
Computing and Informatics, Vol. 34, 2015, 1113–1132

TEST SUITE REDUCTION USING HGS BASED
HEURISTIC APPROACH

Angelin Gladston, H. Khanna Nehemiah

Ramanujan Computing Centre, Anna University
Chennai – 600 025, Tamilnadu, India
e-mail: nehemiah@annauniv.edu

P. Narayanasamy, A. Kannan

Department of Information Science and Technology, Anna University
Chennai – 600 025, Tamilnadu, India

Abstract. Regression testing is performed throughout the software lifecycle to un-
cover the faults as early as possible and to ensure that changes do not have any
adverse effect in the software that is operational. Test suites once developed are
reused and updated frequently. As the software evolves, test cases in the test suite
may become redundant. The reason behind this is that the requirements covered by
newly added test cases may also be covered by the existing test cases. This redun-
dant nature of test suite increases the cost of executing the same. Further, resource
and time constraints impose the necessity to develop techniques to minimize test
suites by removing redundant test cases. Few heuristic approaches have been used
to solve the test suite minimization problem. Even though solutions exist, still the
redundancy of test case remains. In order to solve this problem, this paper proposes
two Harrold-Gupta-Soffa (HGS) based heuristic algorithms namely, Non Redundant
HGS and Enhanced HGS. The former utilizes the redundant strategy available with
Greedy, Redundant, Essential (GRE) to get rid of redundancy, whereas the latter
selects a test case for higher cardinalities based on overall coverage of unmarked
associated testing sets and thus arrives at reduced, non-redundant test suite. The
experiments show that the proposed algorithms always select smaller size of test
suite, compared to the existing HGS heuristics.

Keywords: Test suite, test suite minimization, HGS, GRE, non redundant HGS,
enhanced HGS

1114 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

1 INTRODUCTION

The goal of software testing is to develop bug free software, satisfying functional and
non-functional requirements. This process involves executing a program with test
cases and recording the actual results in order to uncover faults, thus improving the
quality of the product. The test suite comprises a set of test cases, each of which is
made up of the input, called test data, and the expected output. Software testers
typically maintain a variety of test suites to be used for the software testing. Each
test case created either manually or automatically for a software, [1, 2] exercises cer-
tain requirements of the software. A requirement is some entity in the software that
can be exercised by a test case, it may be either white-box, which deals with the code
itself, or black-box, which deals with the specification of the software. Such require-
ments may include coverage of statements, decisions, definition-use pairs, paths, or
coverage of special input values and output values derived from the specification.
A test case is often created specifically to cover a certain requirement or a set of
requirements, since exercising more unique requirements implies that more of the
software is being tested.

As software grows and evolves [3], its test suite also grows. Many test cases will
be required to test the new or changed functionality that has been introduced to the
software. Since time progresses, some test cases in a test suite are likely to become
redundant with respect to a particular coverage criterion, as the specific coverage
requirements exercised by those redundant test cases are also exercised by other
test cases in the test suite. The property of a test case being redundant is relative
to a specific set of coverage requirements. Intuitively, the more the test cases are
used, there is a possibility for more requirements to be satisfied. Test suite usually
undergoes a process of expansion, as new test cases are inserted into the test suite.
This results in a test suite, containing enormous test cases which render regression
testing, that is time consuming.

An efficient way to conduct regression testing is to find a minimal subset of
test cases which exercises all the test requirements as the original set. A suitable
subset could be found during the test case generating or after creating the test
suite. Another important point in reducing test suites is the maintenance of them.
Whenever there are less test cases in a test suite, tests take the less time for their
execution as well as for the maintenance. This process of finding a minimal subset
is called test suite reduction or test suite minimization, and the resulting suite is
called the representative set.

The goal of test suite minimization is to find a minimal subset of test cases in
a suite that exercises the same set of coverage requirements as the original suite. The
key idea behind minimization techniques is to remove the test cases in a suite that
have become redundant in the suite with respect to the coverage of some particular
set of program requirements. Test suite minimization problem as defined by Yoo
et al. [4] is, given a test suite T , a set of test requirements r1, r2,. . . , rn that must
be satisfied to provide the desired adequate testing of the program, and subsets
T1, T2, . . . , Tn, one associated with each of the ri such that any one of the test

Test Suite Reduction Using HGS Based Heuristic Approach 1115

cases tj belonging to Ti satisfies ri, the problem is to find a representative set, T ′,
of test cases from T that satisfies all ri. In this paper, two new approaches for the
test suite reduction namely, Non Redundant HGS algorithm and Enhanced HGS
algorithm are proposed. These two tailored HGS algorithms are aimed at reducing
the test suite. They address the redundant test case issue and get rid of redundant
test cases.

The remaining of this paper is organized as follows: Section 2 presents an
overview of test suite minimization problem and work related to the application
of heuristics, GRE and HGS. Section 3 describes HGS and GRE algorithms used
in this work for evaluation. Section 4 describes the proposed Non Redundant HGS
algorithm and Enhanced HGS algorithm for test suite minimization. Section 5 pro-
vides the implementation details. Section 6 reports the results and discussion and
Section 7 concludes the work.

2 RELATED WORK

Jeffrey et al. [5] extended the HGS heuristic so that certain test cases were selectively
retained, based on a secondary set of testing requirements. When a test case was
marked as redundant with respect to the first set of testing requirements, then it was
checked for redundancy with respect to the second set of testing requirements. If not,
the test case was selected, resulting in a certain level of redundancy with respect to
the first set of testing requirements. The empirical evaluation used a branch coverage
as the first set of testing requirements and all-uses coverage information obtained by
data-flow analysis as the second set of testing requirements. Seven programs from
the Siemens suite [8], namely, tcas – altitude separation, totinfo – info accumulator,
schedule – priority scheduler, schedule2 – priority scheduler, printtokens – lexical
analyzer, printtokens2 – lexical analyzer and replace – pattern substitute, Space
program, which is an array definition language interpreter along with four Java
programs, namely, bst, to remove from a binary search tree, avl, to insert into an
avl tree, heap, to delete min from a binary heap and sort, to quick sort an array
were used. The results showed that, though the fault detection capability was better
compared to single-criterion versions of HGS heuristic, they produced larger test
suites.

Zhong et al. [6] compared four typical test suite reduction techniques. They are
heuristic H, heuristic GRE, Genetic algorithm based approach and Integer Linear
Programming (ILP) based approach for test suite reduction. The techniques namely
heuristic H, finds the essential test cases, the Greedy-Redundant-Essential (GRE)
algorithm, which comprises three strategies: greedy strategy which selects test cases
that satisfies most of the unsatisfied requirements, the essential strategy selects all
essential test cases and 1-to-1 redundancy strategy removes all the 1-to-1 redundant
test cases, Genetic algorithm, which is based on the concept of natural evolution,
where reproduction and selection operations are applied to populations to get opti-
mal solutions and ILP, which is based on multi-objective test suite reduction. They

1116 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

used six ′C ′ programs and reduced their test suites using all four techniques. On
an average, the difference in the size of the resulting representative set among these
techniques is less than 1 %. To conclude, heuristic H should be the first. In heuris-
tic GRE and ILP -based approach when tie occurs in removing the redundant test
cases, a test case was chosen randomly. As a result, some test cases which may be
very effective in detecting faults were removed.

Tallam et al. [7] identified that the early selection of test cases made by the greedy
algorithm can eventually be rendered redundant by the test cases subsequently se-
lected. Hence they extended the greedy approach by introducing the delayed greedy
approach. Concept lattice, a hierarchical clustering, based on the relation between
test cases and testing requirements was constructed and used for reducing the test
cases using a delayed greedy approach. Programs in the Siemens test suite and Space
program [9] were used for the study. In the empirical evaluation, on an average for
a branch coverage, the test suites minimized by this delayed greedy were smaller
than those minimized by the greedy approach and HGS in 35 % and 64 % of the
cases, respectively. Thus the delayed greedy selected a minimal cardinality subset
of the test suite.

McMaster et al. [10] proposed a test suite minimization technique based on
call-stack coverage. A test suite is represented by a set of unique maximum depth
call-stacks. Its minimized test suite is a subset of the original test suite where the
execution generates the same set of unique maximum depth call-stacks. Once the
call-stack coverage information is collected, the HGS heuristic is applied. Studies
showed the trade-off between reduction in the test suite size and the loss of fault
detection effectiveness.

Lin et al. [11] presented a novel approach called Reduction with tie-breaking
(RTB) for a test suite reduction. RTB approach uses another coverage criterion
to break the ties in the minimization process. They integrated the RTB approach
with GRE and HGS into Modified GRE (M GRE) and Modified HGS (M HGS)
and showed the improvement in the fault detection effectiveness with a negligible
increase in the size of the suite. The subject programs were Siemens programs and
the Space program. On an average, the suite size reduction of HGS and M HGS
were 85.2 % and 84.94 % respectively. Similarly, the suite size reduction for GRE
and M GRE were on an average, 91.83 % and 91.84 % respectively. On the whole,
compared with the GRE and HGS, the proposed approaches had almost the same
or better ability in reducing the test suites for the selected subject programs.

Jeya Mala et al. [12] applied Hybrid Genetic Algorithm (HGA) for improving
the quality of test cases. In their approach, they selected effective test cases that
have higher mutation score and path coverage from a near infinite number of test
cases. Hence, the final test set size has been reduced which in turn reduced the
total time needed in testing. Gu et al. [13] defined the multi-objective test suite
reduction problem under selective-form regression testing and developed the Hi-
erarchical Alignment of Two-dimensional Spectra (HATS) algorithm to solve the
problem. The HATS conforms to the heuristic greedy search framework. A weight-
ing factor α, balancing two objectives, namely, to reduce the test suite size and to

Test Suite Reduction Using HGS Based Heuristic Approach 1117

avoid coverage of irrelevant test requirements, is defined. The experiments showed
that with proper setting of the factor α, HATS reduced the test suite size with a cut
down in the coverage of irrelevant requirements and less compromise in the fault
detection ability. To conclude, among the various algorithms, namely HGS, GRE,
heuristic H, Greedy, Genetic and ILP based approach being utilized for test suite
reduction, HGS had been widely used. The utilization of HGS and the existence of
redundant test cases are taken up as issues to be addressed in this work.

3 EXPERIMENTAL DESIGN

The HGS and GRE algorithms as mentioned in the related work section, have been
used to solve the test suite minimization problem. Though HGS [11, 15] minimizes
the test suite, still there is redundancy [7]. To overcome this problem we devised two
approaches, and the existing HGS and GRE algorithms described in this section
are used for the evaluation.

3.1 HGS Algorithm

The input to the HGS algorithm is the requirements matrix. Using the requirements
matrix the associated testing sets are generated. The algorithm, first considers the
associated testing sets of cardinality one, and places the entire test cases belonging
to the associated testing sets of cardinality one, into the representative set. Then
the associated testing sets of cardinality two are considered, and the test case, which
occurs the maximum number of times among all associated testing sets of cardinality
two, is added into the representative set. Whenever a test case is selected the corre-
sponding test case and the satisfied associated testing sets are marked. This process
is repeated up to a higher cardinality until all the requirements are satisfied. When
examining the cardinality for selecting a test case, a tie may occur because several
test cases occur more than once. In that case, test cases are selected arbitrarily.
The same is illustrated in Section 4.3.

3.2 GRE Algorithm

In GRE, three strategies – namely Essential, Redundant and Greedy – are applied
until all the requirements are satisfied. A test case is regarded as essential if a re-
quirement is satisfied by that test case alone. In contrast, a test case is said to be
1-to-1 redundant if there exists a test case, such that the set of requirements cov-
ered by a test case is also covered by another test case. First, the Essential strategy
selects the test cases which are essential and adds them to the representative set.
Then, the Redundant strategy reduces the test cases which are redundant. Finally,
when there are requirements yet to be covered, the Greedy strategy, which selects
the test cases that satisfy most of those requirements, is applied.

1118 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

4 PROPOSED ALGORITHMS

The two proposed algorithms are Non Redundant HGS and Enhanced HGS. We
integrated the redundant strategy of GRE into HGS, called Non Redundant HGS to
get rid of redundant test cases in the minimized test suite. Further we have tailored
HGS into Enhanced HGS which selects out reduced set of test cases, considering the
coverage of test cases, rather than based on maximum number of occurrence among
the chosen cardinality. Coverage of test case is the number of times the test case
occurs among all unmarked associated testing sets irrespective of their cardinality.
Thus, by considering coverage, Enhanced HGS results in non-redundant, minimized
test suite.

4.1 Non Redundant HGS Algorithm: Proposed Approach I

Non Redundant HGS algorithm takes the requirements matrix as input. Associated
testing sets and their cardinality which is the number of test cases in associated
testing set are computed and used. When examining the test cases of a particular
cardinality, a tie may occur because several test cases occur in more than one associ-
ated testing sets, and in that case test cases are selected arbitrarily. Non Redundant
HGS selects test cases using the same approach as that of HGS. The redundant test
cases [7] are removed in two steps, namely step 4 and step 6 as illustrated in the
Algorithm 1. Step 4 is realized in line numbers 17 to 21. Step 6 is realized in line
numbers 40 to 46. The redundant strategy of GRE is utilized and the steps involved
in Non Redundant HGS are as follows:

Step 1: Initialization.

Step 2: Place all test cases of associated testing sets of cardinality one in the rep-
resentative set.

Step 3: Mark the corresponding testing sets.

Step 4: When the requirement set of a test case is a subset of another test case,
then remove it from the associated testing sets.

Step 5: Compute RS according to the heuristic for sets of higher cardinality.

Step 6: Check for redundant test cases and remove from representative set.

Step 7: When all associated testing sets are marked, RS will have the reduced test
cases, and the algorithm terminates.

Non Redundant HGS takes as input the associated testing sets in the line 1 and
the requirement sets in the line 2, both derived from the requirements matrix. Max-
imum Cardinality and Current Cardinality are the variables declared in the line 4
for considering the cardinality one by one and the algorithm returns the selected
test cases in the representative set, RS as in the line 3. List in the line 5 supplies
the list of ti belonging to associated testing sets of chosen cardinality to the Se-
lectTest function in the Algorithm 2, which returns the Chosen Test that can be

Test Suite Reduction Using HGS Based Heuristic Approach 1119

one of t1, t2, . . . , tn as in the line 6. The line 7 declares Marked as a boolean array
initialized as false and the line 8 declares May Reduce as a boolean variable. Two
functions, namely Max(), which returns the maximum of a set of numbers and Cardi-
nality(), which returns the cardinality are introduced in the lines 9 and 10. Step 1,
initialization assigns Maximum Cardinality with Max(Cardinality(Ti)), which re-
turns the maximum cardinality among the cardinalities of all T ′

is in the line 11.
Step 2 places all test cases of associated testing sets of cardinality one in the rep-
resentative set and is realized in the line 12 of the Algorithm 1. It adds all single
cardinality Ti into the representative set. Step 3 marks the corresponding testing
sets in the lines 13 to 15. All Ti in representative set are marked so that unmarked Ti
can be considered next. Current cardinality under consideration is the one which is
set in the line 16. Step 4 in the lines 17 to 21 removes the test case from the associ-
ated testing sets, when the requirement set of a test case is a subset of another test
case. The line 17 finds a requirement set which is a subset of any other requirement
set Rj and the line 19 removes the redundant test cases from the associated testing
sets.

Step 5 computes RS according to the heuristic for sets of higher cardinality as
realized in the lines 22 to 39. Current cardinality is incremented in the line 23. All
ti belonging to all unmarked Ti of current cardinality are included in the List using
the lines 24 and 25. The SelectTest function in the Algorithm 2, which implements
the selection method of a test case from all the test cases belonging to the current
cardinality, is invoked in the line 27. This function selects the next ti to be included
in RS as shown in the line 28. The function from the lines 1 to 15 in the Algorithm 2,
finds the number of times ti occurs in associated testing sets of chosen cardinality,
called count as shown in the lines 3 and 4. The line 6 chooses the test cases, which
occur maximum number of times in the associated testing sets of chosen cardinality
and puts them in a TestList. It finds the number of test cases in the TestList and
when there is only one test case having maximum cardinality then that test case
is added to the representative set as in the lines 7 and 8. When there are many
test cases having maximum cardinality, then any one test case, as in the lines 10
and 11, is added to the representative set. Then, as in the line 13, the next higher
cardinality is taken into consideration. The line 28 in the Algorithm 1 adds the
chosen test case into representative set.

Step 5 utilizes May Reduce to indicate that the current cardinality has been
considered by setting it as false. All associated testing sets having a chosen test are
marked. May Reduce is used in the line 36 and if it is true, it finds the maximum
cardinality among those of all unmarked associated testing sets. This gets repeated
until Current Cardinality becomes Maximum Cardinality. Step 6 checks for redun-
dant test cases in the representative set, and removes them from the representative
set. Here S is the representative set excluding ti as shown in the line 41 and Rs is
the requirement set of S as in the line 42. The lines 44 and 45 check for redundant
test cases in the representative set, and remove the redundant test cases from the
representative set. When all associated testing sets are marked, RS will have the
reduced test cases, and the algorithm terminates in Step 7.

1120 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

1 Input Data: T1, T2, . . . , Tn: associated testing sets for r1, r2, . . . , rn
respectively, containing test cases from t1, t2, . . . , tn

2 Data: R1, R2, . . . , Rn: set of requirements satisfied by t1, t2, . . . , tn
3 Result: RS: a representative set of test cases selected from T1, T2, . . . , Tn
4 Maximum Cardinality, Current Cardinality: 1..n
5 List: list of ti belonging to associated testing sets of chosen cardinality
6 Chosen Test: one of t1, t2, . . . , tn
7 Marked: array [1..n] of boolean, initially false
8 May Reduce: boolean
9 Max(): returns the maximum of a set of numbers

10 Cardinality(): returns the cardinality
11 Maximum Cardinality ← Max(Cardinality(Ti))
12 RS ← RS ∪ Ti, for all Cardinality(Ti) = 1
13 foreach Ti such that Ti ∩RS 6= Φ do
14 Marked[i] ← true
15 end
16 Current Cardinality ← 1
17 foreach Ri such that Ri ∩Rj = Ri do
18 foreach Ti where ti ∈ Ti do
19 Ti ← Ti − ti
20 end

21 end
22 while Current Cardinality ≤ Maximum Cardinality do
23 Current Cardinality ← Current Cardinality + 1
24 while there are Ti such that Cardinality(Ti) = Current Cardinality and

not Marked[i] do
25 List ← all ti ∈ Ti where Cardinality(Ti) = Current Cardinality and

not Marked[i]
26 end
27 Chosen Test← SelectTest (Current Cardinality, List)
28 RS ← RS ∪ {Chosen Test}
29 May Reduce← False
30 foreach Ti such that Chosen Test ∈ Ti do
31 Marked[i]← true
32 if Cardinality(Ti) = Maximum Cardinality then
33 May Reduce← true
34 end

35 end
36 if May Reduce then
37 Maximum Cardinality← Max(Cardinality(Ti)), for all i where

Marked[i]← false
38 end

39 end

Test Suite Reduction Using HGS Based Heuristic Approach 1121

40 foreach ti ∈ RS do
41 S = RS − ti
42 Rs = Rs ∪Rk,∀tk ∈ S
43 end
44 if Ri ∩Rs = Ri then
45 RS ← RS − ti
46 end

Algorithm 1: Non redundant HGS algorithm

1 Function SelectTest(Size, List)
2 Count array[1..n]
3 foreach ti in List do
4 compute Count[ti], the number of unmarked T ′

is of cardinality Size
containing ti

5 end
6 Construct TestList consisting of tests from List for which Count[i] is

maximum
7 if Cardinality(TestList) = 1 then
8 return(the test case in TestList)
9 else

10 if Size = Maximum Cardinality then
11 return(any test case in TestList)
12 else
13 return(SelectTest(Size + 1, TestList))
14 end

15 end
Algorithm 2: Function SelectTest for Non Redundant HGS

4.2 Enhanced HGS Algorithm: Proposed Approach II

In Enhanced HGS algorithm the selection of test case for all higher cardinalities
is altered. Rather than choosing a test case based on its maximum number of oc-
currences among all the associated testing sets belonging to that cardinality, we
confine to the selection of test cases based on its maximum occurrence in unmarked
associated testing sets called the coverage. Coverage [ti] returns the count of un-
marked associated testing sets having ti irrespective of their cardinality, which is the
number of yet uncovered requirements covered by ti because each associated testing
set corresponds to a requirement. Thus coverage of ti is its coverage among the
unmarked associated testing sets. The steps involved in Enhanced HGS as realized
in the Algorithm 3 are as follows:

Step 1: Initialization.

1122 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

Step 2: Place all test cases of associated testing sets of cardinality one in the rep-
resentative set.

Step 3: Mark the corresponding testing sets.

Step 4: Compute RS according to the new heuristic for sets of higher cardinality.

Step 5: When all associated testing sets are marked, RS gives the reduced test
cases and the algorithm terminates.

Steps 1, 2 and 3 of Enhanced HGS algorithm realized in the Algorithm 3 are the
same as that of Non Redundant HGS. Step 4 computes representative set according
to the new heuristic for sets of higher cardinality based on Coverage. The new
SelectTest function in the Algorithm 4 realized in the the lines 1 to 15 implements
the selection method of a test case, based on the maximum coverage of test cases
irrespective of their cardinality. This function selects the next ti to be included in
the representative set, based on the maximum occurrence of ti in all the unmarked
associated testing sets irrespective of their cardinality, called a coverage as realized
in the line 6. Coverage function finds the number of times ti occurs among all
unmarked associated testing sets irrespective of their cardinality as in the lines 3
and 4. TestList is constructed by finding and putting test cases with a maximum
coverage. When all associated testing sets are marked, RS gives the reduced test
cases and the algorithm terminates in step 5.

4.3 Illustration

To illustrate HGS, Non Redundant HGS and Enhanced HGS, consider the require-
ments matrix in Table 1 where the seven rows represent seven test cases and seven
columns represent seven requirements. The requirements satisfied by each test case
are marked. Table 2 illustrates the test cases and their corresponding requirement
set. Ri represents the requirement set of test case ti. For example, {r1, r2} is
the requirement set of test case t1. Table 3 illustrates the requirements and their
corresponding associated testing sets. Ti represents the associated testing set of
requirement ri. For example, {t1, t5} is the associated testing set of requirement r1.

ti\ri r1 r2 r3 r4 r5 r6 r7
t1 * *
t2 * *
t3 * *
t4 * *
t5 * *
t6 * * *
t7 * *

Table 1. Requirements matrix

Thus, an associated testing set is the set of test cases, which covers a given
requirement and the cardinality of an associated testing set is the number of test

Test Suite Reduction Using HGS Based Heuristic Approach 1123

1 Input Data: T1, T2, . . . , Tn: associated testing sets for r1, r2, . . . , rn
respectively, containing test cases from t1, t2, . . . , tn

2 Data: R1, R2, . . . , Rn: set of requirements satisfied by t1, t2, . . . , tn
3 Result: RS: a representative set of test cases selected from T1, T2, . . . , Tn
4 Maximum Cardinality, Current Cardinality: 1..n
5 List: list of ti belonging to associated testing sets of chosen cardinality
6 Chosen Test: one of t1, t2, . . . , tn
7 Marked: array [1..n] of boolean, initially false
8 May Reduce: boolean
9 Max(): returns the maximum of a set of numbers

10 Cardinality(): returns the cardinality
11 Maximum Cardinality← Max(Cardinality(Ti))
12 RS ← RS ∪ Ti, for all Cardinality(Ti) = 1
13 foreach Ti such that Ti ∩RS 6= Φ do
14 Marked[i]← true
15 end
16 Current Cardinality← 1
17 while Current Cardinality ≤ Maximum Cardinality do
18 Current Cardinality← Current Cardinality + 1
19 while there are Ti such that Cardinality(Ti) = Current Cardinality and

not Marked[i] do
20 List ← all ti ∈ Ti where Cardinality(Ti) = Current Cardinality and

not Marked[i]
21 end
22 Chosen Test← SelectTest (Current Cardinality, List)
23 RS ← RS ∪ {Chosen Test}
24 May Reduce← False
25 foreach Ti such that Chosen Test ∈ Ti do
26 Marked[i]← true
27 if Cardinality(Ti) = Maximum Cardinality then
28 May Reduce← true
29 end

30 end
31 if May Reduce then
32 Maximum Cardinality← Max(Cardinality(Ti)), for all i where

Marked[i]← false
33 end

34 end
Algorithm 3: Enhanced HGS algorithm

cases in the associated testing set. For example, T1 = {t1, t5} is the associated
testing set of requirement r1. Associated testing set T1 has two test cases, hence
the cardinality of T1 is two. Each column in the requirements matrix in Table 1

1124 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

1 Function SelectTest(Size, List)
2 Coverage array[1..n]
3 foreach ti in List do
4 compute Coverage[ti], the number of unmarked T ′

is containing ti
irrespective of their cardinality.

5 end
6 Construct TestList consisting of tests from List where Coverage[i] is

maximum
7 if Cardinality(TestList) = 1 then
8 return(the test case in TestList)
9 else

10 if Size = Maximum Cardinality then
11 return(any test case in TestList)
12 else
13 return(SelectTest(Size + 1, TestList))
14 end

15 end
Algorithm 4: Function SelectTest for Enhanced HGS

represents a requirement. All test cases covering a requirement are marked with one
and others with zero. Similarly, for all requirements, the corresponding test cases
are marked with ones and others with zeros. Cardinality is computed from this
requirements matrix. Cardinality has to be computed for every associated testing
set, that is, for every set of test cases covering a particular requirement, which
means for every column in the requirements matrix. Test cases covering a particular
requirement are marked with one. Hence, the number of entries in a column is the
cardinality of the corresponding associated testing set. Similarly, number of entries
in every column is counted and thus the cardinality of all associated testing sets is
arrived at.

In the requirements matrix in Table 1, there are seven columns, each belonging
to one associated testing set, because it has entries for the corresponding test cases
covered by that particular requirement, for which the associated testing set belongs.
First column and second column have two entries, hence the cardinality of associated
testing sets, T1 and T2, is two. Similarly, third, fourth and fifth columns have three
entries each, hence the cardinality of associated testing sets, T3, T4 and T5, is three.
Sixth column and seventh column have one entry each, hence the cardinality of
associated testing sets, T6 and T7, is one. Basically HGS algorithm as well as the
proposed algorithms, Non Redundant HGS algorithm and Enhanced HGS algorithm
selects test cases using heuristic based on cardinality. The algorithms consider the
associated testing sets of a given cardinality and the test case that participates in
an unmarked associated testing set is selected. The selected test cases are added to
a set called representative set, RS.

Test Suite Reduction Using HGS Based Heuristic Approach 1125

Test Case ti Requirement Set Ri

t1 {r1, r2}
t2 {r3, r5}
t3 {r3, r4}
t4 {r3, r4}
t5 {r1, r6}
t6 {r2, r5, r7}
t7 {r4, r5}

Table 2. Test cases and their requirement sets

Requirement ri Associated Testing Set Ti

r1 {t1, t5}
r2 {t1, t6}
r3 {t2, t3, t4}
r4 {t3, t4, t7}
r5 {t2, t6, t7}
r6 {t5}
r7 {t6}

Table 3. Requirements and their associated testing sets

HGS algorithm first considers associated testing sets of cardinality one. The
associated testing sets of requirements, r6 and r7 that is, T6 and T7 have cardinality
one. Hence representative set, RS becomes {t5, t6} and the corresponding test case
and associated testing sets are marked. Next, cardinality two is considered and
the associated testing sets of requirements r1 and r2 that is, T1 and T2 come under
this category. Among these, the test case which occurs maximum number of times,
among the associated testing sets of cardinality two, is selected and added to RS,
provided the corresponding associated testing sets are unmarked. But T1 and T2 are
already marked. Thus RS remains the same {t5, t6}. Cardinality three is considered
next. Associated testing sets of cardinality three are T3, T4 and T5 which correspond
to the requirements r3, r4 and r5. Among these test cases, t2, t3, t4 and t7 are the test
cases which occur a maximum number of times among the selected associated testing
sets. Here a tie occurs, and any test case can be chosen arbitrarily, considering the
first test case is selected and RS becomes {t5, t6, t2}. There are no more associated
testing sets with higher cardinalities but T4 is not yet marked. Hence a test case
which covers T4 has to be added. The test cases, which participate in T4 are t3, t4
and t7. Among these, the first one, t3 is added to RS, making it {t5, t6, t2, t3} as
shown in Table 5. In this RS, t2 is a redundant test case. The test case t2 covers
the requirement r3 and r5. The test case t3 also covers the requirement r3 and the
test case t6 also covers the requirement r5. Hence, t2 is a redundant test case with
respect to the testing requirement. This is the shortcoming with HGS.

Non Redundant HGS uses the same selection process incorporated in the Se-
lectTest function as that of HGS, but checks for redundant test cases in two steps.

1126 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

First, in step 4 of Non Redundant HGS redundant test cases are removed from the
associated testing sets. The requirement sets of any two test cases are compared
with each other. If they match, then the later test case is removed from all associ-
ated testing sets where it is participating. Here, the requirement sets of test case
t3 and t4 are the same. Hence, t4 is a redundant test case and t4 is removed from
all associated testing sets where it is participating. Thereby t4 is removed from
the associated testing sets T3 and T4. Second, in step 6 of Non Redundant HGS,
redundant test cases are removed from the RS. In the representative set, RS, t2
has become a redundant test case because of the test cases t3 and t6. It is in this
step 6, t2 gets removed and RS becomes {t5, t6, t3} as shown in Table 5. Thus, Non
Redundant HGS differs from HGS. The steps involved in the three algorithms are
illustrated in Table 4.

Step HGS Non Redundant HGS Enhanced HGS

Cardinality 1 {t5, t6} {t5, t6} {t5, t6}
Cardinality 2 {t5, t6} {t5, t6} {t5, t6}
Cardinality 3 {t5, t6, t2} {t5, t6, t2} {t5, t6, t3}

For T4 {t5, t6, t2, t3} {t5, t6, t2, t3}
Redundancy check {t5, t6, t3}

Table 4. Step-by-step illustration

Enhanced HGS algorithm first considers associated testing sets of cardinality one
and all test cases belonging to associated testing sets of cardinality one is included
in RS. Thus RS becomes {t5, t6}. Next, associated testing sets of cardinality two is
considered. Among the test cases belonging to associated testing sets of cardinality
two, the test case which occurs a maximum number of times, among all unmarked
associated testing sets irrespective of their cardinality, that is, the test case which
occurs in a maximum number of unmarked associated testing sets, is added to
RS. Here, associated testing sets of cardinality two are already marked. Hence,
RS remains the same {t5, t6}. In the next step, among the associated testing sets
with cardinality three, that is T3, T4 and T5, both T3 and T4 are unmarked and the
corresponding test cases are t2, t3, t4 and t7. Among these, t3 and t4 are having
maximum coverage of two, i.e. they participate in two unmarked associated testing
sets. Hence, RS becomes {t5, t6, t3} as shown in Table 5. Here a tie occurs and
any test case can be chosen arbitrarily. Even when t4 is chosen, the algorithm will
arrive at a reduced, non-redundant RS. Thus Enhanced HGS differs from HGS in
selecting a test case. Further, it results in a RS which is not redundant.

Algorithm Representative set

HGS {t5, t6, t2, t3}
Non Redundant HGS {t5, t6, t3}

Enhanced HGS {t5, t6, t3}

Table 5. Representative set using various algorithms

Test Suite Reduction Using HGS Based Heuristic Approach 1127

5 EXPERIMENTS

A PL/SQL procedure named FIRST RUN, used in a Payroll Management System
that was developed using Oracle 10g was used for the study. The system consists of
thirty three relations. The FIRST RUN procedure populates the earnings trial run
relation and deductions trial run relation with new values. The earnings trial run
relation is meant for storing the earnings of employees applicable in a month and
deductions trial run relation is meant for storing the deductions of employees ap-
plicable in a month. These two relations are used to make a report generation
easy. The earnings trial run relation is populated with earnings from earnings re-
lation. The deductions trial run relation is populated with various deductions that
are drawn from the sixteen relations: employee gpf which stores employee provi-
dent fund details, employee cps which stores employee contributory pension scheme
details, deduction specific which covers deduction details of additional house rent,
electricity charge, cooperative society, vehicle maintenance, as well as employees’
recreation club, variable ded std which captures details of a family benefit fund,
mediclaim, government health insurance scheme, as well as the professional tax,
cps recovery which stores employee contributory pension scheme recovery details, spf
which stores special provident fund details, court recovery, income tax deduction,
gpf loan, house loan, loan sanction, rop which stores recovery of over payment de-
tails, bank loan, licpolicy, pli which stores postal life insurance policy details and
rec deposit which stores details of recurring deposits.

The details of the program used for the study are given in Table 6. In the study,
testing requirements for the white-box testing criteria, namely a branch coverage was
used for reducing the test suites. Five different branch coverage adequate test suites
were created to allow varying levels of redundancy. Requirements matrix for the test
cases was generated manually, which maps the test cases with the corresponding
requirements covered by it.

Program Lines of Code Average Test Suite Size

FIRST RUN 512 142

Table 6. Program used for the study

Requirements matrix for the FIRST RUN has 142 rows, that are test cases
and 92 columns, which are requirements. The test cases are reduced using Non
Redundant HGS algorithm and Enhanced HGS algorithm with respect to a branch
coverage. GRE presented by Chen et al. [14] for test suite minimization and HGS
presented by Harrold et al. [15] are used for evaluating the Non Redundant HGS
algorithm and Enhanced HGS algorithm.

6 RESULT ANALYSIS

The parameter Suite Size Reduction (SSR) given by SSR = |T |− |Tmin|/|T |, where
|T | is the number of test cases in the original test suite and |Tmin| is the number

1128 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

of test cases in the minimized or reduced test suite, is used for the analysis. The
proposed algorithms are devised to solve the redundancy problem in HGS heuristic
technique. Table 7 as well as the illustration in Section 4.3 clearly depict that both
Non Redundant HGS and Enhanced HGS improve upon existing HGS algorithm
making it more effective in arriving at a non-redundant reduced test suite.

Test Suite Algorithm Test Cases % of SSR
Before Reduction After Reduction

1 GRE 142 32 77.46
HGS 142 36 74.65

Non Redundant HGS 142 31 78.17
Enhanced HGS 142 31 78.17

2 GRE 142 41 71.13
HGS 142 47 66.90

Non Redundant HGS 142 42 70.42
Enhanced HGS 142 41 71.13

3 GRE 142 38 73.24
HGS 142 45 68.31

Non Redundant HGS 142 45 68.31
Enhanced HGS 142 39 72.54

4 GRE 142 38 73.24
HGS 142 45 68.31

Non Redundant HGS 142 38 73.24
Enhanced HGS 142 38 73.24

5 GRE 142 39 72.53
HGS 142 47 66.90

Non Redundant HGS 142 44 69.01
Enhanced HGS 142 38 73.23

Table 7. Test suite reduction using GRE, HGS, Non Redundant HGS and Enhanced HGS
for five different test suites

Table 7 shows the test cases before and after the reduction using GRE, HGS,
Non Redundant HGS and Enhanced HGS for the five different test suites. Each
execution result is that of a different test suite. The nature of the test suite affects
the performance of the algorithm. In execution 3, for that particular third test suite
GRE reduces one more test case, achieving 38 whereas Enhanced HGS achieves 39.
But for the test suite 1 and 5 GRE has reduced to 32 and 39, respectively, whereas
Enhanced HGS has achieved 31 and 38, respectively. Hence, on an average, SSR
rate of Enhanced HGS is better than that of GRE.

Table 8 shows the average size of each original test suite and the average size of
each reduced test suite and the average SSR of all four approaches, namely GRE,
HGS, Non Redundant HGS and Enhanced HGS. Average suite size reduction per-
centage of Non Redundant HGS is 71.82 % and that of Redundant HGS is 73.66 %,
which are better when compared to that of HGS, 69.01 %. Moreover, the perfor-
mance of Enhanced HGS and Non Redundant HGS have improved a lot compared

Test Suite Reduction Using HGS Based Heuristic Approach 1129

Algorithm Test Cases % of SSR
Before Reduction After Reduction

GRE 142 38 73.51
HGS 142 44 69.01

Non Redundant HGS 142 40 71.82
Enhanced HGS 142 37 73.66

Table 8. Average experimental results for suite size reduction

with that of original HGS making it more effective by removing redundant test cases.
Figure 1 shows that, compared to HGS, both the proposed algorithms, Non Redun-
dant HGS and Enhanced HGS always produce much reduced test suite. Moreover,
the problem cited with HGS, i.e. the existence of redundant test cases, is removed in
Non Redundant HGS as well as in Enhanced HGS. In Non Redundant HGS, redun-
dant test cases are removed after selection and Enhanced HGS gets rid of redundant
test cases while selecting test case itself. Thus the proposed techniques significantly
reduce the test suite size and outperform the existing HGS technique by resulting
in a reduced non-redundant test suite.

Figure 1. Percentage of suite size reduction vs. reduction technique

1130 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

7 CONCLUSION

The Enhanced HGS and Non Redundant HGS algorithms select a minimal subset
of a test suite that covers all the requirements covered by the original test suite.
This minimal subset is much smaller compared to the existing HGS. Further, these
techniques improve upon the HGS heuristics by removing redundancy in the selected
test cases. In the experiments, the percentage of the suite size reduction obtained
for Enhanced HGS and Non Redundant HGS shows that they consistently produce
a smaller test suite compared to the existing HGS heuristics. The results show that
the redundancies in the representative set available in the existing HGS heuristic are
removed by the proposed approaches and the suite size reduction rate is increased.

REFERENCES

[1] Bulbul, H. I.—Bakir, T.: XML-Based Automatic Test Data Generation. Com-
puting and Informatics, Vol. 27, 2008, No. 4, pp. 681–698.

[2] Khamis, A.M.—Girgis, M.R.—Ghiduk, A. S.: Automatic Software Test Data
Generation for Spanning Sets Coverage Using Genetic Algorithms. Computing and
Informatics, Vol. 26, 2007, No. 4, pp. 383–401.

[3] Tun, T.T.—Trew, T.—Jackson, M.—Laney, R.—Nuseibeh, B.: Specifying
Features of an Evolving Software System. Software – Practice and Experience, Vol. 39,
2009, pp. 973–1002, DOI: 10.1002/spe.923.

[4] Yoo, S.—Harman, M.: Regression Testing Minimization, Selection and Prioritiza-
tion: A Survey. Software Testing, Verification and Reliability, Vol. 22, 2012, No. 2,
pp. 67–120, DOI: 10.1002/stvr.430.

[5] Jeffrey, D.—Gupta, N.: Improving Fault Detection Capability by Selectively
Retaining Test Cases During Test Suite Reduction. IEEE Transactions on Software
Engineering, Vol. 33, 2007, No. 2, pp. 108–123, DOI: 10.1109/TSE.2007.18.

[6] Zhong, H.—Zhang, L.—Mei, H.: An Experimental Study of Four Typical Test
Suite Reduction Techniques. Journal of Information and Software Technology, Vol. 50,
2008, No. 6, pp. 534–546, DOI: 10.1016/j.infsof.2007.06.003.

[7] Tallam, S.—Gupta, N.: A Concept Analysis Inspired Greedy Algorithm for Test
Suite Minimization. ACM SIGSOFT Software Engineering Notes, Vol. 31, 2006, No. 1,
pp. 35–42. DOI: 10.1145/1108768.1108802.

[8] Hutchins, M.—Foster, H.—Goradia, T.—Ostrand, T.: Experiments on the
Effectiveness of Dataflow- and Control Flow-Based Test Adequacy Criteria. Six-
teenth International Conference on Software Engineering (ICSE ’94), Italy, 1994,
pp. 191–200, DOI: 10.1109/ICSE.1994.296778.

[9] Vokolos, F. I.—Frankl, P.G.: Empirical Evaluation of the Textual Differenc-
ing Regression Testing Technique. Fourteenth International Conference on Software
Maintenance, USA, 1998, pp. 44–53, DOI: 10.1109/ICSM.1998.738488.

Test Suite Reduction Using HGS Based Heuristic Approach 1131

[10] McMaster, S.—Memon, A.M.: Call-Stack Coverage for GUI Test Suite Reduc-
tion. IEEE Transactions on Software Engineering, Vol. 34, 2008, No. 1, pp. 99–115,
DOI: 10.1109/TSE.2007.70756.

[11] Lin, J.-W.—Huang, C.-Y.: Analysis of Test Suite Reduction with Enhanced Tie-
Breaking Techniques. Journal of Information and Software Technology, Vol. 51, 2009,
No. 4, pp. 679–690, DOI: 10.1016/j.infsof.2008.11.004.

[12] Jeya Mala, D.—Ruby, E.—Mohan, V.: A Hybrid Test Optimization Frame-
work – Coupling Genetic Algorithm with Local Search Technique. Computing and
Informatics, Vol. 29, 2010, No. 1, pp. 133–164.

[13] Gu, Q.—Tang, B.—Chen, D.-X.: A Test Suite Reduction Technique for Partial
Coverage of Test Requirements. Chinese Journal of Computers, Vol. 34, 2011, No. 5,
pp. 879–888, DOI: 10.3724/SP.J.1016.2011.00879.

[14] Chen, T.Y.—Lau, M.F.: A New Heuristic for Test Suite Reduction. Journal
of Information and Software Technology, Vol. 40, 1998, No. 5, pp. 347–354, DOI:
10.1016/S0950-5849(98)00050-0.

[15] Harrold, M. J.—Gupta, R.—Soffa, M. L.: A Methodology for Controlling the
Size of a Test Suite. ACM Transactions on Software Engineering and Methodology,
Vol. 2, 1993, No. 3, pp. 270–285, DOI: 10.1145/152388.152391.

Angelin Gladston is a Research Scholar in Ramanujan Com-
puting Centre, Anna University, Chennai, Tamilnadu, India.
She is working as Assistant Professor at the Department of Com-
puter Science and Engineering, Anna University, Chennai. Her
research interests include software engineering, software testing
and data mining.

H. Khanna Nehemiah is working as Associate Professor in Ra-
manujan Computing Centre, Anna University, Chennai, Tamil-
nadu, India. His research interests include software engineering,
databases, data mining and medical image processing.

1132 A. Gladston, H. Khanna Nehemiah, P. Narayanasamy, A. Kannan

P. Narayanasamy is working as Professor at the Department
of Information Science and Technology, Anna University, Chen-
nai, Tamilnadu, India. His research interests include networks,
mobile computing and software engineering.

A. Kannan is working as Professor in the Department of In-
formation Science and Technology, Anna University, Chennai,
Tamilnadu, India. His research interests include software engi-
neering, databases, data mining and artificial intelligence.

