
Computing and Informatics, Vol. 34, 2015, 996–1016

ASPECT-ORIENTED FORMAL MODELING:
(ASPECTZ + OBJECT-Z) = OOASPECTZ

Cristian Vidal Silva

Departamento de Computación e Informática
Facultad de Ingenieŕıa
Universidad de Playa Ancha
Avenida Leopoldo Carvallo 270, Valparáıso, Chile
e-mail: cristian.vidal@upla.cl

Rodolfo Villarroel

Escuela de Ingenieŕıa Informática
Facultad de Ingenieŕıa
Pontificia Universidad Católica de Valparáıso
Avenida Brasil 2241, Valparáıso, Chile
e-mail: rodolfo.villarroel@ucv.cl

Rodolfo Schmal Simón

Ingenieŕıa Informática Empresarial
Facultad de Economı́a y Negocios
Universidad de Talca
Avenida Lircay S/N, Talca, Chile
e-mail: rschmal@utalca.cl

Rodrigo Saens, Tamara Tigero, Carolina Del Rio

Ingenieŕıa Comercial
Facultad de Economı́a y Negocios
Universidad de Talca
Avenida Lircay S/N, Talca, Chile
e-mail: {rsaens, ttigero, cdelrio}@utalca.cl



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 997

Abstract. The aspect-oriented software development (AOSD) paradigm permits
modularizing crosscutting concerns of base modules, a non-usual task in other soft-
ware development paradigms. Since AOSD was born in the programming stage as
an extension of an object-oriented (OO) programming language, and AOSD con-
siders, in addition to base modules, new modules named aspects, then a complete
AOSD process requires that each stage considers the base and aspect modules.
Therefore, looking for an AOSD process, mainly to apply AOSD in other phases
of the OO software development process, so far, different OO modeling tools and
language extensions to support AOSD have been proposed. As an example, As-
pectZ is an extension of the formal language Z to support AOSD. To reach a trans-
parency of concepts and design in AOSD, the main contribution of this article is
to propose OOAspectZ, a formal language for the requirements specification stage
of aspect-oriented (AO) software applications, that, firstly, extends AspectZ and,
secondly, integrates Object-Z and AspectZ formal specifications. Thus, OOAspectZ
supports relevant AO elements such as join points, and This and Target objects for
join point events. As an application example, this article applies OOAspectZ to
a system named GradUTalca for a Chilean university. For GradUTalca, this ar-
ticle presents AO UML use cases and UML class diagrams, formal Object-Z and
OOAspectZ specifications, and a final woven specification to show an integration of
Object-Z and OOAspectZ specifications.

Keywords: AspectZ, Object-Z, Z, aspects, crosscutting concerns

1 INTRODUCTION

Even though object-oriented software development (OOSD) is a dominant paradigm
nowadays, crosscutting concerns, scattered and tangled elements (crosscutting con-
cerns) are usually part of object-oriented solutions. To isolate crosscutting con-
cerns at the programming phase of the OOSD process, for oblivious classes, i.e.,
classes which do not know about aspects and possible changes in their behavior and
structure produced by the aspects [1], we have here proposed the aspect-oriented
programming (AOP) approach.

Apel et al. [2] distinguished between static and dynamic crosscutting concerns
classified as homogeneous and heterogeneous. Globally, AOP is able to modularize
any kind of crosscutting concerns [2], though AOP is more elegant to modularize
static and dynamic homogeneous crosscutting concerns to avoid code replication,
since collaboration of classes are typically of a heterogeneous structure. For more
details, review works of [3, 4, 5].

For getting modular OOSD, there exist design pattern proposals such as the
Template Method pattern [6] in which subclasses inherit abstract and final methods
from an abstract super class, so the subclasses implement abstract methods and
execute inherited final methods as well. However, subclasses are not oblivious of
inherited methods, subclasses implement part of inherited methods, and explicitly



998 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

demand for execution of inherited methods, i.e., a separation of concerns is not
complete using the Template Method pattern.

Original AOP identifies and encapsulates crosscutting concerns on base mod-
ules, i.e., functionalities which crosscut the classes structure and behavior, hence
oblivious base modules deal only with their base concern and crosscutting concerns
are separate and independent modules, the aspects, to advise base modules [7]. In
original AOP, aspects advise base modules without an explicit invocation and an-
nouncement [1, 8]. Classic examples of crosscutting concerns in software applications
are security, caching or logging functionalities [1, 9, 10, 11].

According to [9, 10, 12], AOSD is an extension of OOSD because AOSD provides
a new type of module for crosscutting concerns, aspects, to encapsulate, isolate, and
define associations between aspects and base modules. So, compared to OOSD mod-
els, AOSD models seem easier to understand, to use and to maintain, and classes
are able to work only on one responsibility [13]. Nevertheless, such as Bodden
et al. indicated [14], for classic AOP, aspects define pointcut rules, to be effective to
advise classes, rules which depend on advisable modules signatures, i.e., aspects de-
pend on classes and their methods signatures, a current issue for evolving software.
Similarly, oblivious classes can perceive non-expected changes on its structure and
behavior, therefore advisable classes depend on aspects. Clearly, these issues repre-
sent a double-dependency in classic AOP modules. In addition, as Sullivan et al. [7]
also said, although the ability of AOSD to modularize crosscutting concerns seems
to improve quality of software applications, aspects also may be used in a harmful
way to annul desired properties and even destroy conceptual integrity of systems.

Considering the potential advantages of AOSD to produce a modular software,
and since classic AOSD represents a promising solution for the modular software
production, there already exist extensions for software design languages to support
aspect-oriented modeling such as [9, 10, 15]. Nevertheless, only a few proposals
of formal languages for aspect-oriented software requirements specification exist.
Thus, looking for a complete separation of concerns and transparency of models and
concepts in stages of the AOSD process, the main goal of this article is to propose
the OOAspectZ formal language, an extension of AspectZ formal language [16, 17]
for its integration with Object-Z [18, 19, 20], and apply OOAspectZ to a case study
to show its potential benefits. Clearly, OOAspectZ represents as extension of the
Z formal language [21]. We use the graduation process for students of a college to
apply OOAspectZ.

The rest of the paper is organized as follows: Section 2 presents an example of
an information system used to assist students who need to certify their graduation
status. The system is named GradUTalca. Section 3 introduces and explains ele-
ments of Object-Z used to model the GradUTalca system. Section 4 describes main
elements of the original proposal of Aspect-Z and gives syntax and semantic details
of OOAspectZ as an extension of Aspect-Z. Section 5 presents the application of
OOAspectZ on the GradUTalca system. Finally, Section 6 concludes the article and
suggests future work.



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 999

2 EXAMPLE (CASE STUDY)

GradUTalca is an information system used by the University of Talca, Chile, to assist
students in their graduation process. Figure 1 shows associated university offices for
an usual graduation process; so, a student who asks for a degree certification, 1st, has
to go to the academic registration office and asks for degree certificates. Afterward,
the student has to go, for each required degree certificate, to the associated school
office to certify a required academic credits completion as well as a no bills existence
in other defined offices at the university. For the last mentioned process, the school
office provides a document, an academic record, to the student to be signed by each
required office director. Therefore, to obtain a degree certificate, a student should
proceed in each defined university office to certify he or she does not bill and get
signature of each office director to present those signatures to the school office to
proceed his or her graduation process. Note, that school office is the only office
linked to the academic registration office to certify a student is able to graduate, so
the school office reviews the correctness of each office director signature and verifies
whether the student has completed his required credits to graduate. If so, the head
of the school signs the academic record, and the student waits for about 15 days to
receive his or her degree certificate from the academic registration office.

Figure 1. Steps for getting a degree or title certificate at the University of Talca, Chile

Since, the main function of each office of GradUTalca is to, as a precondition,
verify the student status before giving a signature, in order to avoid crosscutting
concerns on these units, verification processes are modularized as aspects. Only
school office has also to check the correctness of signatures of other offices as well as
whether the student, who is asking for degree certificates, has already completed his
or her studies, i.e., school office has to apply a double verification (a nested-aspect).

Figure 2 shows an AO UML use-case diagram of GradUTalca. This figure follows
the AO principles described and applied by [9, 17].



1000 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

As a structural model of GradUTalca system, class diagram of Figure 3 shows
a main class GradUTalca composed by individual instances of classes Academic-
Registration, BillingOffice, LibraryOffice and AttendanceOffice. In addition, class
GradUTalca is composed by a set of class SchoolOffice instances since the Univer-
sity of Talca presents different schools. These mentioned classes are also part of
the GradUTalca system. Classes GradUtalca, AcademicRegistration, BillingOffice,
LibraryOffice, and AttendanceOffice share the same set of students, and each of
these classes adds, for each student, a proper class information along with the stu-
dent status to determine if a student is able to graduate or not. Conceptually, each
office reviews information of a student to determine his or her status. So, each class
presents methods to assign a true value to the status of a given student st, Sign(st:
Student) and to know the current status of a student st, getStatus(st: Student).

Figure 3 uses the same notation to represent AO UML class diagrams proposed
and applied by [15]. Figure 3 presents, for each class, before executing the Sign(st:
Student) method, a verification aspect to verify the student status, i.e., some offices
at the University of Talca review if there are not issues regarding the student st
information to proceed, so if some office of the GradUTalca system does not proceed,
thus, method Sign(st: Student) will not proceed as well.

Surely, an OO GradUTalca system version would present verification operation
as part of the system classes (crosscutting concern), hence a single responsibility
principle, a basic OO design principle [13], is not respected by these classes. There-
fore, by means of the aspects, a more modular GradUTalca system is reachable.
Particularly, for method Sign(st: Student) of class SchoolOffice, it is necessary to
know the student status at each other system office before giving permission for
a degree certification; therefore, for the method Sign(st: Student) of class SchoolOf-
fice, an additional aspect to verify the student status at other defined offices of the
GradUTalca system is defined. For this scenario, following AO principles to identify
objects associated to aspects, since a GradUtalca class object g1 instantiates ob-
jects of SchoolOffice and also g1 invokes the execution of Sign(st: Student) of these
SchoolOffice instances, for the call of a method Sign(st: Student) of class SchoolOf-
fice, This and Target objects are recognized and different; This object is the instance
of GradUTalca g1 whereas Target object is an instance of SchoolOffice, respectively.
Thus, by means of the object This, at the call of method Sign(st: Student) at the
current instance of SchoolOffice, attributes of GradUTalca instance are accessible,
so it is possible to know the student st status at other offices of the GradUTalca
system. Section 4 describes of This and Target objects for our OOAspectZ for-
mal language proposal, and Section 5 presents the use of OOAspectZ and This and
Target objects.

As an AO UML class diagram, Figure 3 presents pointcut and aspect elements for
classes SchoolOffice (SO) and LibraryOffice (LO) only. A complete class diagram
version of GradUTalca system includes similar pointcut and aspect elements for
classes BillingOffice (BO) and AttendanceOffice(AO) as well.



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1001

Figure 2. AO UML use-case diagram of GradUTalca System

3 OBJECT-Z

Object-Z is an extension of the Z formal language [21] to support characteristics of
the OO software development (OOSD) [18, 19, 20]. Object-Z preserves and extends
properties and elements of the Z formal language to support OOSD. For example,
since a schema is a basic element of Z formal language to formally specify sys-
tem properties and operations, Object-Z presents class schema, i.e., an adaptation
of Z schema, to formally specify classes and encapsulate attributes and method
schemas. In this article, methods schemas are known as operation schemas.

Using an Object-Z formal model for the classes of GradUTalca system, and look-
ing for a separation of concerns as well as a transparency of concepts and design
between AO models and code of GradUTalca, Figure 4 specifies general data for
the system specification and class SchoolOffice; Figure 5 specifies class LibraryOf-
fice; and Figure 6 specifies classes GradUTalca and AcademicRegistration. Classes
BillingOffice and AttendanceOffice can be defined like classes SchoolOffice and Li-
braryOffice. Note that, for the GradUTalca system, there exists a consistency be-
tween class digram and Object-Z model regarding classes structure and behavior
along with associations among classes.

Note, that looking for a separation of concern, schemas of classes SchoolOffice
and LibraryOffice do not verify student st? Info to proceed in the operation schema
Sign. In addition, class schema of SchoolOffice does not verify, before signing, that
Status of st? is valid in other offices of the GradUTalca system, since these verifi-
cation processes are crosscutting concerns.

Classes SchoolOffice and LibraryOffice, as well as classes BillingOffice and At-
tendanceOffice, present an attribute students for a composed set of Student object,
Info data, and Status data. As Figure 5 shows, each office presents an invariant
for the uniqueness of a student object in the set of students, i.e., there can not be



1002 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

Figure 3. SO: SchoolOffice, BO: BillingOffice, LO: LibraryOffice, AO: AttendanceOffice
AO UML class diagram of GradUTalca system

two tuples associated to the same student, even though a student can be in two
different schools. In addition, as Figure 6 presents, as an invariant of class GradU-
Talca, instances of components of class GradUTalca present the same set of Student
objects. For doing so, to refer to a particular component of a tuple attribute, we
use a projection notation [21], so to access the 1st component of the set students of
an object registration of class GradUTalca, i.e., the set of students only, we use the
registration.students.1 notation.



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1003

Figure 4. Object-Z model of class SchoolOffice of GradUTalca system

4 ASPECT-Z

AspectZ is an extension of the Z language proposed by [16]. Even though Yu
et al. [16] presented application examples of AspectZ, important elements of
AOSD [1] are not supported by AspectZ. Specifically, according to [1, 9, 12, 10, 11],
in AOSD, for the occurrence of a join point event, aspects advice before, after or
around that event. Therefore, an AO language has to support those kind of advices.
Nevertheless, original AspectZ permits definitions of aspect-schema only for insert
and replace advice on operation schemas, i.e., to reinforce some restraint on the
operation schema and modify functions defined in the base section of the advised
operation schema, respectively.

In addition, original AspectZ identifies a join point in an operation schema
by the existence in it of a defined expression or predicate. Hence, when a join
point is identified, associated aspect-schema adds (insert) or changes (replace) the
identified expression or predicate in the advised operation schema. Therefore, since



1004 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

Figure 5. Object-Z model of class LibraryOffice of GradUTalca system

predicate section of Z and Object-Z schemas do not evaluate predicates and rules in
an established order; this kind of reaction disagrees with AO kind of advices.

Figure 7 shows the structure of an AspectZ aspect-schema. Clearly, an aspect-
schema is a normal Z schema that includes a declaration and predicate section, at
the top and bottom, respectively. This figure presents that the declaration section
of an aspect-schema uses the symbol Ω to indicate advisable schemas. Like the
symbol δ for Z and Object-Z operation schemas to indicate properties of a system,
or attributes of a class potentially affected by the operation, Ω in an aspect-schema
indicates a list of schemas advisable by the aspect-schema for join point events.

Taking in account that aspects have to advise join point events on class in-
stances, i.e., basically for the methods execution and call of class instances, and also
considering mentioned issues of original AspectZ proposal [16], then aspect-schemas
of AspectZ have to be redefined in a more appropriate way for a transparency of
concepts and design in an AOSD process. As a solution, we present OOAspectZ, an
AspectZ extensions to permit an easy integration of AspectZ and Object-Z formal
specifications.

4.1 Extensions of Aspect-Z

Even though Yu et al. [16] presented AspectZ application examples, they only allow
to advise local operations of Z operation schemas. Thus, an integration of traditional
AspectZ and Object-Z seems not possible.

Since an integration of aspect-schema and operation schema is fundamental to



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1005

Figure 6. Object-Z model of classes GradUTalca and academic registration of GradUTalca
system

support AOSD in Z and Object-Z formal languages, and original Z [21] and Object-Z
formal languages [18, 19, 20] permit using the sequential composition operator o

9 to
define sequential operations, then the integration and interleaving of aspect-schemas
and operation schemas seem possible.

Figure 8 shows the use of operator o
9 for operations OpOne and OpTwo where

postconditions of OpOne are preconditions of OpTwo. Therefore, an AspectZ wo-
ven schema represents the sequential composition of aspect-schemas and operation
schemas in a defined order, i.e., sequential composition is directly applicable to com-
pose aspect-schemas and operation schemas to integrate AspectZ and Object-Z. For
example, if a before aspect-schema advises an operation schema, then the advised
operation schema will wait for the postconditions of the aspect-schema. Similarly, if



1006 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

Figure 7. Aspect-schema of original proposal of AspectZ [16]

Figure 8. Sequential composition operator of Z and Object-Z [19, 21]

the aspect-schema advises after the operation schema, then postcondition of the ad-
vised operation schema represents a preconditions of the aspect-schema. In the last
scenario, the aspect-schema postcondition represents the final state of the woven op-
eration. Nonetheless, sequential composition is not directly applicable to integrate
AspectZ around aspect-schemas and Object-Z operation schemas since an around
aspect-schema predicate, per default, adds behavior on the advised operation before
and after, and the operation schema only proceeds if there is a ProceedΩ instruction
in the mentioned aspect-schema.

Furthermore, since each aspect-schema can define sets of input, output, and local
elements valid only in their scope, operator o

9 seems not applicable. So, without any
doubt, it is necessary to define new rules to integrate AspectZ and Object-Z for our
OOAspectZ formal language proposal.

Since Yu et al. [16] introduced the use of Ω to identify advisable operation
schemas, we use Ω to identify elements in our OOAspectZ proposal described below:

1. An aspect-schema presents two sections, one section for pointcut definitions and
one section for pointcut advices.

• Pointcut definition is in the aspect-schema top division. A pointcut defini-
tion uses Ω and permits identifying kind of actions, i.e., for now, call and
execution of class methods. It is possible to identify method signature and



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1007

arguments.

• Pointcut advices section permits, for each advice, to define kind of advices,
conditions, and associated actions.

2. Because Ω can refer to more than one schema (operation schema and aspect-
schema), an aspect-schema can advise more than one schema; thus, clearly one
schema can be advised multiple times by multiple aspect-schemas. Note that,
following original OASD principles [1], advisable schemas are oblivious in As-
pectZ formal specifications.

3. Since identifying the source of aspects is an important characteristic of AOSD
and there are two important sources for each aspect [1, 12], This and Target ob-
jects, for OOAspectZ, as an AspectZ extension, we propose ThisΩ and TargetΩ
to represent the object that asks for a method – not necessarily the owner of the
method, and the owner of the advised method, respectively. In addition, ThisΩ

and TargetΩ permit differentiating between the call and execution of meth-
ods in AspectZ modules. Specifically, ThisΩ and TargetΩ present the following
properties:

.Aspect: Identifies the associated aspect. Null value if the associated aspect
does not exist.

.Methodargs : Identifies a vector with the set of arguments of the advised method.
If there are no elements for a given index, a null value is obtained. A vector
starts in the position 0.

.Methodname: Identifies the name of the method advised by the aspect.

.Methodsignature: Represents a complete signature of the method advised by the
aspect. A complete method name is the method name along with its set of
arguments.

.TargetΩ: By means of the attribute TargetΩ, the Target object is obtained.

.ThisΩ: By means of the attribute .ThisΩ, the object in which the join point
event occurs is obtained.

Undoubtedly, the mentioned new properties of AspectZ, i.e., OOAspectZ properties,
are consistent with the original OOASD ideas [1]. Figure 8 presents syntax and
structure of an OOAspectZ aspect-schema. Note, that an OOAspectZ aspect-schema
identifies pointcut definitions, and for each pointcut declaration, it is possible to
indicate the associated action for the join point events occurrence (execution or call).
The last element is relevant to distinguish between ThisΩ and TargetΩ objects in
an aspect-schema.

Because advice elements are defined in the predicate part of aspect-schemas,
advice elements establish preconditions and postconditions for advised schemas.

In the next section there is an application of the OOAspectZ to the case study
GradUTalca.



1008 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

Figure 9. Aspect-schema of OOAspectZ

5 OOASPECTZ MODEL APPLICATION

This section presents OOAspectZ aspect-schemas for the GradUTalca system as well
as woven schemas from OOAspectZ aspect-schemas and Object-Z class schemas of
the GradUTalca system.

As Section 2 mentioned, the OO solution for the GradUTalca system would
include verification operations as part of the system classes even though these ve-
rification functions are not part of the system classes nature. Therefore, according
to [13], a traditional GradUTalca OO solution would violate the single responsibil-
ity basic object-oriented design principle. In addition, according to [1] and [12],
encapsulation principle, non-respected by a traditional OO GradUTalca solution as
well, represents a basic principle of the OOSD paradigm. These issues demonstrate
that verification functions are clear aspects in the GradUTalca system, each of them
advises before proceeding with the associated Sign(st?: Student) operation of the
GradUTalca system classes.

Assuming the existence of the GradUTalca system classes described in Section 3,
Figures 10, 11, 12, and 13 show the associated OOAspectZ aspect-schemas for classes
SchoolOffice, LibraryOffice, BillingOffice, and AttendanceOffice, respectively. Note,
that for the GradUTalca system, there exists a consistency between class diagram
and OOAspect-Z model, this time, regarding aspects structure, associations, and
behavior. Next lines give more details about these figures:

• First, Figure 10 shows the aspect Verification1 and Verification2 for SchoolOffice
class. Verification1 checks/verifies that the student st?, as the TargetΩ object
that is an instance of SchoolOffice advised by the aspect, belongs to the Stu-
dent set, students.1, of that SchoolOffice instance. Furthermore, Verification1
assures that the Info of the Student st? is in agreement with the information
of a SchoolOffice instance. On the other hand, the aspect Verification2 veri-



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1009

fies whether the student st?, as the TargetΩ object, is a valid student for the
other GradUTalca system offices, i.e., whether the st? Status is valid for all
the other offices, components of class GradUTalca, to proceed the graduation
process for st?. Note, that either the set of students or the method getStatus of
each GradUTalca system class must be public to access the associated student
status value to avoid Inaccessible join points [7].

• Second, Figure 11 shows the aspect Verification3 for the class LibraryOffice.

• Third, Figure 12 shows the aspect Verification4 for the class BillingOffice.

• Fourth, Figure 13 shows the aspect Verification5 for the class AttendanceOffice.

Figure 10. Aspect-schemas Verification1 and Verification2 for method Sign of class
SchoolOffice

Aspects Verification1 and Verification2 define a pointcut for the call of method
Sign of class SchoolOffice. According to defined AspectZ extensions in the previous
section, an aspect-schema completely accesses the parameters of advised operation
schema. Thus, in the system GradUTalca, these aspects advise call events of method
Sign(st?: Student) of class SchoolOffice.

Aspect-schemas in Figure 10 show the use of the predicate ProceedΩ which is
always valid for the composition of aspect-schema and advised schema predicates and
rules. When the composition of an aspect-schema that advises around a pointcut,
i.e., an around aspect-schema, includes a ProceedΩ, the advised schema continues its
process. However, when the composition of an around aspect-schema is not valid,
i.e., a ProceedΩ does not occur, so the advised schema does not continue its process.

The aspect-schema Verification1 proceeds (postcondition), i.e., advised Sign(st?:
Student) method of the SchoolOffice instance proceeds, when the attribute st? of



1010 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

the operation schema is part of the set of students of the TargetΩ object (object
SchoolOffice), and the student st? presents info of SchoolOffice (preconditions).
Similarly, the aspect-schema Verification2 proceeds giving the control flow to the
advised method of class SchoolOffice when the attribute st? of the operation schema
is part of the set of students of the ThisΩ.registration object (registration object of
the current instance of class GradUTalca). This verification considers the established
invariant rule of class GradUTalca.

Figures 11, 12, and 13 show aspect-schemas similar to aspect-schema Verifi-
cation1 to advise Sign(st?: Student) for classes LibraryOffice, BillingOffice, and
AttendanceOffice, respectively. Even though the aspects-schemas seem specific to
advised classes, they represent a crosscutting concern and permit classes to respect
the single responsibility principle [13].

Figure 11. Aspect-schema Verification3 for method Sign of class LibraryOffice

Figure 12. Aspect-schema Verification4 for method Sign of class BillingOffice

Figure 13. Aspect-schema Verification5 for method Sign of class AttendanceOffice



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1011

Finally, since for woven OOAspectZ schemas, translations of OOAspectZ ele-
ments ThisΩ and TargetΩ into object references for Object-Z schemas are neces-
sary, we listed a few situations where to obtain woven OOAspectZ schemas should
be considered:

• Aspect-schemas which advise the execution of operation schemas, so advised
operation schemas can be defined with the inclusion of the aspect behavior.
This is because for execution of operation schemas, TargetΩ and ThisΩ refer to
the same object, i.e., the object owner of the executed operation schema.

• Aspect-schemas which advise call of operation schemas and access only TargetΩ
objects. Similar to the previous situation, since aspect-schema refers only to
TargetΩ object, therefore advised aspect-schema can be directly redefined since
it only accesses object elements.

• Aspect-schemas which advise call of operation schemas and access TargetΩ and
ThisΩ objects. This situation refers to the aspect which requires access to
TargetΩ and ThisΩ objects, or ThisΩ object for call of operation schemas such
as the aspect Verification2 in Figure 10. In this case, because the aspect refer-
ences the ThisΩ object, it needs to access elements of the whole instance. There-
fore, looking for a translation transparency for a woven OOAspectZ schema as
well as avoiding references to the whole instance in the part instances, this ar-
ticle proposes to define methods with similar names to those of the methods of
the part instances in the whole class. Since methods in the whole class have
a complete access to the objects previously advised by the aspects, then those
new methods of the whole class are implicitly related to the aspect code.

Figures 14 and 15 show final woven Object-Z classes GradUTalca and SchoolOf-
fice, respectively. These figures show the mentioned classes after the weaving process
for our proposal of integrating operation schemas and aspect-schemas.

For the remaining classes, AttendanceOffice, LibraryOffice, and BillingOffice
advised by the aspects similar to Verification1, OOAspectZ woven class schemas
are similar to the class schema SchoolOffice of Figure 15. In addition, to reuse
OOAspectZ schemas for GradUTalca system, it is possible to define only one aspect-
schema to advise AttendanceOffice, LibraryOffice, BillingOffice, and one of the ver-
ification processes of SchoolOffice, because aspect-schema permits the join point
integration. Likewise, conceptually only one class for offices of GradUTalca system
can be defined given their similarity in behavior and structure.

6 CONCLUSIONS

This article presented OOAspectZ formal language to integrate AspectZ and Object-
Z formal specifications. For that purpose, AspectZ extensions were presented which
maintain the main principles of AOSD taking the ideas of the original AspectZ
language, as well as including elements of AOSD not supported by the original



1012 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

Figure 14. Woven Object-Z class schema GradUtalca

version of AspectZ to facilitate the Object-Z and AspectZ specifications integration,
i.e., OOAspectZ formal specifications.

This article shows examples to validate the main OOAspectZ goal of integrating
AspectZ and Object-Z formal specification for the construction of woven specifica-
tions. Thus, looking for a transparency of the concept and design in the AOSD
process, this article presented OOAspectZ, a formal language to extend AspectZ to
facilitate its integration with Object-Z. By means of an application example, this
article showed that a transparency of concepts and design between AO UML class
diagrams and OOAspectZ formal specifications is reachable. A related future work
is to analyze a transparency of AO models and a final AO implementation.

The use of OOAspectZ as an AO formal language requires to pay more attention
to modeling stages of the software development process. Hence, considering AspectZ
as an extension of Z, a known and used formal language to support AOSD along
with the integration of AspectZ and Object-Z languages, the use of OOAspectZ
definitely promotes the application of AOSD in the design and modeling stages for
the AOSD process.

Even though this article showed OOAspectZ to integrate AspectZ and Object-Z,
there are elements of AOSD where the integration is not present in this article.



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1013

Figure 15. Woven Object-Z class schema SchoolOffice

Therefore, OOAspectZ future work will include definitions of introductions and re-
definition of inheritance association among classes, as well as review interference
among aspects and classes.

An additional future work is to analyze a potential support of OOAspectZ for
the symmetric AOSD approach [11] and to extend OOAspectZ to support join point
interface (JPI) models [14]. Furthermore, given the current prominence of using
tools for verifying and validating design models, the future work is to develop an
integration of OOAspectZ with current Z and Object-Z tools [22] for the type and
model checking.

REFERENCES

[1] Kiczales, G.—Lamping, J.—Mendhekar, A.—Maeda, C.—Lopes, C. V.—
Loingtier, J.-M.—Irwin, J.: Aspect Oriented Programming. Proceedings of Eu-
ropean Conference on Object-Oriented Programming (ECOOP), Finland, June 1997,
Springer-Verlag, LNCS, Vol. 1241, 1997.

[2] Apel, S.—Batory, D.—Kästner, C.—Saake, G.: Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer-Verlag Berlin, Heidelberg,
2013, pp. 129–174.

[3] Mezini, M.—Ostermann, K.: Variability Management with Feature-Oriented Pro-
gramming and Aspects. Proceedings of International Symposium Foundations of Soft-
ware Engineering (FSE), ACM Press, 2004, pp. 127–136.



1014 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

[4] Ostermann, K.—Giarrusso, P. G.—Kästner, C.—Rendel, T.: Revisiting In-
formation Hiding: Reflections on Classical and Nonclassical Modularity. Proceedings
of European Conference Object-Oriented Programming (ECOOP), Springer-Verlag,
Lecture Notes in Computer Science, Vol. 6813, 2011, pp. 155–178.

[5] Apel, S.—Leich, T.—Saake, G.: Aspectual Feature Modules. IEEE Transactions
on Software Engineering (TSE), Vol. 34, 2008, No. 2, pp. 162–180.

[6] Gamma, E.—Helm, R.—Johnson, R.—Vlissides, J.: Design Patterns, Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1st Edition, 1994,
pp. 325–330.

[7] Sullivan, K.—Griswold, W. G.—Song, Y.—Cai, Y.—Shonle, M.—Tewa-
ri, N.—Rajan, H.: Information Hiding Interfaces for Aspect-Oriented Design. Pro-
ceedings of 10th European Software Engineering Conference and 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-13),
2005, pp. 166–175.

[8] Steimann, F.—Pawlitzki, T.—Apel, S.—Kästner, C.: Types and Modularity
for Implicit Invocation with Implicit Announcement. ACM Transactions on Software
Engineering and Methology (TOSEM), Vol. 20, 2009.

[9] Jacobson, I.—Ng, P.-W.: Aspect Oriented Software Development with Use Cases.
Addison Wesley Professional, New York, USA, 1st Edition, 2004.

[10] Wimmer, M.—Schauerhuber, A.—Kappel, G.—Retschitzegger, W.—
Schwinger, W.—Kapsammer, E.: A Survey on UML-Based Aspect-Oriented De-
sign Modeling. ACM Computing Surveys, Vol. 43, 2011, No. 4, art. no. 28.

[11] Bálik, J.—Vranić, V.: Symmetric Aspect-Orientation: Some Practical Conse-
quences. Proceeding of Workshop on Next Generation Modularity Approaches for
Requirements and Architecture (NEMARA ’12), ACM, 2012, pp. 7–12.

[12] Gradecki, J. D.—Lesiecki, N.: Mastering AspectJ: Aspect-Oriented Program-
ming in Java. Wiley Publishing, Inc., Indianapolis, Indiana, 1st Edition, 2003.

[13] Wampler, D.: Noninvasiveness and Aspect-Oriented Design: Lessons from Object-
Oriented Design Principles. Proceedings of 6th International Conference on Aspect-
Oriented Software Development (AOSD ’07), Vancouver, Canada, March 2007.

[14] Bodden, E.—Tanter, E.—Inostroza, M.: Join Point Interfaces for Safe and
Flexible Decoupling of Aspects. ACM Transactions on Software Engineering, Vol. 23,
2014, No. 7, pp. 7–41.

[15] Liu, C.-H.—Chang, C.-W.: A State-Based Testing Approach for Aspect-Oriented
Programming. Journal of Information Science and Engineering, Vol. 24, 2008,
pp. 11–31.

[16] Yu, H.—Liu, D.—Yang, J.—He, X.: Formal Aspect-Oriented Modeling and
Analysis by Aspect-Z. Proceedings of 17th International Conference on Software En-
gineering and Knowledge Engineering (SEKE ’2005), Taipei, Taiwan, Republic of
China, July 2005, pp. 124–132.

[17] Vidal Silva, C.—Saens, R.—Del Ŕıo, C.—Villarroel, R.: Aspect-Oriented
Modeling: Applying Aspect-Oriented UML Use Cases and Extending Aspect-Z. Com-
puting and Informatics, Vol. 32, 2013, No. 3, pp. 573–593.



Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) = OOAspectZ 1015

[18] Smith, G.: An Object-Oriented Approach to Formal Specification. Ph.D. Thesis,
Department of Computer Science, University of Queensland, Australia. October 1992.

[19] Smith, G.: The Object-Z Specification Language – Advances in Formal Methods.
Vol. 1, Springer US, 2000.

[20] Duke, R.—Rose, D.: Formal Object-Oriented Specification Using Object-Z.
Macmillan Press Limited, London, 1st Edition, 2000.

[21] Woodcock, J.—Davies, J.: Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[22] Utting, M.—Toyn, I.—Sun, J.—Martin, A.—Dong, J. S.—Daley, N.—
Currie, D.: ZML: XML Support for Standard Z. Proceedings of 3rd International
Conference on Formal Specification (ZB ’03), Springer-Verlag, 2003, pp. 437–456.

Cristian Vidal Silva is currently a Ph.D. Candidate in soft-
ware engineering and technology at the University of Seville,
Spain and his current research focuses on the automated analysis
of feature models. He is also a Computer Engineer from Catholic
University of Maule, Chile, and he received his M.Sc. degrees in
computer science from University of Concepción, Chile, and from
Michigan State University, MI, USA. Currently he is Profes-
sor and Researcher at the Departamento de Computación e In-
formática at the Universidad de Playa Ancha, Valparáıso, Chile.
His research and teaching areas are software engineering, object,

aspect, and feature-oriented software development.

Rodolfo Villarroel is Associated Professor at the Escuela de
Ingenieŕıa Informática of the Pontificia Universidad Católica de
Valparáıso, Chile. He obtained his Ph.D. in computer science
from the Universidad de Castilla-La Mancha at Ciudad Real,
Spain, and his M.Sc. in computer science from the Universidad
Técnica Federico Santa Maŕıa, Chile. His research activity fo-
cuses on data warehouse and information systems security, soft-
ware process improvement, and aspect-oriented modeling. He
belongs to the Chilean Computer Science Society (SCCC).

Rodolfo Schmal Sim�on is the Industrial Civil Engineer from
the University of Chile and Master in Informatics from Poly-
technic University of Madrid, Spain. He works as Conference
Professor in Business Informatics Engineer School of the Uni-
versity of Talca, Chile. His last publications and academic area
of study and interests are data modeling, business process mod-
eling, improvement plans of higher education, and economy of
education.



1016 C. Vidal Silva, R. Villarroel, R. Schmal Simón, R. Saens, T. Tigero, C. Del Rio

Rodrigo Saens received his Ph.D. in economics from Univer-
sity of Connecticut, USA, his Master’s degree in applied eco-
nomics, B.A. in economics and B.A. in business administration
from Pontificia Universidad Católica de Chile. He is Professor at
the School of Economics and Business at Universidad de Talca,
Chile. His fields of interest include financial and monetary eco-
nomics, agricultural economics and economic modeling.

Tamara Tigero received her Master’s degree in finance from
Florida International University, USA and her B.A. in business
administration from Pontificia Universidad Católica de Chile.
She is Professor at the School of Economics and Business at
Universidad de Talca, Chile. Her fields of interest include cor-
porate finance, international finance and business modeling.

Carolina Del R��o received her Master’s degree in organiza-
tional behavior from Universidad Diego Portales, Chile, and
her B.A. in business administration from Pontificia Universidad
Católica de Chile. She is Professor at the School of Economics
and Business at Universidad de Talca, Chile. Her fields of inter-
est include organizational development, organizational behavior
and business modeling.


