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Abstract. Cloud computing is becoming one of the preferred paradigms to deploy
highly available and scalable systems. These systems usually demand the manage-
ment of huge amounts of data, which cannot be solved with traditional database
systems. Traditional replication protocols are not scalable enough for a cloud en-
vironment. This paper evolves different static replication techniques to achieve
transactional support providing high availability and scalability as needed in cloud
systems. This proposal offers different consistency levels according to the demands
of client applications using a replication strategy based on a combination of tra-
ditional replication techniques with asynchronous epidemic updates. We have run
several simulations that show this is an interesting approach to provide transac-
tional support to clients with different consistency guaranties while leveraging the
resources used.
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1 INTRODUCTION

Replicated databases have become attractive due to an increasing demand for stor-
age systems which provide high scalability and availability. However, replication
presents the problem of keeping all data stored in all replicas consistent. There are
several replication protocols to minimize this consistency problem which propose dif-
ferent ways to maintain the data updated in all replicas using some communication
tools to propagate the changes. Thus, to reduce the cost of propagating updates
to all replicas, two different strategies have been proposed according to its synchro-
nization [1]: eager replication and lazy replication. Eager replication performs the
synchronization within transaction boundaries; while lazy replication propagates the
changes after the client receives the transaction commit. Eager protocols comply
with the consistency requirement as part of their execution but introduce a higher
latency. On the other hand, lazy protocols lead to inconsistencies, which have to be
solved later.

With regard to where updates are carried out we distinguish between primary
copy [2, 3] and update everywhere [4, 6]. In a primary copy variant all update
transactions are executed in the same replica, the delegate. In this case the synchro-
nization is performed in a straightforward way, propagating the delegate updates to
the secondary replicas. For update everywhere the update transactions can be exe-
cuted in any replica; this implementation presents some issues like conflicts between
transactions belonging to different replicas.

Group communication systems have provided a useful abstraction to be em-
ployed when designing update everywhere replication protocols [7, 8, 9]. There are
several replications techniques based on one of the primitives of group communi-
cation: total order broadcast [1]. The first technique is active replication, which
executes the update in the delegate server that issues the total order broadcast on
behalf of the client. The second technique is certification-based replication. It is
optimistic; i.e, operations contained inside a transaction are executed with no re-
strictions and check for consistency violations at its end. In this technique all servers
execute a certification phase where it is decided if the transaction can commit or
must abort. And the third technique is weak voting replication, which is similar to
certification-based replication. The main difference is that the certification phase is
replaced by a weak voting phase, where the delegate takes the decision to commit
or abort.

Because of the scalability limitations of traditional database replication, there
is a new concept which brings highly scalable database at low cost. This is called
NoSQL (Not only SQL) [10, 11] and is known as one of the best cloud-storage
resources. In terms of scalability, the cloud offers concepts like (virtually) infinite
scalability and services on demand [12].

There are some specific scenarios where the ACID (Atomicity, consistency, isola-
tion and durability) properties can be relaxed, and high performance and availability
levels can be achieved. Examples of these cases are the key-value data store pro-
vided by Amazon called Dynamo [10], the Bigtable from Google [14] or PNUTS
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by Yahoo! [15]. However there are applications that cannot get the benefits of the
cloud-storage due to their transactional nature. Considering an on-line sales web
application, there are data that can be accessed outside the context of a transaction
(e.g., checking the warehouse for the amount of units of a certain item in order to
estimate if they have to order more units of that item to their supplier) while other
data do not (e.g, a customer buying the previously mentioned item or the company
buying items to the supplier). Another example is home rental businesses, the pic-
tures of the rooms of a house are hardly changed nor there is a need to see its latest
comments’ feedback, as opposed to a client’s deposit on a house. Hence, there is
a need for serializability transactional behavior on deposits while this can be relaxed
or skipped at all in the rest of operations.

The cloud offers a pay per use service [12], and for this reason it is important that
cloud systems only use the amount of services that they require [13]. This document
presents a performance comparison of the aforementioned replication techniques
adapted to the cloud environment. We have tried to maintain data consistency
while keeping high availability and scalability.

Current cloud systems are generally classified [16] as Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) systems. An
IaaS system manages physical resources (computing cycles, storage, communication
bandwidth, . . . ) and, through virtualization, this system is able to provide a logical
infrastructure to their customers. The latter are responsible for deploying all the
software stack (including the operating system and distributed middleware) in order
to build their applications. A PaaS system provides a higher abstractions level.
Instead of providing a virtual infrastructure, it provides an elastic programmable
platform where applications can be easily built. Finally, in a SaaS system a given
application is being provided to the customers, who are also the direct users of those
applications.

The aim of this work is to adapt the classical database replication techniques to
a cloud environment. To this end, our objective is to follow a Database-as-a-Service
(DaaS) paradigm, as a specialized case of a PaaS system; i.e., the interface and
service being provided by a system of this kind is that of a (scalable and adaptive)
relational database and this partially matches the aim of a PaaS system.

Unfortunately, it is not possible to apply those classical techniques directly, so it
is necessary to partition the data previously and to distribute the resulting partitions
in a subset of M replicas (having M << N, with N the total number of replicas). We
present a two level replication behavior. The first level consists in a small number of
P replicas (with P << M) which will have the strongest consistency management [2]
and will maintain the more recent versions of the data. Each one of the P replicas
will propagate the changes asynchronously to the next level. We can iterate this
process to several levels and, thus, we did implement a replication hierarchy tree
with the most recent versions at top whereas older versions are at the leaves.

We provide different freshness level to each transaction, i.e. each client decides
the freshness level that they need for each transaction. In this way, if a transaction
has the highest freshness level it will be executed in the first level of the hierarchy.
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On the contrary, if the freshness is lower, then an older data from the hierarchy can
be returned. The hierarchy level will depend again on the freshness constraints and
the amount of resources.

Finally, we execute transactions with a rational use of resources. Cloud sys-
tems are based on a pay-per-use principle. So, we have designed a mechanism that
shutdowns database replicas that are not being used, restarting them only when
necessary.

The rest of this document is structured as follows. Section 2 details the replica-
tion technique being implemented. Section 3 presents the different experiments and
their results. Finally, Section 4 shows the conclusions.

2 REPLICATED DATABASE SYSTEM DESIGN

This section describes the system proposed in this work. It simulates the replica-
tion techniques previously explained combined with a cloud scheme to provide high
scalability, availability and an appropriate use of resources. Section 2.1 explains the
motivation. Section 2.2 provides a system overview. Later, Section 2.3 describes the
system model.

2.1 Motivation

It is well known that the performance of replication protocols depends on the work-
load characteristics. For instance, the primary copy can provide a higher throughput
in a replicated system where most transactions are read-only [2]. On the other hand,
if there are many update transactions, an update everywhere approach based on to-
tal order broadcast may be more appropriate [1].

Techniques based on update everywhere present low scalability because of the
costs of propagating the changes made by transactions in total order broadcast and
applying them in remote replicas. This scalability disadvantage can be alleviated
by creating a hierarchical server structure for update propagation. In this case, an
update everywhere protocol would be combined with a primary copy protocol. Let
us say that there are S servers (one database partition per server), and each one has
N children. These S servers receive the transactions from the clients, each server
behaves according to the update everywhere protocol implemented and the response
is sent to the client. Then, the transactions are sent by these servers asynchronously
to each child, having a primary copy behavior. And this can iteratively go on so that
it could exist as many hierarchical levels as needed. This causes that at a particular
moment the replicas in the lowest level of the hierarchy have an older version of the
data and the lower is the level in the hierarchy the older is the version.

When a transaction is received it can be forwarded to a secondary replica de-
pending on the freshness level required, achieving a better load balancing and scal-
ability when compared to previous solutions. A further advantage of the presented
architecture is that system replicas can be upgraded or downgraded in the hierarchy
according to current system requirements.
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2.2 System Overview

Bearing in mind the previous ideas, we have developed a simulator that implements
the replication techniques explained in this work. Recall that these replication
techniques were evaluated in [1] and the results obtained assumed a static system.
For this work we propose to evaluate their performance for a cloud system having as
the dynamic part to promote or degrade the replicas to achieve the load balance, as
well as to allow executing the read-only transactions in a replica located in a lower
level in the hierarchy depending on the data freshness required. Furthermore, we
propose to turn off or turn on the replicas to consume the lowest amount of cloud
resources.

Figure 1. Proposed structure for the servers

The system consists in a partially replicated database. To this end, it is necessary
to have a component which controls the database partitions [18, 19] and creates the
hierarchy mentioned that results in the structure shown in Figure 1. The servers in
Level 0 take the behavior specified by the replication technique implemented (one
of those mentioned in the introduction). To the rest of levels the protocol we apply
is a lazy primary copy to transfer the changes in an asynchronous way. In case
that a client sends an update transaction, the transaction is executed by a replica
in Level 0 managed by the replication technique considered. After all the process is
completed and the client receives the response, the changes are propagated to the
replicas in Level 1 (lazy primary copy protocol). In the same way, the replicas in
the Level 1 will propagate the changes to the replicas in Level 2 asynchronously and
so on until the replication depth for that partition is reached.

With this structure, it is possible to have different versions of the same data in
one partition. Hence, the read-only transactions play the lead role regarding this
hierarchy. Each one of these transactions have a freshness level where we assume
that it can vary from 0 to 1 being the former the tightest one while the latter the
most relaxed, respectively. Read-only transactions with strict freshness guarantees
are forwarded to a replica in Level 0 while the rest are forwarded to other levels as
we can see in Figure 2. On the left side of Figure 2 we have a transaction t with
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a freshness of 1; this transaction has to be executed at the top of the hierarchy
(Level 0). Whereas t with lower freshness requirements, as seen on the right side of
Figure 2, can be forwarded to any of the replicas underneath.

Figure 2. Transaction execution according with the freshness level

Ideally, we may think that this propagation process through the hierarchy could
be extended to the infinity. However, we are using a pay-per-use model and have to
make a judicious use of resources and locate them through the levels smartly enough
to obtain the best performance. This is an optimization problem and falls out of
the scope of this work. In this paper we present a service that switches on and off
replicas from a scenario with a fixed number of replicas; initially, not all of them
are up. To this end, we have a component that monitors the behavior of all replicas
in the system. Hence, we have a Metadata Manager (MM) similar to the ElasTraS
proposal [5]. Let us see this with an example of the resources’ management with
one data partition as shown in Figure 3. Initially, we only have active one replica at
level 0 (see Figure 3 a)). When the metadata manager detects a relevant increase in
the number of requests per second, it adds one replica from level 1 to start accepting
read-only transactions that can alleviate the load supported at level 0 (Figures 3 b)
and 3 c)). The workload can increase further and then the MM can notify more
replicas to join in (Figures 3 d) and 3 e)). Finally, scenario V represents a situation
in which the MM decides to remove one of the replicas upon detecting an important
decrease in the number of requests in order to save resources (Figures 3 f)–3 i)).

2.2.1 System Model

Figure 4 shows an abstraction of our cloud replication proposal. We will simulate
this system according to a discrete event simulator. We have developed it using
version 2.34 of the NS2 network simulator which was created using C++ code and
otcl as scripting language. The main components of the system are:

Client Applications. Clients are sources of transactions. A client submits the
transaction and receives the response from the server. These events are repeated
following certain parameters and are controlled by a timer. A client only submits
one transaction at a time, waits for its outcome and, when scheduled, submits
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a) b) c)

d) e) f)

g) h) i)

Figure 3. Resources use for the proposed system: a) Initial state, b) Maximum capacity,
Send notification, c) Activate node from the next level, d) Still maximum capacity,
activate another node in the next level, e) Maximum capacity, Send notification,
f) Minimum capacity, Send notification, g) Minimum capacity, Send notification,
Shutdown server in lowest level, h) Shutdown the unnecessary servers, i) Shutdown
the unnecessary servers

the next one. One server is connected to a subset of the total clients; clients are
evenly distributed among all servers. Clients gather all the performance data
and compute statistics.

Servers. Each of them maintains one database partition. Each server hosts a local
database manager using a replication technique. To accomplish this, the server
application is structured in three levels:

1. Communication module. It represents the interactions among servers and
each server with its associated clients. There is one instance per server. This
module allows the server to multicast messages and manages the multicast
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Figure 4. System model

group to which the server will communicate. It also controls the clients
that are connected to the server. The message queues in each node are
FIFO.

2. Database module. It simulates a database system. There is one for each
server. This module includes a lock manager and a data manager. The
lock manager supports all the concurrency needed to generate SI transac-
tions in each server. The data manager handles operations to read and write
data from/to the database. We assume that all the data is in main mem-
ory.

3. Database replication module. It runs the replication protocol instance on
each server. The module behavior depends on the replication technique used
in the simulation (primary copy, active, certification, weak-voting, etc.).

Metadata manager (MM). It stores the system state [5], viz., partition infor-
mation, mapping of partitions to replicas, hierarchy for each partition. It deals
with failures, and monitors the health of the system. When a server reaches its
maximum capacity, it notifies the MM, so a child could be promoted. In the
same way, when the server reaches the minimum load, the metadata will turn
off one child at a time to save resources.
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2.3 Potential Bottlenecks

At a glance, there are two components in this architecture that could become a per-
formance bottleneck:

1. the MM, and

2. nodes at level 0 in the hierarchy.

Let us discuss how such a potential problem is being dealt with.
The MM component does not intervene in the clients’ transactions as it does

not reside in the data path. Besides, as partitioning is done to exploit data locality,
clients can cache the metadata regarding the replicas where they have to connect
as delegates so the MM-client interactions do not potentially generate a system
bottleneck. On the other hand, the MM component has a passive role regarding
monitoring. It only receives notifications from database replicas when their work-
load reaches some preconfigured upper and lower thresholds. Depending on the
information received it decides whether a new replica needs to be added or an ex-
isting replica at a given layer should be passivated. Node passivation is not a long
task. Once a request of this kind is received by a given replica, it stops receiving
new updates and leaves its active role in the replication protocol. So, the MM only
needs to send such a request and it is obeyed without requiring further intervention.
Thus, the interaction between the MM and replicas does not constitute a bottleneck.
Finally, as the MM is a virtually centralized component we need to establish a set of
MM replicas where we keep the monitoring information up to date so that the MM is
not a single point of failure. This needs to ensure an almost synchronous replication
regarding data location and replication or replica monitoring. As the modification
rate of this metadata is low, we can use Paxos as the replication protocol and with
the previous issues covered we humbly think it does not become a system bottleneck
(actually, Chubby uses this protocol).

We have to be specially cautious also about the addition of a new node in
a given partition and hierarchy layer HL, such action requires a longer interval.
The role of the MM is only to trigger the live migration between the donor node
and the new node and choose both nodes; in other words, this process does not
overcome a bottleneck at the MM. The live migration between nodes is described
in [5] and consists in iteratively transferring the database cache and state of active
transactions. Usually, the information to be transferred is the database cache. The
new node to be added at level HL should be one from HL + 1 or, if not, from layer
HL + 2 and promoted to layer HL + 1; the worst case will be the addition of a new
node at the bottom layer. On the other hand, at the top layer, we need to add
a node to level 0. In such a case, it is needed to be transferred the readsets and
writesets of active transactions along with the database cache; otherwise, it is only
needed to transfer the readset of active transactions (it is expected that readset
will be made of scanning interval rows and only the start and end identifiers are
needed). The end of the live migration process is known as atomic handover. If the
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replica is at the core layer, the ownership of the active transactions is transferred to
the new node. Moreover, the last unsynchronized state of the databases should be
copied along with the state of active transactions. All these state transfers need to
be completed without disruption (i.e., their effects are atomic).

The second potential bottleneck is the management of nodes in level 0 (i.e.,
the top-most level of the hierarchy). What happens when some nodes in the top-
most level of the system hierarchy are overloaded? Recall that level-0 nodes are the
managers of different database partitions. However, this does not necessarily imply
that there is a single manager per partition (a primary copy approach). Indeed,
there may be multiple level-0 nodes managing the same partition and balancing such
partition workload among them (i.e., update everywhere). The solution consists in:

1. if the workload is not well-balanced among all level-0 partitions, applying a work-
balancing approach; or,

2. if the workload is almost equal in all 0-level nodes, adding another node or
changing the replication protocol.

Let us explain the latter in depth, if the protocol running on level 0 is a primary copy
and the update ratio is increasing, the system must change to an update everywhere
protocol so the update workload is evenly distributed among all nodes. Besides, if
the protocol running was also an update everywhere replication protocol, we can
add a new replica from the bottom layer, as we have previously described.

However, if this process continues then we can face that the system does not scale
as this was the traditional solution so the system has to repartition the data. The
MM will decide according to data access pattern and its location which partitions
to merge. The pair of heaviest and lightest loaded partitions merge their data and
later divide them again to be equally loaded. This process can be seen and getting
replicas from lower layers and start the live migration for the new repartition. In this
case, there is a lease of the ownership from the old core to the new core. From this
moment on, the lower layers start receiving new updates from the new core of items
they did not own before. Thus, they will have a ∆ step of versions in these lower
layers. In order to avoid a thrashing behavior when layer 0 is being reconfigured
(i.e., repartitioned) the thresholds used for tagging a given set of partition-managers
as overloaded or underloaded are set at very distant values (e.g., 80 % and 20 % of
its full service capacity, as shown in Table 1).

Since repartitioning is only initiated in case of overloading, the initial system
deployment should set a large number of partitions on the database being served.
Our recommendation is to apply such partitioning action implying that the typical
workload was close to 50 % of the maximum service capacity of each level-0 node.

3 EVALUATION

This section presents the performance evaluation of the proposed system. An ex-
tensive set of simulations have been run to compare which combination of all the
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replication techniques along with the hierarchy performs the best. These simulations
measure the transactions response time seen by clients as well as the transaction
abort rate and system throughput. We repeated ten times each measurement with
10 000 transactions and each time the first and the last 10 % of transactions were
discarded in each experiment. The database settings were based on numbers in the
literature [1] and represent mean values. The simulation parameters, together with
their meaning, are shown in Table 1.

The total size parameter is divided by the copy size parameter to obtain the
number of partitions. In this case we had 25 partitions. Each partition has four
associated replicas (replica number parameter); i.e., we have 100 servers in the
simulation. The database has a hotspot whose size in rows is fixed by the hotspot
parameter. Each transaction accesses to a given number of rows of the hotspot that
is defined in the hotspot rows parameter. Every delegate server has 6 clients which
gave us a total of 600 clients. The transactions size varies randomly between 10
and 20 operations. The response time of a transaction depends on the write time
and read time parameters for each operation and the network latency (total order
or FIFO multicast).

A combination of two different scenarios is considered: percentage of update
transactions and the freshness degree of read-only transactions (i.e., freshness).
With regard to the rate of update transactions (update ratio in Table 1), we have
considered from a pure read-only scenario (0 % value in Table 1) to a write intensive
scenario (75 %). On the other hand, read-only transactions could be configured so
that they can jump through the hierarchy replication tree of each partition; a range
from no transaction accepting old values (0 %) to transactions reading any available
version of the data (100 %) has been considered.

A replication hierarchy depth up to three levels has been evaluated, where servers
from the top of the hierarchy lazily send updates to the replication hierarchy every
0.4 ms (update interval in Table 1). Initially, both the non-hierarchical and the
hierarchical protocols start with 4 replicas per partition. This implies that level-0
(the top-most layer) in the hierarchical management is served by 4 replicas. Each
of the remaining layers only has a single initial replica. So, the hierarchical variant
is initially deployed onto 6 nodes. The number of replicas in those other layers is
varied dynamically, depending on the workload in each layer. The thresholds being
considered are shown in Table 1: a new replica is created when the workload exceeds
80 % of the node full capacity and an existing replica is removed if the workload does
not reach 20 % of the full serving capacity.

Although there are several standard benchmarks for database performance eval-
uation (TPC-C, TPC-E, YCSB), their dataset partitioning are not considered. Be-
sides, we want to emphasize the advantage of our proposal in the presence of update
intensive or conflict intensive scenarios when compared with traditional database
replication techniques. As a result, a specific database scheme has been selected in
our evaluation; actually, we have been inspired by the experimental setups provided
in [1, 6]. To this end, vertical partitioning has been applied in the assumed database.
Each partition consists of three relations, each one with two integer columns (one
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of them is the primary key) and two varchar columns. The average record size is
200 bytes. Each table is filled with a large amount of records up to the configured
partition size. Each write operation accesses a given range of sequential records
from one of the partition tables. In order to raise some degree of conflicts among
transactions, as commented above, a hotspot has been defined in a similar manner
as presented in [6].

In order to validate the adequacy of the simulation parameters and its results,
an initial configuration based on a single partition was tested and compared with the
same deployment onto our MADIS [17] middleware (with 4 replicas and supporting
the same workload, being tested with 100 TPS). Once the results were checked and
matched, the simulation was extended with multiple partitions and a larger set of
workloads whose results are presented in the sequel. Right now, we are developing
a prototype with some preliminary results [20].

Parameter Meaning Value

Total size Database size (GB) 750

Copy size Size of each database partition (GB) 30

Number of replicas Number of replicas for each partition 4

Protocol Replication technique used for the 1–6
simulation (primary copy, certification, etc.)

Client number Number of clients in the simulation evenly 600
distributed among servers

Update ratio Rate of write operations in a transaction (%). 0, 25, 50, 75

Write time Time for a write operation (µs) 20–120 µs

Read time Time for a read operation (µs) 20–120 µs

Hotspot rows Number of operations per transaction that 3
go to the hotspot

Simulation time Total time for the simulation in seconds 500–1 000

Network delay Latency of the network 0.2 ms

Operations Number of operations in one transaction 20

Hotspot Number of records in the hotspot 2 000

Freshness Willingness of accepting older versions (%) 25, 50, 75, 100

Update interval Time between server actualization 0.4 ms
to its children

Maximum capacity Maximum capacity of server processing 80 %

Minimum capacity Minimum capacity of server processing 20 %

Level number Levels in the hierarchy 3

Table 1. System configuration

3.1 Results

Results are presented in the following order: response time, abortion rate and sys-
tem throughput. For each of these measurements we are going to consider two
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different scenarios with and without hierarchy. The latter represents the worst case
scenario where all the workload, especially read-only transactions, have to be shared
among all replicas, whereas the former represents the best scenario where read-only
transactions can be split across the replication hierarchy (if suitable because of the
freshness parameter).

The first metric (response time) tells us how fast the system responds to the
client. Actually, we can consider that the best system would consist in a dumb
protocol that aborts everything coming from clients. That is why it is so important
to run the second metric, how many of the total submitted transaction ended up
aborted by the protocol; i.e., we assume all transactions want to commit. In general,
an optimal system would have the shortest response time with the lowest abortion
rate. Finally, the throughput tells us how the system can handle the incoming
workload. Ideally, if we injected a load of X Transactions Per Second (TPS) in
the system, we expect that the system will handle this X TPS; nevertheless, it
is often that due to concurrency issues and the replication protocol management
the system cannot handle that rate. Thus, we look for a system with the best
throughput.

To evaluate the system behavior in regard to the previous three aspects, we
varied the rate of update transactions; with this, we can estimate the effect of
propagating the updates to all replicas that is combined (or not) with the hierarchy.
To achieve an increase in performance applying the hierarchical architecture, we
added a freshness factor that tells us the percentage of transactions that can be
executed in different replication levels.

If we vary the writing factor we have three scenarios: the first one is update
intensive; the second is half of read-only transactions and the other half update
transaction, and the third scenario consists in a read intensive load. This variation
applies to both architectures with hierarchy and without it. In the case of having
hierarchy, we varied another parameter: the freshness. This variation gave us the
opportunity to make a correct evaluation of the performance gain applying the
hierarchy.

3.1.1 Response Time Results

Results without hierarchy. Let us start with our results with no hierarchy; recall
that these results represent the worst case scenario. Figure 5 shows the results
for all the replication techniques explained above executed with different write
factors. In general, with all replication techniques, we can infer that the greater
the write factor is the higher the response time is. All the results are in line with
those obtained in [2]. As expected, the active replication technique had the worst
performance for the write factors applied. This is because the delegate server
has to wait for the acknowledgment from all the replicas to send the response to
the client; besides, all operations (including reads) are also sent to all replicas,
so they have to execute as well taking more time. Following the trend of poor
performance, a primary copy protocol shows a weaker performance in update
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a)

b)

c)

Figure 5. Non-hierarchy response time results; a) Write factor: 0.25 (without hierarchy)
b) Write factor: 0.5 (without hierarchy) c) Write factor: 0.75 (without hierarchy)
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intensive scenarios; later on, we will see the price we pay for that. On the other
hand, the lazy protocol presents the best results here; this is caused by the
fact that the delegate server does not have to wait for the replicas to answer.
With a certification technique, the deterministic certification phase along with
the total order broadcast allows the servers to assure that every transaction will
have the same result in all replicas. However, its response times are higher than
in a weak voting technique due to the processing required to certify that there
is no conflict between another transaction and can commit, or in effect there is
a conflict and must abort.

Figure 6. Response time with hierarchy depending on write factor (0.75) and freshness

Results with hierarchy. With the same configuration parameters that were used
for the non-hierarchical simulations, we have run several simulations with the
hierarchy added for a write factor of 75 % (update intensive) and different fresh-
ness parameters whose results are shown in Figure 6. As expected if we require
strict versions of data then we will obtain similar results that those with no hi-
erarchy at all (Figure 6 a) vs. Figure 5); this is because the freshness is not high
enough to balance the high number of update transactions with the readings
executed in lower levels. On the contrary, as seen in Figure 6 d), when we have
no restrictions on versions we achieve a significant reduction in the response
time. Finally, if we take a look at each replication technique on this latter figure
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Figure 7. Response time with hierarchy depending on write factor (0.5) and freshness

with Figure 5 c) we realize that the behavior of all of them is similar in terms of
their trends though their response time is reduced by approximately 30 %.

As expected, when the write factor was decreased (up to 50 %), the response
times were decreased as well, as shown in Figure 7. On the other hand, Figure 8
shows the results for applying a write factor of 25 %. The performance obtained is
the best of all implementations. This is important because for a cloud system the
majority of operations are read-only transactions. Even in the worst case scenario
of read-only transactions, i.e., only 25 % of them accept old values (Figure 8 a))
we obtain a significant gain in the performance against the same scenario with no
hierarchy (see Figure 5 a)) or all the previous cases with hierarchy.

We can observe that in scenario with a low amount of update transactions (0.25)
the different replication techniques have a similar behavior; this was expected be-
cause the transactions that take the major server processing time are those with
write operations. To explain this we can observe Figure 8 d) which shows the re-
sponse time for 100 % of read-only transactions accepting old values, certification
technique and weak voting are very similar. The certification technique does not
spend so much time in the certification phase and applying the remote updates
since almost all read-only transactions execute in the lower levels of the hierarchy.
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Finally, from all that we have said, it follows that Figure 8 d) represents the best
case scenario and Figure 6 a) the worst case scenario of our experimental setup,
respectively.

Figure 8. Response time with hierarchy depending on write factor (0.25) and freshness

3.1.2 Abortion Rate Results

This metric is important since if we only consider the conclusions derived from the
previous section, we will conclude that the lazy protocol is the best replication tech-
nique of all proposed. However, if we take a look at how many of these transactions
were actually aborted (Figure 9) we can see that it presents the highest abortion
rate.

Regarding the other replication techniques, we can see that the weak voting
technique presents the best results. This is due to the fact that it holds data items for
a long enough period of time and prevents the abortion of other update transactions.
However, this conclusion is restricted to our setting. In general, it will depend on
the kind of application we are considering. If we have an application that can be
split in perfect partitions where no client accesses several partitions, we can take
advantage of the lazy technique or, if the percentage of update transactions is low
we can use a primary copy replication protocol. Otherwise, the best solution is to
go for a weak voting protocol.
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a)

b)

c)

Figure 9. Abortion rate for a non hierarchical architecture; a) Write factor: 0.25 b) Write
factor: 0.5 c) Write factor: 0.75
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3.1.3 System Throughput Results

Finally, we evaluate the system throughput of all replication techniques in a hierar-
chical architecture with a write factor of 0.5 and 50 % of the read-only transactions
accepting old values (see Figure 10). Even when lazy has the best result, as it was
explained before it has the highest abort rate, so we highlight the results for the weak
voting and certification techniques which are the highest of the rest of replication
techniques.

Figure 10. System throughput

4 DISCUSSION

Summing up, we have confirmed that by having a hybrid approach where each
partition is replicated through several layers, we can achieve a better response time
by mitigating the load that the replicas, participating in the replication technique
in the first level, have to afford. However, some replication techniques are affected
by the increase of the number of replicas; this is the case of active replication. In
this technique the delegate server has to wait for the responses of all its replicas.
Moreover, as the replica number increases by promoting the replicas in lower levels,
the response time is increased since all they have to do the same work.

The lazy replication technique has the best response time and the highest
throughput but also the highest abortion rate. As stated before, this technique
makes sense only for non-conflict scenarios which we have not considered. On the
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other hand, certification techniques have good results for this hierarchical architec-
ture even if we have a high writing factor. These results were not as good as the
weak voting techniques which have the best result in the response times and in the
abortion rate. Of course, achieving an optimal performance would require an in-
depth study of the system’s behavior under different scenarios in order to provide
the MM with the necessary knowledge base to take the adequate decisions to adapt
configuration parameters to the workload at each time.

5 CONCLUSIONS

We have presented a replicated database system adapted to an elastic cloud envi-
ronment. In that sense, this system lies in the PaaS category of cloud computing
services, more precisely in the category of Database-as-a-Service (DaaS). We have
presented a study of well-known transactional database replication techniques in
this system. Based on this, we can conclude that there are some areas to explore,
specially taking some classic techniques and combining them with new approaches
to satisfy the current application demands in terms of scalability and latency.

We have applied the classic database replication techniques to a hierarchical
architecture to simulate an elastic environment for a replicated/distributed database
to provide a highly scalable and available service. Following the cloud paradigm of
pay per use, the proposed system also features an elastic management of resources.
This is accomplished by shutting down the database replicas that have not been used
and turning them back on only when it is necessary to satisfy the client demands.
Also, we have proposed a replication technique based on epidemic updates, which
is able to provide different consistency levels according to the requirements of each
application and, thus, build a replication hierarchy tree.

The experiments performed using the developed simulator have allowed us to
verify that the existence of a hierarchical architecture working with asynchronous
updates is able to alleviate the scalability limitations of the traditional replicated
database by redirecting transactions that tolerate less recent versions of data to the
replicas in the next level.
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PNUTS: Yahoo!’s Hosted Data Serving Platform. Proceedings of the VLDB Endow-
ment, Vol. 1, 2008, No. 2, pp. 1277–1288.

[16] Vaquero, L. M.—Rodero-Merino, L.—Caceres, J.—Lindner, M.: A Break
in the Clouds: Towards a Cloud Definition. ACM SIGCOMM Computer Communi-
cation Review, Vol. 39, 2009, No. 1, pp. 50–55.

[17] Irún-Briz, L.—Decker, H.—de Juan-Maŕın, R.—Castro-Company, F.—
Armendáriz-́Iñigo, J. E.—Muñoz-Escóı, F. D.: MADIS: A Slim Middleware
for Database Replication. Euro-Par 2005 Parallel Processing, Proceedings of 11th

International Euro-Par Conference, Springer, LNCS, Vol. 3648, 2005, pp. 349–359.

[18] Subramanian, K.—Kandhasamy, P.—Subramanian, S.: A Novel Approach to
Extract High Utility Itemsets from Distributed Databases. Computing and Informat-
ics, Vol. 31, 2012, No. 6+, pp. 1597–1615.

[19] Witschel, H. F.: Learning Profiles for Heterogeneous Distributed Information
Sources. Computing and Informatics, Vol. 29, 2010, No. 4, pp. 571–584.
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