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Abstract. In this article we introduce differential evolution based multiple vec-
tor prototype classifier (shortly MVDE). In this method we extend the previous
DE classifier so that it can handle several class vectors in one class. Classification
problems which are so complex that they are simply not separable by using dis-
tance based algorithms e.g. differential evolution (DE) classifier or support vector
machine (SVM) classifier have troubled researchers for years. In this article, we
propose a solution for one area of this problem type in which we extend DE clas-
sifier in a way that we allow several class vectors to exist for optimizing one class.
This way a part of such complex data can be handled by one vector and other part
can be handled by another vector. Differential evolution algorithm is a clear choice
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for handling such a multiple vector classification tasks because of its remarkable op-
timization capabilities. MVDE classifier is tested with several different benchmark
classification problems to show its capabilities and its performance is compared to
DE classifier, SVM and backpropagation neural network classifier. MVDE classi-
fier managed to get best classification performance of these classifiers and clearly
indicates it has a potential in this type of classification problems.

Keywords: Optimization, classifier, multiple vector prototype, differential evolu-
tion algorithm, evolutionary algorithm

1 INTRODUCTION

Classification problems of complex data structures in which separation cannot be
made by using simply distance based methods were already clear several decades
ago. Decision tree based classification algorithms (e.g. ID3 [1], ID5R [2], CN2 [3]
to mention some) were among first methods which tackled this type of classification
problems. Quite soon after it was found to be a suitable area also for neural network
based classification algorithms [4, 5]. These methods became popular quite quickly
and people started to apply them even in such problems which were not so complex
and where distance based methods could have been used also. Later in 90’s and be-
gining of this millenium faster and accurate distance based algorithms e.g. support
vector machine (SVM) [6] started to gain popularity because in many problems the
classification speed and accuracy were becoming more important properties regard-
ing classification problems and separable using distance based methods. Nowadays
SVM is applied in a wide variety of application areas [7, 8].

One of the latest methods in evolutionary computation is differential evolution
algorithm [9]. In general, evolutionary computation research has been of interest
concerned the theory and practice of classifier systems [10, 11, 12, 13, 14, 15, 16, 17].
Also from differential evolution point of view the differential evolution algorithm is
fastly gaining popularity in classification problems. Some include bankruptcy pre-
diction [18], classification rule discovery [19], feature selection, [20], edge detection in
images [21]. Also in some methods classification techniques are used to improve op-
timization with differential evolution algorithm [22]. The global optimization prob-
lems arise in many fields of science, engineering and business [23]. In order to achieve
best performance, we need to find the best algorithm. One of the emerged methods
in evolutionary computation is differential evolution (DE) algorithm [9]. DE has
since then been used in many areas of pattern recognition, i.e. in remote sensing
imagery [24], hybrid evolutionary learning in pattern recognition systems [25], and
in clustering [26, 27] to mention few. Despite this, to our knowledge, evolutionary
algorithms have not been much studied in cases where in classification task the data
structure is so complex that it is not separable by applying simply a distance based
method but more properties are needed from the classifier.
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Here in this research we concentrate to tackle such problems where the data
structure is so complex that it is not separable by applying simply a distance based
method but more properties are needed from the classifier. This is done by extending
differential evolution (DE) classifier [28] so that there can exist multiple class vector
for one class. This extension allows us to handle such situation where a part of
such complex data can be handled by one vector and other part can be handled
by another vector allowing us to deal with such complex data sets where distance
based methods are not enough. We will show that this method will be very useful
in situations where a suitable distance based classification algorithm is not enough
but more is needed. We will show that depending on the problem also the number
of vectors needed in classifying the class correctly is very important and by choosing
the correct number of vectors per class a best accuracy can be gained. If we have too
many vectors per class the results start to deteriorate quite quickly and overlearning
becomes evident.

From the optimization and modelling point of view the classification problem
subject to our investigations can be divided into two parts: the classification model
and the optimization approach applied for fitting (or learning) the model. Generally,
a multipurpose classifier can be viewed as a scalable and learnable model that can
be fitted to a particular dataset by scaling it to the data dimensionality and by op-
timizing a set of model parameters to maximize the classification accuracy. For the
optimization, simply the classification accuracy over the learning set may serve as
the objective function value to be maximized. Alternatively the optimization prob-
lem can be formulated as a minimization task, as we did here, where the number of
misclassified samples is to be minimized. In the literature, mostly linear or nonlinear
local optimization approaches has been applied for solving the actual classifier model
optimization problem, or approaches that can be viewed as such. This is the most
common approach despite of the fact that the underlying optimization problem is
a global optimization problem. For example, the weight set of a feed-forward neural
network classifier is typically optimized with a gradient-descent based on local opti-
mizer [29], or alternatively by some other local optimizer like Levenberg-Marquardt
algorithm (see i.e. [30]). This kind of usage of limited capacity optimizers for fitting
the classification model limits the achievable classification accuracy in two ways.
First, the model should be limited so that local optimizers can be applied to fit
them. This means that only very moderately multimodal classification models can
be applied, and due to such modelling limitation, the classification capability will
be limited correspondingly. Secondly, if a local optimizer is applied to optimize (to
fit or to learn) even a moderately multimodal classification model, it is likely to get
trapped in a local optimum to a suboptimal solution. Thereby, the only way to
get the classifier models with a higher modelling capacity at disposal, and also to
get a full capacity out of the current multimodal classification models by applying
global optimization for fitting the classification models to the data is to be classified.
For example, in case of a nonlinear feed-forward neural network classifier, the model
is clearly multimodal, but practically always fitted by applying a local optimizer
that is capable of providing only locally optimal solutions. Thus, we consider that
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applying the global optimization instead of the local optimization is an important
fundamental issue that currently severely constrains the further development of clas-
sifiers. The capabilities of currently used local optimizers are limiting aspects for
the selection of applicable classifier models, and also the capabilities of currently
used models that include multimodal properties are limited by the capabilities of
the optimizers applied to fit them to the data.

Based on the above mentioned theoretical considerations, our basic motivation
for applying a global optimizer for learning the applied classifier model comes from
the fact that typically local (nonlinear) optimizers have been applied for the purpose.
Despite that, the underlying optimization problem is actually a multimodal global
optimization problem, and a local optimizer should be expected to become trapped
into a local suboptimal solution. Therefore it was considered, that by applying global
optimizers (like differential evolution algorithm), it is theoretically justified to expect
improved classification results (in terms of classification accuracy). Later on this was
confirmed also by the obtained results. Differential evolution algorithm was chosen
to solve our classification problem because it proved to be very efficient in going
through the search space to find the optimal solution [9]. It is very fast compared to
several other global optimization methods, which is here quite a desirable property.
We investigate this new classification method with classical DE method since it is
the most studied one and the ‘childhood’ problems of the new optimization methods
have been fixed.

Another motivation was that we wanted to optimize also the parameter p of
the Minkowski distance. In practice, when this is applied to several different class
vectors where some of them belong to same classes, it means increased nonlinearity
and increased multimodality of the classification model resulting in more locally op-
timal points in the search space, where a local optimizer would be even more likely
to get trapped. Practically, optimizing p successfully while also getting optimal
class vectors where several of them can belong to the same class, requires usage of
an effective global optimizer since local optimizers are anymore unlikely to provide
even an acceptably good suboptimal solution. Otherwise, by using a global opti-
mizer, optimization of p becomes possible. Two folded advantages were expected
on this. First, by optimizing (systematically) the value for p, instead of selecting
it a priori by trial and error as earlier, to reach a higher classification accuracy
would be possible. Secondly, the selection of the p value can be done automati-
cally this way, and laborious trial and error experimentation by the user is removed.
Furthermore, a potential for the further development is increased. The local op-
timization approaches severely limit the selection of classifier models to be used
and the problem formulations for classifier model optimization task become also
limited. Simply, local optimizers are limited to fit or learn. Only classifier models
work where trapping into a local suboptimal solution is not a major problem and
global optimizers do not have such fundamental limitations. For example, the range
of possible class membership functions can be extended to those requiring global
optimization (due to increased nonlinearity and multimodality), and which cannot
be handled anymore by simple local optimizers, even with the nonlinear ones. In



Differential Evolution Based Multiple Vector Prototype Classifier 1155

addition, we would like to remark, that we have not yet fully utilized the further
development capabilities provided by our global optimization approach. For exam-
ple, even more difficult optimization problem settings are now within possibilities,
and the differential evolution have good capabilities for multi-objective and multi-
constrained nonlinear optimization that provides further possibilities for our future
developments.

In this work multiple vector differential evolution classifier is presented. In
Section 2 we present our classification method. In Section 3 we introduce several
test classification problems where we benchmark and compare our method and in
Section 4 we present discussion of the method.

2 MULTIPLE VECTOR DIFFERENTIAL EVOLUTION
BASED CLASSIFICATION

The DE algorithm [31, 9] was first introduced by Storn and Price in 1995, and
it belongs to the family of evolutionary algorithms (EAs). The design principles
of DE are simplicity, efficiency, and the use of floating-point encoding instead of
binary numbers for the internal representation of solution candidates to the problem
to be solved. As a typical EA, DE has a random initial population of solution
candidates that is then improved using selection, mutation, and crossover operations.
Several ways exist to determine a stopping criterion for EAs, but usually a predefined
upper limit Gmax for the number of generations (can be viewed as iterations) to be
computed provides an appropriate stopping condition in our case. This is due to
the fact that in most of the real world classification problems 100 % accuracy cannot
be even expected. In these cases misclassified samples are searched through entire
search space and hence homogenity of population cannot be used. Other control
parameters for DE are the crossover control parameter CR, the mutation factor F ,
and the population size NP .

DE examines a D dimensional decision vector vi,g in every generation g by going
through the population and forming trial vector ti,g by using the most common DE
version, DE/rand/1/bin [32]1:

Select ri1 , ri2 , ri3 , where i1, i2, i3 ∈ {1, 2, . . . ,NP} and i1 6= i2 6= i3 6= i randomly.
jφ = bDφic+ 1
For j := 1 to D do

If(φi < CR ∪ j = jφ)
tj,i,g = vj,ri3 ,g + F ·

(
vj,ri1 ,g − vj,ri2 ,g

)
Else

tj,i,g = vj,i,g
EndIf

EndFor

1 Notation refers to classical version of DE algorithm
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where random number φ ∈ U(0, 1). In applied DE version, DE/rand/1/bin, NP
should be set to at least four. Crossover control parameter CR ∈ [0, 1] represents the
probability that an element for the trial vector is chosen from a linear combination
of three randomly chosen vectors (disregarding the old vector vi,G). The condition
“j = jφ” is added to ensure that at least one element is different compared to the
elements of the old vector. The parameter F is a scaling factor for mutation and
its value is typically (0, 1]2. Parameter CR controls the rotational invariance of
the search. In practice smaller values of CR are practical in separable problems
and larger values in non-separable problems. Parameter F effects to the speed and
robustness of the search. Here, the lower value increases the convergence rate, but at
the same time also adds the risk of getting stuck in a local optimum. For convergence
rate also parameters CR and NP have the same kind of effect as F .

After the mutation and crossover operations, the trial vector ti,g is compared
to the old vector vi,g. If the trial vector has an equal or better objective value, it
replaces the old vector in the next generation. This can be presented as follows (in
this paper the minimization of objectives is assumed) [32]:

vi,g+1 =

{
ti,g if f(ti,g) ≤ f(vi,g)
vi,g otherwise.

Since DE is an elitist method, the best population member is always preserved. Due
to this reason the average objective value of the population will never decline.

As the objective function f needs to be minimized, we applied the number of
incorrectly classified learning set samples. Each population member ~vi,G, as well as
each new trial solution ~ui,G, contains the class vectors and the power value p. In
other words, DE is seeking the vector (y1, . . . , yN1 , p) that minimizes the objective
function f . After the optimization process the final solution, defining the optimized
classifier, is the best member of the population of the last generation Gmax, the
individual ~vi,Gmax . The best individual is the one providing the lowest objective
function value, and therefore, the best classification performance for the learning
set.

The control parameters of the DE algorithm were set as follows: CR = 0.9 and
F = 0.5 were applied for all classification problems. NP was chosen so that it was
six times the number of the optimized parameters D. These selections were based
on general recommendations in the literature [9] and practical experiences with the
usage of DE.

Next, we will take a look at the actual classification. The problem of classifi-
cation is basically one of partitioning the feature space into regions, one region for
each category. Ideally, one would like to arrange this partitioning so that none of
the decisions is ever wrong [33].

The objective is to classify a set X of objects to N different classes C1, . . . , CN
by their features. We suppose that T is the number of different kinds of features

2 Notation means that the upper limit is about 1.
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that we can measure from objects. The key idea is to determine the ideal vector yi,
which is closest to sample xj

yi = (yi1, . . . , yiT ) (1)

where now i is the integer number such that i ∈ {1, 2, . . . , N1} and N1 is the total
number of possible ideal vectors. In our earlier work [28] we allowed one vector per
each class. In this article the key idea is that there can be several vectors for one
class. This is done so that we first find the closest vector yi for sample xj by using
minimum distance

g(xj) =

{
i

∣∣∣∣ min
i=1,...,N1

d(xj,yi)

}
(2)

where now the distance between the sample vector and particular ideal vector is
calculated using

d(x,y) =

(
T∑
j=1

|xj − yj|p
)1/p

. (3)

Next we need to refit these ideal vector indexes g(xj) to correspond the actual
classes and this is done by the procedure given in Algorithm 1, where N is the
number of classes in the given data set. Next we compare given class g(xj) of the
sample to its true class by

B(xj) =

{
1 if g(xj) = T (xj)
0 if g(xj) 6= T (xj)

(4)

and we denote T (xj) as the true class from sample xj. For the objective function of
differential evolution algorithm we next calculate fitness function by using

cost = 1−
∑m

j=1B(xj)

m
(5)

where m is the number of samples in training set and this cost value will be mini-
mized by DE. To summarize DE is seeking a vector

vi,G = {y1,y2, . . . ,yN1 ,p} (6)

which minimizes our objective function given in (5) and yi, where i ∈ {1, 2, . . . , N1}
are possible ideal vector candidates and p is a parameter coming from the Minkowski
distance in (3).

In this study, we used the Differential Evolution algorithm [9] to optimize all
the ideal vectors and the p value. For this purpose, we split the data into the
learning set learn and the testing set test. Division was carried out so that half
of the data was used in the learning set and half in the testing set. This random
division was repeated 30 times and average accuracies were computed. We used the
data available in the learning set to find the optimal ideal vectors yi, and the data
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Algorithm 1 Pseudo code for fitting the samples ideal vector index to a class index

while max(g(xj)) > N do
if g(xj) > N then

g(xj) = i−N
end if

end while

in the testing set test was applied for assessing the classification performance of the
proposed classifier. In short, the procedure for our algorithm is as follows:

1. Divide data into learning set and testing set.

2. Create initial multiple ideal vectors (here we simply used random numbers).

3. Compute the distance between samples in the learning set and all of the ideal
vectors.

4. Fit the samples ideal vector index to correspond classes by using Algorithm 1.

5. Classify samples according to their minimum distance and using label informa-
tion to which class, which vector belongs.

6. Compute classification accuracy (number of correctly classified samples/total
number of samples in learning set).

7. Compute the objective function value to be minimized as cost = 1− accuracy.

8. Create new ideal vectors for the next population using selection, mutation and
crossover operations of the differential evolution algorithm, and go to 3. until
the stopping criteria is reached (e.g. maximum number of iterations reached).

9. Classify data in testing set according to the minimum distance between class
vectors and samples.

Summarizing briefly, we first apply a global optimization algorithm, differential
evolution, for determining the parameters of our classifier model optimally so that
the classifying accuracy over the training data will be maximized. After that the
test data will be classified with these parameters of the multiple vector classifier
model. A sample belongs to the class that the very nearest class vector represents.
Main procedure of how the multiple vectors within classes can be used and how they
can be refitted is also given shortly in Algorithm 2.

3 TEST DATA SETS AND RESULTS

In all experiments, the test data was split in half; one half for testing and one half
for training. This split was randomly repeated 30 times, based on which mean clas-
sification accuracies and variances were computed. To enable further assessment
of the results, we repeated the classification results also for support vector ma-
chine (SVM) [6] classifier with a linear kernel function and back propagation neural
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Algorithm 2 Pseudo code for classification process with optimal class vectors and
parameters from DE

Require: Data[1, . . . ,m], classvec1[1, . . . , T ], classvec2[1, . . . , T ], . . . ,
classvecN1[1, . . . , T ], p, N
center = [classvec1; classvec2; . . . , classvecN1]
Calculate distances for all the samples and all the ideal vectors:

for i = 1 to m do
for j = 1 to N1 do

d(i, j) = d(data(i, :), center(j, :))
end for

end for
for i = 1 to m do
Find the index of the ideal vector which has minimum distance to the sample

g(i) = find(d(i, :) == min(d(i, :))
end for
Refit ideal vector indexes to the class indexes

while max(g(i))) > N do
if g(i)>N then

g(i) = g(i)−N
end if

end while

network (BPNN) [36] classifier for comparison. Our DE classifier was carried for
Gmax = 1 000 iteration or until 100 % classification accuracy was reached.

In first experiment we decided to use test problem where data was splitted in
four parts with two classes and from these four parts the two classes could not
be accurately classified by using just distance based method but more was needed.
In this case the multiple vectors for DE classifier are giving the answer to our
problem. Data can be seen in Figure 1 a). In Table 1 one can see the results from
this experiment. There results are also compared to original DE classifier, BPNN
and SVM classifier. As can be seen from the results multiple vector DE (MVDE)
classifier managed with the mean classification accuracy of 98.44 % which is far
better than others. Original DE classifier managed with accuracy of 70.67 % and
support vector machine SVM classifier managed only with 51.47 % accuracy. Back
propagation neural network classifier did also quite well with 92.77 % but still got
over 5 % lower classification accuracy than MVDE.

In the second experiment we tested MVDE classifier in the situation, where one
class is inside the other class so basically we can say that one class is surrounding
the other class. Data set created for this experiment can be seen in Figure 1 b). This
experiment was already clearly more difficult than the first one and more vectors
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Figure 1. First two test data sets where data is not separable by using simply distance
based method. Classes are marked with + or ∗ a) Two class classification problem
is in four different areas b) Two classes are such that one is inside the other

Classifier Accuracy Variance

MVDE 98.44 % 0.037
DEorig 70.67 % 0.25
BPNN 92.77 % 0.014
SVM 51.47 % 0.002

Table 1. Mean classification accuracies from first test case experiments

per class were needed than just two vectors per class as in the first experiment. Here
best results were achieved with multiple vector DE when six vectors were used for
one class. The mean classification accuracy of 99.09 % was achieved. Here BPNN
performance was also very strong yielding the highest mean classification accuracy
of 99.31 %. Original DE classifier and SVM managed both with 66.67 % classifica-
tion accuracy.

Classifier Accuracy Variance

MV2DE 98.32 % 0.005
MV6DE 99.09 % 0.005
DEorig 66.67 % 0.0012
BPNN 99.31 % 0.0003
SVM 66.67 % 0.0001

Table 2. Mean classification accuracies from second test case experiments. MV2DE means
that we used two ideal vectors per class and MV6DE means we used six ideal vectors
for each class.

In our third experiment we decided to test the classifier by creating data with
xor-like data formulation, again making the data set such that it was not separable
by simply using distance based method. Here we also decided to test our classifier by
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adding more such xor type squares to the data. Modifying the data in this manner
also meant that we needed to add more vectors to the class to get more accurate
results. Figures from the data sets used in this experiment can be seen in Figure 2
where we used 2× 2, 4× 4, 6× 6 and 8× 8 xor type data.
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Figure 2. Xor type data where difficulty is increased by adding more squares in the data
a) 2× 2 XOR data b) 4× 4 XOR data, c) 6× 6 XOR data, d) a) 8× 8 XOR data.

Classification results from this experiment can be seen in Table 3. As can be
seen from the Table with 2×2 xor data both MVDE and BPNN managed quite well
getting both over 98 % mean classification accuracy. Original DE and SVM on the
other hand did not do so well but accuracies were around 70 %. When difficulty was
increased by adding more squares to the test problem, mean classification accuracies
started to decrease with all four classifiers. By increasing the number of squares we
also needed to increase vectors in our MVDE. In 4× 4 problem we used all together
16 vectors and in 8× 8 we used 64 vectors now having 32 vectors per class. As can
be seen from the Table 3, by far the best results were gained with MVDE where
with 8×8 problem we had the mean classification accuracy of 84.3 %. Classification
accuracy with original DE was only 57.5 % in 8 × 8 xor problem and BPNN and
SVM did not anymore work any better than flipping the coin with this problem
gaining roughly 50 % accuracy.
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Data type MVDE DEorig BPNN SVM

2× 2 99.3 72.6 98.6 68.3

4× 4 97.7 65.7 79.4 50.34

6× 6 87.9 59.9 55.7 50.7

8× 8 84.3 57.5 51.6 49.5

Table 3. Mean classification accuracies from xor-type test experiments

Our next testing case problem to which we decided to test our method is
MONK’s problem which is freely available in UCI machine learning data reposi-
tory [35]. The MONK’s problem was the basis of the first international comparison
of learning algorithms (see [37]). One significant characteristic of this comparison is
that it was performed by a collection of researchers, each of whom was an advocate of
the technique they tested. This way one can say that the results are less biased than
in comparisons performed by a single person advocating a specific learning method,
and more accurately reflect the generalization behavior of the learning techniques as
applied by knowledgeable users. In this artificial data set there are eight attributes
and number of instances is 432. It is a binary classification problem.

Results with this data set and the comparison can be seen in Table 4. As can be
seen, original DE classifier managed only with 82.01 % mean classification accuracy.
Neural network classifier and SVM managed better with the mean accuracies 85.85 %
and 92.81 %. Again, the best results were quite clearly gained with multiple vector
DE classifier where now two vectors were used for each class. In this experiment
MVDE classifier clearly showed its performance capabilities.

Classifier Accuracy Variance

DEorig 82.01 % 0.0058
MVDE 99.84 % 0.0024
BPNN 85.85 % 0.0011
SVM 92.81 % 0.0001

Table 4. Mean classification accuracies from MONK’s problem data set. Number of vectors
used in MVDE per class is two class vectors for each class.

Next we decided to test our classifier with real world data set taken from a UCI-
Repository of Machine Learning Database [35]. There we chose the Tic-Tac-Toe
End game data set which clearly has problem setting which is not separable by
simply using distance based method but a clear need for something else, in this
case multiple vectors, is present. This is basically classification task problem on
different configurations of tic-tac-toe game. This database encodes the complete set
of possible board configurations at the end of tic-tac-toe games, where “x” is assumed
to have played first. The target concept is “win for x” (i.e., true when “x” has one
of 8 possible ways to create a “three-in-a-row”). Data has nine different attributes
and number of instances is 958. We tested our MVDE with several different number
of multiple vectors. We managed to get best results by using four vectors per class.
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There the mean classification accuracy was 98.03 % with variance 0.016. When we
compare the classification results with BPNN and SVM we clearly see that MVDE
gives over 20 % higher classification accuracy than either of these two. Also when
comparing to the original DE classifier over 20 % higher classification accuracy was
achieved using MVDE compared to original. From these results one a bit more
general notion can also be seen. If we use too many vectors per class the results
start to deteriorate. This can be seen more clearly in Table 6 where classification
accuracies from both test data set and learn data set are listed. There one can see
that when we have too many vectors involved, overlearning can become a problem.
From learning set highest mean classification accuracy 98.71 % was gained using
eight vectors per class but in testing data set mean accuracy reduced to 76.78 %.
This is quite likely due to the fact that when there is no need for more vectors per
class, this MVDE starts putting vectors near outliers of the learning data set and
when tested with the testing data set such outliers do not exist and hence they are
just deteriorating the mean classification accuracy in the test data set. The same
observation was done with the other data sets. If we have too many vectors per
class, results start to deteriorate and overlearning can become a problem.

Classifier Accuracy Variance

DEorig 75.36 % 0.025
MVDE2 82.72 % 0.154
MVDE4 98.03 % 0.016
MVDE6 98.00 % 0.003
MVDE8 76.78 % 2.82
BPNN 76.85 % 0.0021
SVM 65.27 % 0.0001

Table 5. Mean classification accuracies from tic-tac-toe data set. Number of vectors used
in MVDE per class is given in the subscript.

Classifier Testing Data Set Learning Data Set

DEorig 75.36 % 79.60 %
MVDE2 82.72 % 85.89 %
MVDE4 98.03 % 97.96 %
MVDE6 98.00 % 98.65 %
MVDE8 76.78 % 98.71 %

Table 6. Mean classification accuracies from tic-tac-toe data set from both test data set
and learning data set. Number of vectors used in MVDE per class is given in the
subscript.
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4 DISCUSSION

We have introduced multiple vector differential evolution (MVDE) based classifier
where the key idea is that instead of having one vector per class to be optimized in
class vector we can have several vectors per class. Need for this type of classifier be-
came evident from the test classifiation problems which are not separable by simply
using optimal class vector and suitable distance. MVDE offers a solution to such
classification problems. Several test sets were given which are easy to understand
and which clearly show the need for such classification methods. MVDE was also
tested to real world classification problem and its performance was not only bench-
marked with several different test problems but also compared to back propagation
neural network (BPNN) and support vector machine (SVM) classifiers. BPNN is
a classifier which can to some extent manage with this type of classification prob-
lems. But the experiments showed that MVDE managed usually with even higher
classification accuracy, and when classifiers performance was tested with xor-type
problem setting with increasing difficulty, we noticed that MVDE managed quite
well even in larger problem settings where performance of BPNN quite quickly de-
teriorated. SVM is known as an accurate distance based classification algorithm
but with this type of test problems it could not managed well, because problems
were too complex for such algorithm where MVDE classifier, on the other hand, did
perform well. One important observation from the experiments was that in order to
get the best possible classification accuracy for these problems an optimal number
of vectors were needed. If we have too little or too many vectors per class to a given
problem, results quite quickly start to deteriorate. In case of too many vectors,
overlearning can become a problem. One subject of the future research in this area
is trying to optimize the correct number of vectors needed for the data sets because
in many real world data sets this is not clear in advance.
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