certification:

• the date when the book is opened

• title of the book

• the book identification.

The counter worker executes the use case UC2. The counter worker first enters the
criterion for searching, and then as a result gets a list of books that match the given
criteria.

The use case specification of these use cases is given below.

UC: UC_RegisterNewBook "Register book for certification" {

Actors: CounterWorker

Concept: CertificationBook

USE CASE FLOW:

USER ACTIONS:

extension point: "Searching existing books"

UC_SearchBook

apuso:<1> CounterWorker chooses {Worker}

apuso:<2> CounterWorker puts

{CertificationBook.dateOpened .code

.name .valid}

apso: <3> CounterWorker calls system to

[op_saveBook "register new book

for certification"]

SYSTEM ACTIONS:

VALIDATE:

EXECUTE:

op_saveBook

RESPONSE:

SUCCESSFUL

<4> shows message: <"The book is saved">

EXCEPTION

Start option:

<4.1> error message: "The book is not saved"

action: interrupt use case flow

End option

END SYSTEM ACTIONS

}

Use case specification: Register new book for certification



896 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

UC: UC_SearchBooks "Search book for certification" {

Actors: CounterWorker

Concept: CertificationBook

USE CASE FLOW:

USER ACTIONS:

apuso: <1> CounterWorker puts {$ "criteria for searching"}

apuso: <2> CounterWorker puts {$ "values" "enters values

for searching"}

apso: <3> CounterWorker calls system to [op_findBook

"find book with given criteria"]

SYSTEM ACTIONS:

VALIDATE:

EXECUTE:

op_findBook

RESPONSE:

SUCCESSFUL

<4> shows message: <"Books with given criteria"> return:

[CertificationBook] fill CertificationBook.Name

EXCEPTION

END SYSTEM ACTIONS

}

Use case specification: Searching books for certification

During the transformation of the use case specification into the use case model, the
SilabReqUC transformation:

• for each use case, generates UML package (uml::Package) with the same name as the
name of the use case

• for each use case, generates UML use case (uml::UseCase) whose name is identical to
the name of a defined use case. The generated UML use case is inside the generated
package with the same name

• generates “association” (uml::Association) between users and use case

• generates “extends” relationships (uml::Extend) between the two use cases when the
use case specification of one use case contains defined extension points

• generates “include” relationships (uml::Include) between the two use cases when the
use case specification of one use case includes the other.

So, the printUseCaseIncludeExtend method into SilabReqUC transformation is re-
sponsible for searching of the elements of the use case specification which we used to
create “extend” and “include” relationships. The method is given below:

operation printUseCaseIncludeExtend(theUseCase : reqDSL::UseCase) :

Void is do

var uc:uml::UseCase

uc:=umlModel.putInModelUseCase(theUseCase.name,theUseCase.name)

theUseCase.useCaseFlow.completeActionBlock.each{



Use Case Specification Using the SILABREQ Domain Specific Language 897

completeActionBlock|var userActionBlock:reqDSL::

UserActionBlock

userActionBlock:=completeActionBlock.userActionBlock

userActionBlock.actionStepType.each{actionStepType|

if actionStepType.isInstanceOf(reqDSL::

ExtensionPoint) then

var useCase:uml::UseCase

useCase:=umlModel.getUseCaseRef(uc.name,uc.name)

var extPoint:reqDSL::ExtensionPoint

extPoint:=actionStepType.asType(reqDSL::

ExtensionPoint)

var useCaseWhichExtend:uml::UseCase

useCaseWhichExtend:=umlModel.getUseCaseRef

(extPoint.extpoint.name,

extPoint.extpoint.name)

umlModel.putInModelExtendUseCase

(uc.name,useCase,

useCaseWhichExtend)

end

}

}

end

Based on the use case specifications of these use cases (UC1 and UC2), SilabReqUC
transformation creates an UML use case model that is visually displayed through UML
use case diagrams. The figure below shows the UML use case diagram for these two use
cases (Figure 12).

3.5 Structure and Behavior of the System

3.5.1 The SilabReqSpecUCConceptModel Transformation

The analysis model that describes the logical structure and behavior of software systems
can be created from the use case specification. We have developed the SilabReqSpecUC-
ConceptModel transformation that is responsible for creating a model that describes the
logical structure of a software system, and the SilabReqSpecUCSystemOperation transfor-
mation which is responsible for creating a model that describes the behavior of the system.
Both transformations are created in Kermeta language for meta-modeling.

The conceptual model describes the structure of a software system and can be visually
represented through the UML class diagrams. The UML class diagram is a visual pre-
sentation of the elements contained in the UML class model. Therefore, SilabReqSpecUC-
ConceptModel transformation is the transformation of the corresponding elements of the
SilabReq use case model into UML class models.

The SilabReq DSL consists of the expressions that are formed based on concepts ap-
pearing in the meta-model of SilabReq language. Therefore, it can be said that expressions
are model concepts defined in SilabReq meta-model. In this section, we present the key
concepts (classes) of SilabReq meta-models that are used to generate the UML class model.



898 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

UC_SearchBooks

CounterWorker

UC_SearchBooks

UC_RegisterNewBook

CounterWorker

UC_RegisterNew
Book

System

Figure 12. UML use case diagrams for UC1 and UC2

The UML class diagram below shows meta-classes of SilabReq DSL that contain se-
mantics that allow us to identify conceptual classes and their attributes in the system
(Figure 13).

In the transformation process, we have used the Concept meta-class to identify domain
classes, while we use the meta-class AttributeConcept to identify appropriate attributes of
domain classes.

For example, we have defined printActionUserActionStep method within the SilabRe-
qSpecUCConceptModel transformation that searches required elements in the use case
specification that contains semantics for identifying structure of the system. If this method
finds these elements in the use case specifications of this action, then we created a rela-
tionship between the identified concept and the use case main concept (each use case is
related with one main concept).

operation printActionUserActionStep(theActionUserActionStep : reqDSL::

ActionUserActionStep) : Void is do

if (theActionUserActionStep.isInstanceOf(reqDSL::

APUSOActionStep)) then

var pom:reqDSL::APUSOActionStep

pom:=theActionUserActionStep.asType(reqDSL::APUSOActionStep)

pom.apusoActionData.each{d|

var data:reqDSL::Data

var cd : reqDSL::ChooseData

data:=d



Use Case Specification Using the SILABREQ Domain Specific Language 899

cd:=data.chooseData

if cd.isInstanceOf(reqDSL::DataConceptAttribute)then

var cda:reqDSL::DataConceptAttribute

cda:=cd.asType(reqDSL::DataConceptAttribute)

cda.viewAttribute.each{att|

cModel.putInModelClassAttribute("DomenConcept",

cda.name.name,att.name)

}

var cc:reqDSL::Concept

cc:=cda.name

var cl:uml::Class

cl:=cModel.getClassRef("DomenConcept",cc.name)

var clOn:uml::Class

clOn:=cModel.getClassRef("DomenConcept",ucMainConcept.name)

if (cl.name!=clOn.name) then

cModel.createRelationship(cl,clOn)

end

end

}

end

ChooseData

DataConceptAttributeParam

Data

-paramName : EString
-paramDescription : EString

chooseDat
a

0..1

ConceptAttributeConcept

nameviewAttribut
e 0..10..*

-name : EString
-conceptDescription : EString

-name : EString
-attributeDescription : EString

Figure 13. The classes of SilabReq DSL that contain semantic for conceptual model

Based on the use case specification of the use cases (UC1 and UC2), SilabReqSpecUC-
ConceptModel transformation creates the UML conceptual model that shows the identified
class of the system. This conceptual model class is presented through the UML class
diagram in the Figure 14.



900 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

CertificationBook

Worker
certificationBook

1
-code
-name
-valid
-dataOpesed

*

DomainPackage

Figure 14. Conceptual model for Register new book for verification and Searching books
for verification use cases

3.5.2 SilabReqSpecUCSystemOperation Transformation

Use cases describe how users interact with the system, and therefore use cases describe
what the system does, not how it works. The system is viewed as a black box. During the
interaction, the user sends a request for a certain requirements to system expecting to get
a specific response. When the user sends a request to the system, he/she calls the system
to perform a system operation.

SilabReq language contains the definition of an action, which the user uses to call the
system to perform the system operation. Based on these actions, but also on the action
that the system uses to execute the system operation, and the action by which the system
returns the result of the execution of the system operation, it is possible to get specification
of the system operations, in other words functions that the system should provide.

SilabReq language uses the instance of meta-class APSOOperation or classes New-
Operation and ExistOperation to define the system operation. In the use case, SilabReq
language allows:

• Creating the new system operation if it does not already exits, or

• Referencing to the existing system operation.

Therefore, the meta-model contains two classes for the specification of the system
operation. The class NewOperation is used to specify new systems operations, and the
class ExistOperation is used to refer to an existing system operation.

The result of the execution of the system operation is defined by meta-classes that are
presented using class diagram in the Figure 15.

We use the IAResponse class to specify the system response for the execution of
the system operations. The result of executing system operations are specified by the
MessageConcept class. Based on the presented class diagram it can be concluded that
the result of the execution of the system operation is a value for the customer (meta-
class Value). This value for the user may be a message on the successful execution of
system functions (meta-class SingleValue) or may be a result in the form of one or more
domain objects that are displayed to the user (meta-class ReturnConcept). Based on the
results that the system shows to the user, the specification of the system operations can



Use Case Specification Using the SILABREQ Domain Specific Language 901

SingleValue ReturnConcept

-name
-description

Value

DataConceptAttribute

fillDate
0..1

Concept
-name
-conceptDescription

conceptID
0..1

MessageConcept

SuccessfulResponseMessage

responseConcept
0..*

Message

-messageNumStep:EInt

response0..1

IA

message
0..1

SuccessfulResponse

ia

0..1

IAResponse

responseSuccessful
0..1

ErrorResponse

responseError
0..1

ErrorOption

ErrorAction

-stepNumber:EInt

erOption
0..* erAction

0..*

-messageStep:EInt
-optionNumber:Eint
-messageDescription:EString

return
0..1

Figure 15. The meta-classes that describe execution of the system operation

be enriched semantically by specifying the type that the system operation returns. UML
class diagrams can visually present discovered system operations as in the Figure 16.

3.6 Visualization of Use Case Execution

In practice, the models can be used in two ways:

• by transforming the models into source code in some programming language (e.g. Java
or C#), or

• by a direct execution of models through an appropriate interpreter.



902 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

SOOperation

+op_saveBook()
+op_findBook()

Behaviour

Figure 16. Identified system operations

We have developed the SilabReqUCExecute interpreter (which is created in Kermeta
environment) to execute the use cases described in SilabReq DSL. We have developed the
SilabReqUCStateMachine transformation, which accepts SilabReq DSL model as an input
and transforms it into the UML state machine model. After that, the SilabReqUCExecute
interpreter executes an appropriate use case. The Figure 17 describes these steps.

SilabReq meta-
model

SilabReq model

instance

State machine 
UML meta-model

State machine 
UML model

instance

UML meta-model

SilabReqUCStat
eMachine

SilabReqUCExec
ute

exe
cute

Figure 17. SilabReqUCExecute interpreter

We have identified different available states in the use case execution:

• state “Preparing data for system operation execution”

• state “Execution of the system operation”

• state “Showing the result of the system operation execution”

• “Successfully finished execution of a use case”

• “Interrupted execution of a use case”.

Figure 18 describes the state machine with the states and actions that make a use
case move from one to another state.

From the initial state (start) the use case can move into one of two possible states:

• state “Preparing data for system operation execution” (APUSO) or

• state “Execution of the system operation” (SO).

From “Preparing data for system operation execution” state the use case can turn into
“Execution of the system operation” state, while from “Execution of the system operation”
use case can turn into “Showing result of the system operation execution” (IA) state.



Use Case Specification Using the SILABREQ Domain Specific Language 903

APUSO 
State

SO 
State

star
t

apuso_action so_action

so_action

IA 
State

ap
us

o_
ac

ti

on

ia_
ac

tio
n

end_state
error_acti

on

ErrorEndSta
te

Figure 18. UML state machine diagram for use case states

From “Showing result of for system operation execution” state, the use case can turn
into one of several possible states:

• “Preparing data for system operation execution” state

• “Execution of the system operation” state

• “Successfully finished execution of the use case” state or

• “Interrupted execution of the use case” state if the use case interrupts.

The SilabReqUCStateMachine transformation transforms the use case model into a
model of the state machine as follows:

• For each use case, it generates the UML package (uml::Package) and the UML state
machine (uml::StateMachine). The package name and the name of the machine state
is identical to the name of the use case

• For each UserActionBlock that exists within a defined use case it generates:

– one state of the APUSOState type (uml::State) if there is at least one action of
APUSO type within a block of actions

– as many transitions (uml::Transition) as APUSO actions types

– one action (uml::Transition) which of APSO

• For each SystemActionBlock it generates:

– a state of SOState type, its name has a prefix SO and an extension that is identical
to the name of the system operation which the system executes

– a state of IAState state, its name has the prefix IA and an extension of the same
name as the name of the executed system operation



904 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

– an action that the use case passes from an SOState state to an IAState state. The
name of this action has an IA prefix and extension that is identical to the name
of the executed system operation

– as many states of ErrorEndState as possible – there are alternative scenarios that
interrupt the execution of the use case

• Per each use case, one state of EndState type (uml::State; kind:exitPoint)

• For each include and/or extend directive it creates a separate state machine (subma-
chine, uml::StateMachine)

• For each action of UserIFActionStep type it creates a pseudo-state of (UML::State;
kind:choice) type

• For each action of UserIterateActionStep type it creates an action that executes iter-
ative in the current state of the current use case

Figure 19 describes a UML state machine for the use case Search books for certification.

apuso_op_findBooks

start

apuso_op_findBooks

so_op_findBooks

ia_op_findBooks

so_op_findBooks

ia_op_findBooks

end_uc_SearchBooks

apuso <<2>> puts apuso <<1>> puts

Figure 19. UML state machine diagram for Search books for verification use case

When an interpreter executes the use case, it leads the user through the use case
execution. In each state, the interpreter asks user to choose one of the available actions,
after which the use case moves to the next state. Therefore, by selecting one of the
available actions the user moves to the use case execution and validates it.

4 CONCLUSION

Use cases as a technique for specification of the functional requirements of the system are
used in many different software development methods. Adopting use cases in the software
development methods, based on models, requires that use cases must be defined formally
especially pre-condition, post-condition and actions.

In this paper, we propose the SilabReq language as a more formal way to specify use
cases. This language can be used for both user’s actions specification and system’s actions
specification. Therefore, it can be used to specify actions to:



Use Case Specification Using the SILABREQ Domain Specific Language 905

• determine the conceptual (domain) model of the system (for which we have created
the SilabReqUCConceptModel transformation)

• discover the functions of the system (for which we have created the SilabReqUCSys-
temOperation transformation)

• visually display boundaries of the system over UML use case diagrams (foe which we
have created the SilabReqUC transformation)

• visually display case scenario execution using UML state machines (for which we have
created the SilabReqUC transformation)

• monitor the execution of use cases (through developed the SilabReqUCExecute inter-
preter).

Figure 20 presents graphically the goals that can be achieved through the specification
of the use cases using SilabReq languages.

SilabReq Use case 
visualisation

Y
SilabReqUCConcept

Model

Conceptual model

Y
SilabReqUCSystem

Operation

System operation

Y

SilabReqUC
Execute

Y
SilabReqUC

UML use case 
diagram

UML state machine 
diagram

Y

SilabReqUC
StateMachin

e

Figure 20. SilabReq DSL and defined transformation

REFERENCES

[1] ANother Tool for Language Recognition web site. Available on: http://www.antlr.
org.

[2] Eclipse Modeling Framework web site. Available on: http://www.eclipse.org/

modeling/emf.

[3] FFI Kostmod 4.0 Report. Available on: http://rapporter.ffi.no.

[4] Astudillo, H.—Génova, G.—Smia lek, M.—Morillo, J. L.—Metz, P.—
Prieto-D́ıaz, R.: Use Cases in Model-Driven Software Engineering. Proceedings
of MoDELS Satellite Events, 2005, pp. 272–279.

[5] Boettger, K.—Schwitter, R.—Mollá, D.—Richards, D.: Towards Re-
conciling Use Cases via Controlled Language and Graphical Models. Web Know-
ledge Management and Decision Support, Springer Verlag, Heidelberg, LNCS, 2003,
Vol. 2543, pp. 115–128.



906 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

[6] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, New York 2000.

[7] Glinz, M.: Problems and Deficiencies of UML as a Requirements Specification Lan-
guage. Proceedings of the 10th IEEE International Workshop on Software Specifica-
tion and Design, 2000.

[8] Herman, K.—Svetinovic, D.: On Confusion between Requirements and Their
Representation. Requirements Engineering, Springer-Verlag, 2010.

[9] Hoffmann, V.—Lichter, H.—Nyssen, A.—Walter, A.: Towards the Integra-
tion of UML – and Textual Use Case Modeling. Journal of Object Technology, Vol. 8,
2009, No. 3, pp. 85–100.

[10] Ferreira, D.—Silva, A. R.: RSL-PL: A Linguistic Pattern Language for Doc-
umenting Software Requirements. Proceedings of Third International Workshop on
Requirements Patterns (RePa ’13), in the 21st IEEE International Requirements En-
gineering Conference (RE 2013), July 2013, IEEE Computer Society.

[11] Fantechi, A.—Gnesi, S.—Lami, G.—Maccari, A.: Application of Linguistic
Techniques for Use Case Analysis. Requirements Engineering Journal, Vol. 8, 2003,
No. 3, pp. 161–170.

[12] Ferreira, D. A.—Silva, A. R.: A Controlled Natural Language Approach for In-
tegrating Requirements and Model-Driven Engineering. ICSEA 2009, pp. 518–523.

[13] Ferreira, D. A.—Silva, A. R.: RSLingo: An Information Extraction Approach
Toward Formal Requirements Specifications. MoDRE 2012, pp. 39–48.

[14] Ferreira, D.—Silva, A. R.: RSL-IL: An Interlingua for Formally Documenting
Requirements. Third IEEE International Workshop on Model-Driven Requirements
Engineering (MoDRE), in the 21st IEEE International Requirements Engineering
Conference (RE 2013), July 2013, IEEE Computer Society.

[15] Fondement, F.—Baar, T.: Making Metamodels Aware of Concrete Syntax. In
Hartman, A., Kreische, D. (Eds.): ECMDA-FA, Springer, LNCS, Vol. 3748, 2005,
pp. 190–204.

[16] I Standard Glossary of Software Engineering Terminology. 1990, IEEE Std 610.12-
1990.

[17] IEEE Computer Society Professional Practices Committee. 2004, SWEBOK R©: Guide
to the Software Engineering Body of Knowledge. The Institute of Electrical and
Electronics Engineers, Inc. 2004.

[18] Jacobson, I.—Booch, G.—Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley, New York, 1998.

[19] Jorgensen, J. B.—Bossen, C.: Executable Use Cases: Requirements for a Perva-
sive Health Care System. IEEE Software, Vol. 21, 2004, No. 2, pp. 34–41.

[20] Kotonya, G.—Sommerville, I.: Requirements Engineering Processes and Tech-
niques. John Wiley and Sons, 2000.

[21] Kleppe, A. G.: A Language Description is More Than a Metamodel. Fourth Inter-
national Workshop on Software Language Engineering, Nashville, USA, 2007.

[22] Li, L.: Translating Use Cases to Sequence Diagrams. Proceedings of Fifteenth IEEE
International Conference on Automated Software Engineering, Grenoble, France,
2000, pp. 293–296.



Use Case Specification Using the SILABREQ Domain Specific Language 907

[23] Loniewski, G.—Insfran, E.—Abrahão, S.: A Systematic Review of the Use of
Requirements Engineering Techniques in Model-Driven Development. In: Petriu, D.,
Rouquette, N., Haugen, Ø. (Eds.): Proceedings of the 13th International Confer-
ence on Model Driven Engineering Languages and Systems: Part II (MODELS ’10).
Springer, 2010, pp. 213–227.

[24] Mellor, S. J.—Clark, A. N.—Futagami, T.: Model-Driven Development. IEEE
Software, Vol. 20, 2003, pp. 14–18.

[25] Nguyen, P.—Chun, R.: Model Driven Development with Interactive Use Cases
and UML Models. Software Engineering Research and Practice, 2006, pp. 534–540.

[26] Nakatani, T.—Urai, T.—Ohmura, S.—Tamai, T.: A Requirements Descrip-
tion Metamodel for Use Cases. Eighth Asia-Pacific Software Engineering Conference
(APSEC ’01), 2001, pp. 251–258.

[27] OMG (August 2011) UML Superstructure Specification. v2.4.1. OMG Formal Docu-
ment 2011-08-06.

[28] OMG (August 2011) UML Infrastructure Specification. v2.4.1. OMG Formal Docu-
ment 2011-08-05.

[29] Alchimowicz, B.—Jurkiewicz, J.—Ochodek, M.—Nawrocki, J.: Build-
ing Benchmarks for Use Cases. Computing and Informatics, Vol. 29, 2010, No. 1,
pp. 27–44.

[30] Olek, L.—Ochodek, M.—Nawrocki, J.: Enhancing Use Cases with Screen De-
signs. A Comparison of Two Approaches. Computing and Informatics, Vol. 29, 2010,
No. 1, pp. 3–25.

[31] Rolland, C.—Achour, C. B.: Guiding the Construction of Textual Use Case
Specifications. Data and Knowledge Engineering, Vol. 25, 1998, No. 1-2, pp. 125–160.

[32] Silva, A.—Videira, C.—Saraiva, J.—Ferreira, D.—Silva, R.: The Pro-
jectIT-Studio, an Integrated Environment for the Development of Information Sys-
tems. Proceedings of the 2nd International Conference of Innovative Views of .NET
Technologies (IVNET ’06), Sociedade Brasileira de Computação and Microsoft 2006,
pp. 85–103.

[33] Silva, A. R.: Model-Driven Engineering: A Survey Supported by the Unified
Conceptual Model. Computer Languages, Systems and Structures, Vol. 43, 2015,
pp. 139–155.

[34] Silva, A. R.—Saraiva, J.—Ferreira, D.—Silva, R.—Videira, C.: Integration
of RE and MDE Paradigms: TheProjectIT Approach and Tools. IET Software: On
the Interplay of .NET and Contemporary Development Techniques, 2007.

[35] Sommerville, I.: Software Engineering. Eight edition. Addison Wesley Longman
Publishing Co. Inc., Boston 2006.

[36] Spivey, J. M.: The Z Notation: A Reference Manual. Prentice Hall 1992.

[37] Smia lek, M.—Bojarski, J.—Nowakowski, W.—Straszak, T.: Scenario Con-
struction Tool Based on Extended UML Metamodel. LNCS, Vol. 3713, 2005,
pp. 414–429.

[38] Smia lek, M.—Straszak, T.: Facilitating Transition from Requirements to Code
with the ReDSeeDS Tool. RE 2012, pp. 321–322.



908 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

[39] Smia lek, M.—Nowakowski, W.—Jarzebowski, N.—Ambroziewicz, A.:
From Use Cases and Their Relationships to Code. MoDRE 2012, pp. 9–18.

[40] Smia lek, M.: Accommodating Informality with Necessary Precision in Use Case
Scenarios. Journal of Object Technology, 2005.

[41] Somè, S. S.: A Meta-Model for Textual Use Case Description. Journal of Object
Technology, Zurich 2009.

[42] The Standish Group: CHAOS Summary. The Standish Group International, Inc.,
2006.

[43] The Standish Group: CHAOS Summary. The Standish Group International, Inc.,
2009.

[44] The Standish Group: CHAOS Summary. The Standish Group International, Inc.,
2011.

[45] Valderas, P.—Pelechano, V.: A Survey of Requirements Specification in Model-
Driven Development of Web Applications. TWEB, Vol. 5, 2011, No. 2, pp. 10.

Dušan Savi�c received the Magister degree in information sys-
tem and technologies from the Faculty of Organization Sciences,
University of Belgrade, in 2010. He is currently postgraduate
student and a teaching assistant at the Faculty of Organizational
Sciences at the Software Engineering Department. He has inter-
ests in the following areas: modeling and meta-modeling, model
driven engineering, requirement engineering, software develop-
ment, software design, domain specific languages, automation
of user interface development. He has lectured undergraduate
and graduate level courses in his area. He is the author or co-

author of several publications for national and international conferences or workshops and
scientific journal.

Sinǐsa Vlaji�c is Associate Professor of software engineering at
University of Belgrade, Faculty of Organizational Sciences, De-
partment of Information Systems. He has lectured undergrad-
uate and graduate level courses: introduction to programming,
introduction to information system, software design, software
patterns, programming methodology and Java programming lan-
guage. He wrote many books, scripts and publications about
C++, Java, software design, software patterns, database and in-
formation systems. His main research interests include software
process, software design, software maintenance, software pattern

formalization and programming methodology. He is one of the founders of the Laboratory
and Department of the Software Engineering at Faculty of Organizational Sciences.



Use Case Specification Using the SILABREQ Domain Specific Language 909

Saša Lazaravi�c is Assistant Professor of software engineering
at University of Belgrade, Faculty of Organizational Sciences,
Department of Information Systems. He has lectured under-
graduate and graduate level courses: introduction to program-
ming, software design, software construction, software testing,
software quality. His main research interests include software
process, software design, software testing, software quality and
programming on .Net platform.

Ilija Antovi�c defended his Magister thesis in the software en-
gineering in 2010. Currently he is working at Software Engineer-
ing Department, Faculty of Organizational Sciences, University
of Belgrade and writing his Ph.D. thesis. His research inter-
ests include automation of user interface development, modeling
and meta-modeling, model driven engineering, requirement en-
gineering, software patterns, code generation. He lectures at
undergraduate and graduate level courses in his area. He is the
author or co-author of several publications for national and in-
ternational conferences and scientific journals.

Vojislav Stanojevi�c is Teaching Assistant of software engi-
neering at University of Belgrade, Faculty of Organizational
Sciences, Department of Information Systems. He has lectured
undergraduate and graduate level courses: introduction to pro-
gramming, introduction to information system, software design,
software patterns, programming methodology and Java pro-
gramming language. He wrote publications about Java, software
design, software patterns, application frameworks and domain
specific languages. His main research interests include software
design, application frameworks, business rules, domain specific
languages.

Miloš Mili�c is Teaching Assistant at Faculty of Organizational
Sciences, University of Belgrade, Serbia. He has lectured under-
graduate and graduate level courses: introduction to program-
ming, software design, software patterns and Java programming
language. His research interests include software quality, soft-
ware design and software testing. He holds B.Sc. in information
systems and M.Sc. in software engineering. He is a Ph.D. student
at University of Belgrade.



910 D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stanojević, M. Milić, A. R. da Silva

Alberto Rodrigues da Silva is Associate Professor at the
Instituto Superior Técnico (Universidade de Lisboa), a senior
researcher at INESC-ID, and a partner of the SIQuant company.
He has research interests in the following areas: information
systems, modeling and metamodeling, model driven engineering,
requirement engineering, and social computing. He is the author
of 5 technical books and over 200 peer-reviewed scientific papers.
He is a member of the ACM, PMI and the Portuguese Society
of Chartered Engineers.


