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Abstract. We study generalized multisets (multisets that allow possible negative
multiplicities) both in the Zermelo-Fraenkel framework and in the finitely supported
mathematics. We extend the notion of generalized multiset over a finite alphabet,
and we replace it by the notion of algebraically finitely supported generalized mul-
tiset over a possibly infinite alphabet. We analyze the correspondence between
some properties of generalized multisets obtained in finitely supported mathemat-
ics where only finitely supported objects are allowed, and those obtained in the
classical Zermelo-Fraenkel framework.
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1 INTRODUCTION

Ordinary sets are composed of pairwise different elements which means no two el-
ements are the same. If we accept multiple but finite occurrences of any element
we get the notion of multiset which comes to generalize the notion of set. There
are many possibilities to define the notion of multiset; the most used procedure is
counting the multiplicity of each element. In fact a multiset on Σ is a function
from Σ to the set of positive integers N, where each element in Σ has associated its
multiplicity. For example, the invariants of a finite abelian group can be represented
as a multiset. The prime factorization of a natural number n is another multiset
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whose elements are primes. Even processes in an operating system can be seen as
a multiset, and examples can continue.

Multisets are used in computer science for quantitative analysis and models of
resources. References [22] and [23] are the early known references to the applica-
tions of multisets in computer science. Multisets and permutations of multisets are
applied in a variety of search and sort procedures in [22]. Eilenberg [17] had applied
the general theory of multisets to automata. Later, Engelfriet [18] used the multisets
to provide a semantical description of some form of the π-calculus. Peterson [31]
shows that the very foundation of Petri net theory needs multisets. The algebra
of multisets developed in [28] is used in [38] to explicate automated theorem prov-
ing for relevance logics, especially in the implementation while using the program
KRIPKE. The programming model Gamma [8], where computation can be seen
as chemical reactions between data represented as molecules floating in a chemical
solution, can be formalized as a multiset rewriting language. Pratt [33] shows how
partially ordered multisets (pomsets) can be used to represent parallel processes.
He also describes how Petri nets can be modelled as pomsets. Gischer [20] exploits
the notion of a partial string and a partial language introduced in [21] to show how
pomsets can be used as a model of concurrency. Multisets are also used in database
theory [25] or in membrane computing (see [6] and [30]). There are also several at-
tempts to use multisets in programming [10], in describing the evolution of biological
systems [27] and new models inspired by cell biology [7]. Rule-based multiset pro-
gramming paradigm is exploited to study synthetic biology [24]. Basically, multisets
are interpreted to represent biological systems, such as molecules in a biochemical
system. The evolution of membrane systems is described by employing multisets of
objects and multisets of rules. A collection of papers on applications of multisets in
computer science can be found in [15] or [36]. A more complete study on multisets
(as well as on fuzzy sets, i.e., multisets with real membership) can be found in [39].
The mathematics of multisets have been presented in [4] in the framework of the
Fraenkel-Mostowski set theory.

Generalized multisets extend the usual multisets allowing negative multiplici-
ties as well. In a generalized multiset, the multiplicity of an element can be either
a positive number, zero, or a negative number. Since the generalized multisets are
characterized by the multiplicity of each element, they can also be defined as func-
tions from Σ (the universe of elements) to Z, where Z is the set of all integers.
A first study of generalized multisets is due to Blizard [11]. Loeb also investigated
generalized mutlisets (see [26]) by using the alternative notion of hybrid set for what
we call generalized multiset. However, the first application of the concept of “gene-
ralized multiset” is due to Reisig [34] which uses the generalized multisets and the
generalized multirelations (which are in fact generalized multisets over the cartesian
product D×D of a set of sorts D) to define relation nets. In [9] generalized multisets
are interpreted in a chemical programming framework. In mathematics, an exam-
ple of the theory of generalized multisets is represented by surreal numbers [16].
Generalized mutlisets could also be used in order to characterize P-systems with
anti-matter described in [5]. An algebraic study on generalized multisets in the clas-



Generalized Multisets: From ZF to FSM 1135

sical Zermelo-Fraenkel (ZF) framework and in Reverse Mathematics can be found
in [1].

Since the experimental sciences are mainly interested in quantitative aspects,
and since no evidence exists proving the presence of infinite structures, it becomes
useful to study mathematics which deals with a more relaxed notion of infiniteness.
The finitely supported mathematics (FSM) introduced in [3] generalizes the classi-
cal ZF mathematics, and represents an appropriate framework to work with infinite
structures in terms of finitely supported objects. FSM is the mathematics that is
inspired by the axioms of the Fraenkel-Mostowski (FM) set theory. The FM set the-
ory has its origins in an approach developed initially by Fraenkel and Mowstowski in
1930s, in order to prove the independence of the axiom of choice and other axioms in
the classical ZF set theory. In 2000s, the FM permutation model of Zermelo-Fraenkel
with atoms (ZFA) set theory was axiomatized and presented as an independent set
theory, named the FM axiomatic set theory [19]. The axioms of the FM set theory
are precisely the Zermelo-Fraenkel with atoms (ZFA) axioms over an infinite set of
atoms [19], together with the special axiom of finite support which claims that for
each element x in an arbitrary set we can find a finite set supporting x. The original
purpose of the FM set theory was to provide a mathematical model for variables
in a certain syntax. Since they have no internal structure, atoms can be used to
represent names. The finite support axiom is motivated by the fact that syntax
can only involve finitely many names. Rather than using a non-standard set the-
ory, one could alternatively work with nominal sets, which are defined within ZF as
usual sets endowed with some group actions satisfying a finite support requirement.
An alternative definition for nominal sets in the FM framework also exists. They
can be defined as sets constructed according to the FM axioms with the additional
property of being empty supported (invariant under all permutations). These two
ways of defining nominal sets finally lead to similar properties (see [3]). According
to the previous comment we use the terminology “invariant” for “nominal” in order
to establish a connection between approaches in the FM framework and in the ZF
framework. Invariant sets represent a tool for describing λ-terms modulo α-con-
version [19], automata on data words [13], languages over infinite alphabets [12], or
Turing machines that operate on infinite alphabets [14]. The theory of invariant sets
provides a balance between rigorous formalism and informal reasoning. This is dis-
cussed in [32], where principles of structural recursion and induction are explained
within invariant sets.

Actually, FSM represents the ZF set theory rephrased in terms of finitely sup-
ported objects. In FSM, we use either ‘nominal sets’ (which further will be called
‘invariant sets’) or ‘finitely supported sets’ instead of ‘sets’. Thus, the general prin-
ciple of constructing FSM is that all the structures have to be invariant or finitely
supported.

Translating a ZF result into FSM is not trivial and deserves a special attention.
This is because, given an invariant set X, there could exist some subsets of X (and
also some relations or functions involving subsets of X) which fail to be finitely
supported. Therefore, there may exist some valid results depending on several ZF
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structures which fail to be valid in FSM if we simply replace “ZF structure” with
“FSM structure” in their statement.

The aim of this paper is to develop the theory of generalized multisets both
in the ZF framework and in FSM. FSM generalized multisets intend to provide
a constructive framework in which we work with sets having finite support. The
analogy between the results obtained in FSM and those obtained by using the ZF
axioms of set theory is analyzed. The present paper extends [1] and was announced
as a future work in [2]. The techniques involved in this paper are similar to those
used in [4] where the authors extended the classical multisets by using the theory of
nominal sets.

2 PRELIMINARY: INVARIANT SETS

Let A be a fixed infinite (countable or non-countable) ZF set. The following results
make also sense if A is considered to be the set of atoms in the ZFA framework
(characterized by the axiom “y ∈ x ⇒ x /∈ A”) and if ‘ZF’ is replaced by ‘ZFA’ in
their statements. Thus, we mention that the theory of invariant sets makes sense
both in ZF and in ZFA. Several results of this section are similar to those in [32],
but without assuming the set of atoms to be countable.

Definition 1. A transposition is a function (a b) : A → A defined by (a b)(a) = b,
(a b)(b) = a, and (a b)(n) = n for n 6= a, b. A permutation of A is generated by
composing finitely many transpositions.

Definition 2. Let SA be the set of all permutations of A.

1. Let X be a ZF set. An SA-action on X is a function · : SA × X → X having
the properties that Id · x = x and π · (π′ · x) = (π ◦ π′

) · x for all π, π′ ∈ SA and
x ∈ X. An SA-set is a pair (X, ·) where X is a ZF set, and · : SA ×X → X is
an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x whenever for each
π ∈ Fix(S) we have π · x = x, where Fix(S) = {π |π(a) = a,∀a ∈ S}.

3. Let (X, ·) be an SA-set. We say that X is an invariant set if for each x ∈ X
there exists a finite set Sx ⊂ A which supports x. Invariant sets are also called
nominal sets if we work in the ZF framework [32], or equivariant sets if they are
defined as elements in the cumulative hierarchy FMA [19].

4. Let X be an SA-set and let x ∈ X. If there exists a finite set supporting x, then
there exists a least finite set supporting x [19] which is called the support of x
and is denoted by supp(x). An element supported by the empty set is called
equivariant.

Proposition 1. Let (X, ·) be an SA-set and π ∈ SA. If x ∈ X is finitely supported,
then π · x is finitely supported, and supp(π · x) = π(supp(x)).
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Example 1.

1. The set A of atoms is an SA-set with the SA-action · : SA × A → A defined by
π · a := π(a), ∀π ∈ SA, a ∈ A. Moreover, supp(B) = B, ∀B ⊂ A, B finite and
supp(C) = A \ C, ∀C ⊂ A, A \ C finite.

2. Any ordinary ZF set X (like N or Z) is an SA-set with the trivial SA-action
· : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X.

3. If (X, ·) is an SA-set, then ℘(X) = {Y |Y ⊆ X} is also an SA-set with the SA-
action ? : SA × ℘(X)→ ℘(X) defined by π ? Y := {π · y | y ∈ Y } for all π ∈ SA,
and all subsets Y of X. For each invariant set (X, ·) we denote by ℘fs(X) the
set formed from those subsets of X which are finitely supported according to
the action ?. According to Proposition 1, (℘fs(X), ?|℘fs(X)) is an invariant set,
where ?|℘fs(X) represents the action ? restricted to ℘fs(X).

4. Let (X, ·) and (Y, �) be SA-sets. The Cartesian product X ×Y is also an SA-set
with the SA-action ? : SA×(X×Y )→ (X×Y ) defined by π?(x, y) = (π ·x, π�y)
for all π ∈ SA and all x ∈ X, y ∈ Y . If (X, ·) and (Y, �) are invariant sets, then
(X × Y, ?) is also an invariant set.

5. The FM cumulative hierarchy FMA described in [19] (i.e. the universe of all
FM sets) is an invariant set with SA-action · : SA × FMA → FMA defined
inductively by π · a := π(a) for all atoms a ∈ A and π · x := {π · y | y ∈ x} for all
x ∈ FMA \A. Any FM set is a finitely supported element in FMA; additionally
an FM set is hereditary finitely supported. An FM set which is empty supported
as an element in FMA is an invariant set.

6. The set SA is an SA-set with the SA-action · : SA × SA → SA defined by
π · σ := π ◦ σ ◦ π−1 for all π, σ ∈ SA. (SA, ·) is an invariant set because for each
σ ∈ SA we have that the finite set {a ∈ A |σ(a) 6= a} supports σ. Moreover,
supp(σ) = {a ∈ A |σ(a) 6= a} for each σ ∈ SA.

Definition 3. Let (X, ·) be an invariant set. A subset Z of X is called finitely
supported if and only if Z ∈ ℘fs(X) with the notations of Example 1 (3).

Definition 4. Let X and Y be invariant sets, and let Z be a finitely supported
subset of X. A function f : Z → Y is finitely supported if f ∈ ℘fs(X × Y ).

Proposition 2. Let (X, ·) and (Y, �) be invariant sets. Let Y X be the set of all
functions from X to Y . Then Y X is an SA-set with the SA-action ? : SA×Y X → Y X

defined by (π?f)(x) = π�(f(π−1 ·x)) for all π ∈ SA, f ∈ Y X and x ∈ X. A function
f : X → Y is finitely supported in the sense of Definition 4 if and only if it is finitely
supported with respect the permutation action ?.

Proposition 3. [4] Let (X, ·) and (Y, �) be invariant sets, and let Z be a finitely
supported subset of X. The function f : Z → Y is finitely supported in the sense of
Definition 4 if and only if there exists a finite set S of atoms such that for all x ∈ Z
and all π ∈ Fix(S) we have π · x ∈ Z and f(π · x) = π � f(x).



1138 A. Alexandru, G. Ciobanu

In order to translate a general ZF result into FSM, one must prove that several
structures are finitely supported. Two general methods to prove that a certain
structure is finitely supported exist. The first method is a constructive one and it was
employed in [2] and [4]: by using some intuitive arguments, we anticipate a possible
candidate for the support and prove that this candidate is indeed a support. The
second method is based on a general finite support principle which is defined using
the higher-order logic.

According to Theorem 3.5 in [32], we have the following equivariance/finite
support principle which works over invariant sets.

Theorem 1.

• Any function or relation that is defined from equivariant functions and relations
using classical higher-order logic is itself equivariant.

• Any function or relation that is defined from finitely supported functions and
relations using classical higher-order logic is itself finitely supported.

3 ZF ALGEBRAIC PROPERTIES OF GENERALIZED MULTISETS

This section represents a survey on the ZF properties of generalized multisets which
will be translated into FSM in Section 4. The related results were presented in [1]
without proofs.

Definition 5. Given a finite alphabet Σ, any function f : Σ → Z is called gene-
ralized multiset over Σ. The value of f(a) is said to be the multiplicity of a. The
set of all generalized multisets over Σ is denoted by Z(Σ).

The additive structure of Z induces an additive operation (sum) on generalized mul-
tisets in the same way as the additive structure of N induces an additive operation
(sum) on multisets. On Z(Σ) we define an additive law by:

“ + ” : Z(Σ)× Z(Σ)→ Z(Σ),

(f, g) 7→ f + g

where f + g : Σ→ Z is defined pointwise by (f + g)(a) = f(a) + g(a) for all a ∈ Σ.
Since Z(Σ) is formed by all functions from Σ to Z, it is clear that (Z(Σ),+) is an
abelian group, the identity being the empty generalized multiset θ : Σ→ Z, θ(a) = 0
for all a ∈ Σ, and the inverse of an element f : Σ → Z is the element −f : Σ → Z
defined by (−f)(a) = −(f(a)) for all a ∈ Σ. Since (Z(Σ),+) is an abelian group, it
follows that (Z(Σ),+) is a Z-module with the scalar multiplication from Z defined
by:

“ · ” : Z× Z(Σ)→ Z(Σ),

(k, f) 7→ k · f
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where k · f : Σ → Z is defined pointwise by (k · f)(a) = k · f(a), for all a ∈ Σ and
k ∈ Z.

Proposition 4. (Z(Σ),+) is a free abelian group.

Proof. If a ∈ Σ, we consider the generalized multiset ã : Σ→ Z defined by

ã(b) =

{
1 for b = a,
0 for b ∈ Σ \ {a}.

It is easy to check that every generalized multiset f ∈ Z(Σ) can be expressed as

f =
∑
a∈Σ

f(a) · ã.

Since Σ is finite, the sum is finite. In fact, the set of generalized multisets {ã | a ∈ Σ}
is a basis for the Z-module Z(Σ) since {ã | a ∈ Σ} is also linearly independent. �

According to Proposition 2.37 in [35], two free R-modules are isomorphic iff there
are bases of each having the same cardinal, whenever R is a commutative ring. If
we denote the basis of Z(Σ) by Σ̃ = {ã|a ∈ Σ}, it is clear that there is a bijection

from Σ onto Σ̃ given by a 7→ ã. It follows that |Σ| = |Σ̃|, and so Z(Σ) ∼= FA(Σ),
where FA(Σ) represents the free Z-module with basis Σ. Z(Σ) and FA(Σ) can be
identified (up to an isomorphism).

Since Z(Σ) is the free Z-module with basis Σ̃, it satisfies the universality property
described in Proposition 5 (1). We denote by j : Σ→ Z(Σ) the function which maps

each a ∈ Σ into ã ∈ Σ̃. It is clear that j is the composition of the standard inclusion
i : Σ̃ → Z(Σ), i(ã) = ã for all ã ∈ Σ̃ with the bijection of Σ onto Σ̃ defined
by a 7→ ã. So, the universality property for FA(Σ) can be extended to Z(Σ) by
replacing the standard inclusion of Σ into FA(Σ) with j; this result is presented as
Proposition 5 (2).

Proposition 5.

1. If G is any abelian group and f : Σ̃→ G is an arbitrary function, then there is
a unique homomorphism of abelian groups g : Z(Σ) → G with g ◦ i = f , i.e.,

g(ã) = f(ã) for all ã ∈ Σ̃.

2. If G is any abelian group and f : Σ→ G is an arbitrary function, then there is
a unique homomorphism of abelian groups g : Z(Σ) → G with g ◦ j = f , i.e.,
g(ã) = f(a) for all a ∈ Σ.

Proof. This property can be obtained as a particular case of Proposition 2.34 in [35]
proving the universality property for free (left-)modules. �

Some properties of Z(Σ) also follow from the general theory of free modules.
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Proposition 6. Let p : G→ H be any surjective homomorphism of abelian groups.
For every homomorphism h : Z(Σ)→ H there is a homomorphism of abelian groups
g : Z(Σ)→ G such that p ◦ g = h.

Proof. This result can be obtained as a particular case of Theorem 3.1 from [35]
proving that every free (left-)module is projective. The projectivity of Z(Σ) is
mathematically expressed as the statement of Proposition 6 in the same way as in
the general theory (see [35]). �

Using some basic notions of homological algebra presented in [35] we can give
the following result:

Corollary 1. The functor HomZ(Z(Σ),−) is an exact functor which means it keeps
the exactness of exact sequences.

Proof. The projectivity of a (left-)R-module A is equivalent with the exactness of
the functor HomR(A,−) (see Proposition 3.2 in [35]). Now, by Proposition 6, Z(Σ)
is a projective Z-module, and that means the functor HomZ(Z(Σ),−) is an exact
functor. �

Theorem 2. If G ≤ Z(Σ) is a subgroup of the abelian group Z(Σ) then G is a free
abelian group and has a basis of cardinal equal with at most |Σ| elements.

Proof. In Theorem 4.13 and Corollary 4.15 in [35] it was proved that, if R is
a domain whose all ideals are principal (i.e., cyclic, generated by one element) then
every submodule A of a free R−module F is also free with rank(A) ≤ rank(F ).
Our proof is complete because all the ideals of Z are of form nZ for some n ∈ Z,
and so Z is a principal ideal domain. �

Definition 6.

1. Adjoin one element to Σ and denote it by 1. A word on Σ is either the element
1 or a formal expression xε11 x

ε2
2 . . . xεnn where n ∈ N, xi ∈ Σ and εi ∈ {±1}.

2. Two words are called equivalent if one can be obtained from another by repeat-
edly cancelling or inserting terms of form x−1x or xx−1 for x ∈ Σ. A word in
which all occurring terms can be cancelled is defined to be equivalent with the
“empty word”. The equivalence class of an word w is denoted by [w].

3. The juxtaposition of words w = xε11 x
ε2
2 . . . xεnn and w′ = yδ11 y

δ2
2 . . . yδmm is the word

w#w′ := xε11 x
ε2
2 . . . xεnn y

δ1
1 y

δ2
2 . . . yδmm . Moreover, we define w#1 = 1#w = w for

all words w.

4. The free group F (Σ) is the set of all equivalences classes of words on Σ with the
group operation [w] ᵀ [w′] := [w#w′].

It is easy to check that ᵀ is well defined, independent on the chosen representa-
tives, and it verifies the axioms of a group law over F (Σ).
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Example 2. According to Definition 6, the words of form aa−1bc−1c (for example),
d−1db and b are identified (they are in the same equivalence class).

It is worth to note that the order and the multiplicity is important in a word w =
xε11 x

ε2
2 . . . xεnn . Another interesting remark is that, if Ω is another alphabet with

|Σ| = |Ω| (they have the same cardinal), then F (Σ) ∼= F (Ω). The free group on Σ
also satisfies the so-called universality property (see Proposition 25.3 in [37]).

Theorem 3. For each group G and each function f : Σ → G, there is a unique
homomorphism of groups g : F (Σ) → G with g ◦ i = f , where i : Σ → F (Σ) is the
standard inclusion of Σ into F (Σ) which maps each element a ∈ Σ into the word [a].

Remark 1. The properties of the function g found in Theorem 3 allows us to say
that g(1) = e and g([xε11 x

ε2
2 . . . xεnn ]) = g([x1])ε1 ◦ g([x2])ε2 ◦ . . . ◦ g([xn])εn = f(x1)ε1 ◦

f(x2)ε2 ◦ . . .◦ f(xn)εn for each word [xε11 x
ε2
2 . . . xεnn ]; e represents the identity element

in G and ◦ represents the internal law of G.

We can compare generalized multisets with vectors of integer numbers. It is
known that, for k ∈ N, k 6= 0, Zk is an abelian group with respect to addition of vec-
tors. Moreover, Zk is free with respect to the basis B = {ei = (0, . . . , 0, 1, 0, . . . , 0)
|i = 1, . . . , k}. If Σ = {a1, . . . , ak}, then Z(Σ) ∼= Zk as Z-modules and hence as
abelian groups.

We can connect all these views using the universal property of the free group
F (Σ) (it can be connected by this property with any group, and not only with com-
mutative ones as in the case of Z(Σ)). If we replace in the statement of Theorem 3,
G with Z(Σ), and f : Σ → G with j : Σ → Z(Σ) where j maps each a into ã,
we get a function g : F (Σ) → Z(Σ) such that g ◦ i = j, where i : Σ → F (Σ)
is the standard inclusion of Σ into F (Σ) which maps each element a ∈ Σ into
the word [a]. Now, if w = [xε11 x

ε2
2 . . . xεnn ], then by Remark 1 we obtain that

g(w) = ε1j(x1) + ε2j(x2) + . . .+ εnj(xn). Now, clearly, g is surjective and, from the
first isomorphism theorem for groups, we have F (Σ)/Ker g ∼= Z(Σ).

The Parikh image for multisets [29] has a correspondent for generalized multisets.
The generalization is natural. If Σ = {a1, . . . , ak}, we define the Parikh image
ϕΣ : F (Σ)→ Zk in the following way: if w = [xε11 x

ε2
2 . . . xεnn ] then ϕΣ(w) is the vector

in Zk whose ith component is
∑
xj=ai
j=1,n

εj for each i = 1, k; if there is no j such that xj = ai

then the ith component of the vector is defined to be 0. Informally ϕΣ(w) calculates
the number of “occurrences” (even the “negative” ones) of each element from Σ in w.
For example, if Σ = {a, b, c, d, e} and w = [aa−1bc−1c−1c] that is x1 = a, x2 = a−1,
x3 = b, x4 = c−1, x5 = c−1, x6 = c, then ϕΣ(w) = (1 + (−1), 1, (−1) + (−1) + 1, 0, 0).

If we replace, in the statement of Proposition 5, G with Zk and f : Σ→ G with
the function ϕΣ◦i where i : Σ→ F (Σ) is the standard inclusion of Σ into F (Σ) which
maps each element au ∈ Σ into the word [au], then there is a unique homomorphism
of abelian groups ψΣ : Z(Σ)→ Zk with ψΣ ◦ j = ϕΣ ◦ i, that is ψΣ(ãu) = ϕΣ([au]) =
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(0, . . . , 0, 1, 0, . . . , 0) = eu for all au ∈ Σ, where eu = (0, . . . , 0, 1, 0, . . . , 0) is the
vector in Zk whose all components are 0 except the uth component which is 1.

Now, because ψΣ maps one-to-one each element from a finite basis of Z(Σ) into
an element from a finite basis of Zk, and Z(Σ) and Zk have the same rank, we have
that ψΣ : Z(Σ)→ Zk is an isomorphism, and

ψ
Σ

(
k∑
i=1

f(ai) · ãi

)
= (f(a1), . . . , f(ak))

for each f ∈ Z(Σ).
Moreover, the properties of commutative diagrams shows us that ψΣ ◦ g = ϕΣ

where g : F (Σ)→ Z(Σ) is the homomorphism built before such that g ◦ i = j.

Z(Σ) Zk

f =
k∑
i=1

f(ai) · ãi (f(a1), . . . , f(ak))

multiset addition vector addition
scalar product scalar product

θ (0, . . . , 0)

Several other order properties of Z(Σ) are presented in [1].

4 FSM GENERALIZED MULTISETS OVER INFINITE ALPHABETS

We formalize now the concept of generalized multisets in FSM. According to Exam-
ple 1 (2) we already know that Z is an SA-set with the SA-action · : SA × Z → Z
defined by π · x := x for all π ∈ SA and x ∈ Z. Also Z is an invariant set because
for each x ∈ Z we have that ∅ supports x. Moreover, supp(x) = ∅ for each x ∈ Z.

With the same argumentation as in the case of multisets defined in the FM
framework [4], we can extend to notion of generalized multisets by allowing possible
infinite alphabets.

Definition 7. Given an invariant set (Σ, ·) (possible infinite), any function f :

Σ → Z with the property that Sf
def
= {x ∈ Σ | f(x) 6= 0} is finite is called extended

generalized multiset over Σ. The set of all extended generalized multisets over Σ is
denoted by Zext(Σ).

We remark that each function f ∈ Zext(Σ) can be expressed as f = Σ
a∈Σ

f(a) · ã.

Since Sf is finite the previous sum is finite. Therefore Zext(Σ) is a free abelian group

with basis Σ̃. Whenever Σ is finite, Zext(Σ) = Z(Σ).

Proposition 7. Let (Σ, ·) be an invariant set. We have:

• Each function f ∈ Zext(Σ) is finitely supported in the sense of Definition 4.
Moreover, supp(f) ⊆ supp(Sf ).
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• If f ∈ Zext(A), then Sf = supp(f).

Proof. The proof is similar to the proofs of Proposition 6 and Proposition 7 from [4].
We just need to replace N with Z in the related proofs. The results are preserved
because N and Z are endowed with the same SA-action defined in Example 1 (2).

�

Definition 8. An invariant group is a triple (G, ·, �) such that the following condi-
tions are satisfied:

• (G, ·) is a group

• (G, �) is a non-trivial invariant set

• for each π ∈ SA and each x, y ∈ G we have π � (x · y) = (π � x) · (π � y) which
means the internal law in G is equivariant.

Example 3. The group (SA, ◦, ·) is an invariant group, where ◦ is the usual com-
position of permutations and · is the SA-action on SA defined as in Example 1 (6).
Since the composition law on SA is associative, one can easily verify that π ·(σ◦τ) =
(π · σ) ◦ (π · τ) for all π, σ, τ ∈ SA.

According to Proposition 4 we know that (Z(Σ),+) is a free abelian group if we
work in the ZF framework. Analogue (Zext(Σ),+) is a free abelian group. As in the
case of multisets (Theorem 3 from [4]), in FSM we have the following result:

Theorem 4. Zext(Σ) is a free abelian invariant group whenever (Σ, ·) is an invariant
set. The SA-action ? : SA×Zext(Σ)→ Zext(Σ) on Zext(Σ) is defined by (π ? f)(x) =
f(π−1 · x) for all π ∈ SA, f ∈ Zext(Σ) and x ∈ Σ.

Proof. The result follows from Proposition 3.4 in [2]. �

For invariant groups we also have an universality property which is the corre-
spondent of Proposition 5 in FSM.

Theorem 5. Let (Σ, ·) be an invariant set. Let j : Σ → Zext(Σ) be the function

which maps each a ∈ Σ into ã ∈ Σ̃. If (G,+, �) is an arbitrary abelian invariant
group and ϕ : Σ → G is an arbitrary finitely supported function, then there exists
a unique finitely supported homomorphism of abelian groups ψ : Zext(Σ)→ G with
ψ◦j = ϕ, i.e., ψ(ã) = ϕ(a) for all a ∈ Σ. Moreover, if a finite set S supports ϕ, then
the same set S supports ψ. Therefore, if ϕ is equivariant, then ψ is also equivariant.

Proof. By refining the original proof from [32] of Theorem 1 we can prove that
for any finite set S of atoms, anything that is definable (in the higher-order logic)
from S-supported structures using S-supported constructions is S-supported. The
requested result in the theorem follows immediately. Alternatively, we can reformu-
late the direct proof of Theorem 4 from [4] by replacing N with Z. �

In the previous section we established a connection between Z(Σ) and the free
group on Σ denoted with F (Σ). A similar result can be proved in FSM.
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Theorem 6. F (Σ) is an invariant group whenever (Σ, �) is an invariant set. The
SA-action ?̃ : SA × F (Σ) → F (Σ) on F (Σ) is defined by π?̃[xε11 x

ε2
2 . . . xεll ] = [(π �

x1)ε1 . . . (π � xl)εl ] for all π ∈ SA and [xε11 x
ε2
2 . . . xεll ] ∈ F (Σ).

Proof. The result follows from Theorem 3.6 in [2]. �

Theorem 3 which represents the universality property for F (Σ) in the ZF frame-
work has a correspondent in FSM:

Theorem 7. Let (Σ, �) be an invariant set. Let i : Σ → F (Σ) be the standard
inclusion of Σ into F (Σ) which maps each element a ∈ Σ into the word [a]. If
(G, ·, �) is an arbitrary invariant group and ϕ : Σ → G is an arbitrary finitely
supported function, then there exists an unique finitely supported homomorphism
of groups ψ : F (Σ)→ G with ψ ◦ i = ϕ. Moreover, if a finite set S supports ϕ, then
the same set S supports ψ. Therefore, if ϕ is equivariant, then ψ is also equivariant.

Proof. The result follows from Theorem 3.7 in [2]. The boundedness result claiming
that supp(ψ) ⊆ supp(ϕ) follows by making a refinement of Theorem 1 as in the proof
of Theorem 5. �

Several results obtained in the previous section (in the ZF framework) can be
translated into FSM.

If we replace in the statement of Theorem 7, G with Zext(Σ), and ϕ : Σ → G
with j : Σ → Zext(Σ) where j maps each a into ã, we get an equivariant group
homomorphism ψ : F (Σ)→ Zext(Σ) such that ψ ◦ i = j, where i : Σ→ F (Σ) is the
standard inclusion of Σ into F (Σ) which maps each element a ∈ Σ into the word [a].
Now if w = [xε11 x

ε2
2 . . . xεnn ] then we obtain that ψ(w) = ε1j(x1) + ε2j(x2) + . . . +

εnj(xn). Now, clearly, ψ is surjective and, from the first isomorphism theorem for
groups we have F (Σ)/Ker ψ ∼= Zext(Σ). Moreover, in FSM we have the following
result:

Proposition 8. F (Σ)/Ker ψ is an invariant group and the isomorphism Θ between
the groups F (Σ)/Ker ψ and Zext(Σ), defined by Θ(w ᵀ Ker ψ) = ψ(w) for each
w ∈ F (Σ) (where w ᵀKer ψ is the left coset of w modulo Ker ψ) is equivariant.

Proof. We remark that Θ is defined as in the standard proof of the first isomorphism
theorem for groups. First we prove that we can define an invariant structure on
F (Σ)/Ker ψ. We know that (F (Σ), ?̃) is an invariant set (Theorem 6). We define
� : SA × F (Σ)/Ker ψ → F (Σ)/Ker ψ by π � (w ᵀ Ker ψ) = (π?̃w) ᵀ Kerψ, for
each w ∈ F (Σ) and each π ∈ SA. First we show that � is a well defined function.
Let w = [xε11 x

ε2
2 . . . xεnn ] and v = [yδ11 y

δ2
2 . . . yδmm ] be two elements in F (Σ) such that

w ᵀKer ψ = v ᵀKer ψ. This means ψ(w) = ψ(v) which by the definition of ψ is the
same with ε1j(x1)+ε2j(x2)+ . . .+εnj(xn) = δ1j(y1)+ δ2j(y2)+ . . .+ δmj(ym). Now
we have π?(ε1j(x1)+ε2j(x2)+ . . .+εnj(xn)) = π?(δ1j(y1)+δ2j(y2)+ . . .+δmj(ym))
for each π ∈ SA (where ? represents the SA-action on Zext(Σ)). Since Zext(Σ) is an
invariant group and because j is equivariant (this follows by direct calculation), in
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the view of Proposition 3 we have ε1j(π ·x1) + ε2j(π ·x2) + . . .+ εnj(π ·xn) = δ1j(π ·
y1) + δ2j(π · y2) + . . .+ δmj(π · ym) which means ψ(π?̃w) = ψ(π?̃v) for each π ∈ SA.
Therefore, (π?̃w) ᵀKerψ = (π?̃v) ᵀKerψ for each π ∈ SA which means that � is
well defined. Since ?̃ is an SA-action on F (Σ), an easy calculation shows us that � is
an SA-action on F (Σ)/Ker ψ. Moreover, each element in F (Σ)/Ker ψ is supported
by the support of its representative. Therefore, (F (Σ)/Ker ψ,�) is an invariant set.
Since (F (Σ),ᵀ, ?̃) is an invariant group (the axioms in Definition 8 are satisfied) it is
trivial to check that (F (Σ)/Ker ψ,ᵀ,�) (we denote also with ᵀ the internal law on
the factor group F (Σ)/Ker ψ) is an invariant group; the proof is an easy calculation
which uses only the definition on � and the distributivity property of ?̃ over ᵀ. We
claim that Θ is equivariant. For this, in the view of Proposition 3, it is sufficient
to prove that for each π ∈ SA we have Θ(π � (w ᵀKer ψ)) = π ? (Θ(w ᵀKer ψ)),
∀w ∈ F (Σ). Let π ∈ SA be an arbitrary element. Since ψ is equivariant we have
Θ(π�(wᵀKer ψ)) = Θ((π?̃w)ᵀKer ψ) = ψ(π?̃w) = π?ψ(w) = π?(Θ(wᵀKer ψ)).
This means Θ is equivariant. �

If Σ = {a1, . . . , ak}, the Parikh image ϕΣ : F (Σ) → Zk is finitely supported.
Indeed, Z is an SA-set with the SA-action · : SA × Z → Z defined by π · x := x
for all π ∈ SA and x ∈ Z. From Example 1 (4) we know how an SA-action on the
Cartesian product of two invariant sets looks like. Therefore Zk is endowed with
a trivial SA-action defined by π · x := x for all π ∈ SA and x ∈ Zk. Also Zk is
an invariant set because for each x ∈ Zk we have that ∅ supports x. Moreover,
supp(x) = ∅ for each x ∈ Zk. We prove that U = supp(a1)∪ . . .∪ supp(ak) supports
ϕΣ. In the view of Proposition 3 we must prove that we have ϕΣ(π?̃[xε11 x

ε2
2 . . . xεnn ]) =

π · ϕΣ([xε11 x
ε2
2 . . . xεnn ]) = ϕΣ([xε11 x

ε2
2 . . . xεnn ]) (because the SA-action on Zk is trivial)

for each π ∈ Fix(U) and each [xε11 x
ε2
2 . . . xεnn ] ∈ F (Σ). Indeed if π ∈ Fix(U) we have

π?̃[xε11 x
ε2
2 . . . xεnn ] = [xε11 x

ε2
2 . . . xεnn ] (Theorem 6) and hence we obtain the relation:

ϕΣ(π?̃[xε11 x
ε2
2 . . . xεnn ]) = ϕΣ([xε11 x

ε2
2 . . . xεnn ]).

If we replace, in the statement of Theorem 5, G with Zk and ϕ : Σ→ G with the
function ϕΣ ◦ i where i : Σ→ F (Σ) is the standard inclusion of Σ into F (Σ) which
maps each element au ∈ Σ into the word [au], then there exists a unique finitely
supported homomorphism of abelian groups ψΣ : Z(Σ) → Zk with ψΣ ◦ j = ϕΣ ◦ i,
that is ψΣ(ãu) = ϕΣ([au]) = (0, . . . , 0, 1, 0, . . . , 0) = eu for all au ∈ Σ.

Definition 9. An invariant partially ordered set (invariant poset) is an invariant
set (P, ·) together with an equivariant partial order relation v on P .

Loeb’s order ⊆ presented in Definition 3.1 from [1] can be naturally extended
to Zext(Σ). The following theorem characterize Loeb’s order in FSM.

Theorem 8. If (Σ, ·) is an invariant set then (Zext(Σ), ?,⊆) is an invariant partially
ordered set, where ⊆ represents Loeb’s order introduced in Definition 3.1 from [1].

Proof. According to Proposition 7 we have that (Zext(Σ), ?) is an invariant set with
the SA-action ? : SA × Zext(Σ)→ Zext(Σ) defined by (π ? f)(x) = f(π−1 · x) for all
π ∈ SA, f ∈ Zext(Σ) and x ∈ Σ. Let f, g ∈ Zext(Σ) such that f ⊆ g. This means
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either f(u) � g(u) for all u ∈ Σ, or g(u) − f(u) � g(u) for all u ∈ Σ, where � is
the partial ordering of integers defined as follows: i� j iff i ≤ j and both of i and j
are either at least equal with 0 or smaller than 0. We should prove that π?f ⊆ π?g.

Case f(u)� g(u) for all u ∈ Σ. Let x ∈ Σ. We have (π ? f)(x) = f(π−1 · x)�
g(π−1 · x) = (π ? g)(x). Therefore (π ? f)(x) � (π ? g)(x) for all x ∈ Σ, and
π ? f ⊆ π ? g.

Case g(u)−f(u)� g(u) for all u ∈ Σ. Let x ∈ Σ. We have (π?g)(x)−(π?f)(x) =
g(π−1 · x)− f(π−1 · x)� g(π−1 · x) = (π ? g)(x). Therefore (π ? g)(x)− (π ? f)(x)�
(π ? g)(x) for all x ∈ Σ, and π ? f ⊆ π ? g. �

Analogue we can prove:

Theorem 9. If (Σ, ·) is an invariant set then (Zext(Σ), ?,�) is an invariant partially
ordered set, where � is the order on generalized multisets defined in Definition 3.2
from [1].

Proof. According to Proposition 7 we have that (Zext(Σ), ?) is an invariant set with
the SA-action ? : SA × Zext(Σ)→ Zext(Σ) defined by (π ? f)(x) = f(π−1 · x) for all
π ∈ SA, f ∈ Zext(Σ), and x ∈ Σ. Let f, g ∈ Zext(Σ) such that f � g. This means
f(x) ≤ g(x) for all x ∈ Σ. We should prove that π ? f � π ? g. Let x ∈ Σ. We have
(π ? f)(x) = f(π−1 · x) ≤ g(π−1 · x) = (π ? g)(x). Thus, � is equivariant. �

In [2] we proved some embedding theorems for uniform invariant groups (where
all the elements are supported by the same set of atoms). We can present a form of
the Cayley-theorem for invariant groups which are not necessary uniform. Its proof
is similar to the proof of Theorem 5.4 in [2]; we just make the remark that if G is
an invariant group, then the set of all finitely supported bijections on G is also an
invariant group (the proof is similar to the proof of Proposition 5.3 in [2] and uses
Proposition 1).

Theorem 10 (Cayley-theorem for invariant groups). Let (G, ·, �) be an invariant
group (not necessary uniform). There exists an equivariant isomorphism from G
to an invariant subgroup of the invariant group of all finitely supported bijections
on G.

Proof. The requested isomorphism is defined as T in the proof of Theorem 5.4
from [2], i.e., for all g ∈ G we define T (g) as the function fg : G → G, where
fg(x) = g · x, ∀x ∈ G. The definition of T makes sense because, by Proposition 3,
fg = T (g) is supported by supp(g) for each g ∈ G, and so T (g) is a finitely supported
bijection on G. The equivariance of T and of the subset {T (g) | g ∈ G} follows
directly from Theorem 1. �

We are now able to give the Cayley’s theorem for Zext(Σ) in FSM.

Corollary 2. Let Σ be a possible infinite invariant set. There exists an equivariant
isomorphism from Zext(Σ) to an invariant subgroup of the invariant group formed
by all finitely supported bijections on Zext(Σ).
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5 CONCLUSION AND FUTURE WORK

FSM represents a useful framework for experimental sciences [3]. Thus, comparing
ZF properties of an algebraic structure with its related FSM properties deserves
a special attention. The techniques of translating a general ZF result into FSM are
presented in [3]. The present paper was announced as a future work in [2]. In this
paper we define and study “generalized multisets” both in the ZF framework and
in FSM. In Section 3 several ZF algebraic properties of generalized multisets are
presented. The results in this section have already been presented in the conference
paper [1] without proofs. Some other group theoretical and order properties on
generalized multisets can be found in the related reference. However, in this paper
we chose to focus only on those ZF results that are also discussed in FSM.

Using similar techniques with those employed for formalizing the multisets in
the FM framework [4], we extend generalized multisets over finite alphabets to
the framework of invariant sets. We define “extended generalized multisets” over
possible infinite alphabets, presenting also some properties of this new concept.
The FSM approach allows us to study the generalized multisets over possible in-
finite alphabets by using a finitary presentation. In Proposition 7 we proved that
the set of all extended generalized multisets over an invariant infinite alphabet Σ
is an invariant set. Moreover, the set of all extended generalized multisets over
Σ is a free abelian invariant group (Theorem 4), and it satisfies the universal-
ity property expressed in Theorem 5. The free group over Σ is also an invari-
ant group according to Theorem 6, and it satisfies the universality property pre-
sented in Theorem 7. These results are also connected in FSM. The group of all
extended generalized multisets can be organized as an invariant partially ordered
set (Theorem 8 and Theorem 9). An FSM embedding theorem of Cayley-type is
proved for the set of extended generalized multisets over Σ (Corollary 2). Some
other order results from [1] can be translated into FSM analogously. However,
in order to save space we avoid to present in detail the more laborious calcula-
tions.

This paper represents a start point for developing a meta-theory of algebraic
structures in FSM. Some similar papers, where algebraic structures are described
within nominal sets, are [2] and [4]. However, in [3] we emphasized the differences be-
tween the topics generally included into the “FM framework”. From now on, we will
present our results by employing FSM (which is consistent even over non-countable
sets of atoms) instead of nominal sets theory. Our next paper will be focused on
studying some similar concepts as in this paper (namely, fuzzy sets, rough sets,
Galois connections, and abstract interpretations) in FSM. The techniques involved
will be similar to those presented in this paper and in [4]. The goal of another
future work will be to study the consistence of choice principles internally in FSM.
We will prove that none of the most known choice principles can be formulated
in FSM. We will also prove that such a result do not overlap on some known re-
lated results from the permutative models of ZFA or from the theory of nominal
sets.
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