
Computing and Informatics, Vol. 35, 2016, 84–110

EXTENSIBLE HOST LANGUAGE
FOR DOMAIN-SPECIFIC LANGUAGES

Sergej Chodarev, Ján Kollár

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
e-mail: {sergej.chodarev, jan.kollar}@tuke.sk

Abstract. Programming languages greatly influence the way how programs are
created and evolved. This means that the use of appropriate language for solved
problem can greatly increase developer productivity. Composition of languages can
provide great help in construction of a new language from existing components
and for integration of several languages that may be needed to effectively solve
a complex problem. In this paper we analyze the composition problem on the
two levels: composition of languages and composition of concepts in a language.
Possibilities of transition from language composition to concepts composition are
also presented. Based on that, we propose a framework of languages construction
based on concept composition that aims to support reusability of language elements
and tools. It uses common host syntax for developed languages. Their semantics
is defined in a general-purpose language. Proposed approach is demonstrated on
example languages developed using prototype implementation.

Keywords: Concept composition, domain-specific language, functional composi-
tion, generic syntax, language composition, metaprogramming

1 INTRODUCTION

Development of software systems often involves working with concepts from a par-
ticular domain of problems. This leads to introduction of new concepts into the
programming language using mechanisms that the language provides, for example

Extensible Host Language for DSLs 85

classes or functions. However, a general-purpose language may not allow to ex-
press operations of the domain naturally. In this case a domain-specific language
(DSL) can be introduced that is specially designed for solving problems in the do-
main [28, 37, 41]. The use of DSLs also improves the ability of programmers to
comprehend program code [24].

A downside of this approach is that development of a new language may be
complex, involving development of parser, compiler or interpreter, editor, and other
tools. Some of the tasks can be automated using existing tools like parser generators
Yacc [20], Antlr [32] or YAJCo [33]. But the syntax and semantics of all language
elements still need to be defined by a language developer.

At the same time, a lot of elements in different languages may be similar. This in-
cludes simple parts as notation for comments and basic types of values, like numbers
or lists, and also common operations like arithmetic or logical operators, and many
other concepts. This means the process of language development can be simplified
if it would be possible to reuse such elements. The language may be composed from
other languages or language libraries – collections of language elements intended for
reuse [38].

Currently a lot of even basic elements need to be defined repeatedly for every
language. To overcome this disadvantage, domain-specific languages are often based
on some existing languages. It may be a general-purpose language in case of internal
DSLs [19, 16], or some generic language like XML. This simplifies development of
language processor and also allows to easily compose languages that share the same
base syntax. For example, this allows to embed SVG (Scalable Vector Graphics)
images in the XHTML documents.

For these reasons our goal in this paper is to analyze the possibilities to utilize
composition in the language development process and to propose a new approach
to language development based on that.

In the first part of the paper (Sections 2, 3, and 4), different approaches for
language composition problem are discussed. We look at the composition on two
levels: the composition of languages and the composition of concepts in a single
formal language.

In the second part (Sections 5, 6, and 7) we present a new approach for language
development allowing simple composition of language libraries (reusable language
fragments). It is based on the common host syntax used by all developed languages.

2 LANGUAGE COMPOSITION

It is hard to define language composition exactly and the term is mostly used without
definition expecting some intuitive understanding. We will try to clarify it a bit
there.

As we know a language (L) is a set of sequences of symbols from some alphabet T.
These sequences are called sentences.

L = {w,w ∈ T ∗}

86 S. Chodarev, J. Kollár

As the composition of languages combines language elements from two (or more)
composed languages, sentences of the resulted language would be combinations of
sentences of the composed languages. However, sentences should not be combined at
the level of symbols from the alphabet, because this would allow to describe almost
every sentence in a language as a combination of some sentences of other languages
that use the same alphabet. This means, that it would be too weak definition, so
we should restrict the combinations.

For this reason we should define units of higher granularity. Lets call them
meaningful fragments. Meaningful fragments are all sub-sentences of language sen-
tences that have some specific meaning. For example, if we have sentence “print
42” in Python language, sub-sentence “t 4” is not meaningful, but sub-sentence
“print” is meaningful.

Now the composition can be defined. Language Lc (composed) is a composition
of languages Lh (host) and Le (embedded) if every sentence of Lc can be made
from the sentence of Lh by inserting meaningful fragments of Le sentences between
meaningful fragments of Lh or instead of them. Let us use the diamond symbol to
denote the composition:

Lc = Lh � Le

Meaningful fragments would mostly correspond to tokens of languages. For
example, let us consider a language with print statements and simple arithmetic
expressions (Lp) as defined in Figure 1 and a language for definition of constants
(Ld) as defined in Figure 2. We can create a composed language Lpd = Lp � Ld (see
Figure 3) by allowing fragments of Ld sentences be used inside Lp sentences. More
precisely, whole definitions from Ld can be placed between the statements of Lp and
identifiers from Ld can replace numbers in Lp.

Statements ::= Statement Statements
Statement ::= ‘print’ Expression
Expression ::= Expression ‘+’ Expression | Expression ‘-’ Expression | number

Figure 1. Example of the language of print statements Lp

Definition ::= ‘let’ identifier ‘=’ number

Figure 2. Example language of constant definitions Ld

Embedded language can be some standalone language that can be used sepa-
rately from the host language. It can also be language extension – a language that
cannot be used separately from the host language and mostly it is not even com-
pletely defined without the host language. In the same time, a host language can
be also incomplete without an embedded language.

Extensible Host Language for DSLs 87

Statements ::= Statement Statements
Statement ::= ‘print’ Expression | Definition
Expression ::= Expression ‘+’ Expression | Expression ‘-’ Expression | number

| identifier
Definition ::= ‘let’ identifier ‘=’ number

Figure 3. Example composed language Lpd = Lp � Ld

Examples of standalone embedded languages include JavaScript embedded in
HTML documents or C language embedded in Yacc parser generator specifications.
In the first case both languages can be used separately or fragments of JavaScript
can be inserted inside HTML documents at some specific places.

In the case of Yacc specifications, the host language defines rules of syntax
analysis that without the embedded language can be used to generate only a syntax
checker. To perform some actions in the parser beside the checking, it is needed to
include fragments of the C language. Those fragments, however, are not expressed
in the pure C, but in a C augmented with Yacc attribute references (for example $1).
We may consider this as another case of language composition, where the C language
(LC) is composed with the Yacc references language (Lr) to form an Yacc actions
language La = LC � Lr. This language is finally embedded into Yacc grammar
definition language (Lg) to produce the complete Yacc language (Ly).

Ly = Lg � La = Lg � (LC � Lr)

An example of language extension is the Blocks extension by Apple Inc. that
adds support for anonymous functions to the C language [1]. Another example
is provided by additions made in the process of the language development. New
versions of languages may include extensions that add some new syntax, for example
addition of generic types in Java 5.

In [10] a more implementation-oriented view on the language composition is pre-
sented. Language development tools are classified according to types of composition
that they support without modification of the original language implementation. It
recognizes four types of language composition:

1. Extension of a language, where existing base language is modified to include
additional elements or some elements are removed from the language.

2. Language unification, where two existing languages are combined and inter-
weaved.

3. Self-extension of the language, where the language is extended using a program
written in the extended language itself.

4. Extension composition allowing to compose several extensions of a base lan-
guage.

88 S. Chodarev, J. Kollár

Implementation of the language composition is complicated by several factors
including [22]:

• Grammar subclasses. Most of parser generators allow to use only a subset of
context-free grammars – grammar subclass (e.g. LL(k), LALR, etc.). However,
these subclasses are mostly not closed under composition. This means that
composition of grammars from some grammar subclass may result in a grammar
that does not fit into this subclass and therefore cannot be processed using the
same parser generator. In such case a manual modification of resulting grammar
is required.

• Separate lexical analysis. Language processors usually use separate phases of
lexical analyzing and parsing. Because of this, it is difficult to compose lan-
guages with different lexical grammars, since the same sequence of characters
may produce different tokens in composed grammars.

A lot of problems can be solved by using a parser generator, that can process any
context-free grammar [22]. On the other hand, even using more restrictive language
class, it is possible to compose languages, albeit not in general case.

To avoid the problems of parser generation, it is also possible to combine sepa-
rate parsers for composed languages using language embedding, where parsers are
switched during analysis [25], or preprocessing, where language processors are run
sequentially [35].

Semantics composition. Another problem of language composition is composi-
tion of semantics. Its realization greatly depends on implementation of language
processors. It is obvious, that composition of languages implemented independently
and based on different tools would be very difficult and may require substantial
changes to language implementation. Moreover, if language semantics is described
in a general-purpose language, it may be difficult to extend or compose it. One of
the ways how to avoid modification of the base language implementation in the case
of language extension is implementation of translator to the base language [4].

On the other hand, if composed languages are implemented using the same tool,
it can provide support for composition of semantics. The practicable execution
depends on the way how semantics is defined. It may be, for example:

• Modification of translation rules [40]

• Extension or composition of semantics model [40, 39]

• Inheritance of attribute grammar rules [27].

3 CONCEPT COMPOSITION

While the composition of grammars is quite rarely used, the composition of concepts
is used all the time. We would use the term concept composition for cases where
several existing concepts are combined to form a structure. Concepts used in the

Extensible Host Language for DSLs 89

composition can be either part of the language itself, or they can be defined by
a language user – a programmer. Moreover, the resulting structure can be named
and by this way a new concept can be defined.

For example, concepts of multiplication operation (×), circle radius (r) and
constants 2 and π can be composed to form a concept of circle perimeter.

P = 2× π × r

The composition of languages or dialects that use the same syntax can also be
considered as a concept composition because elements of such languages are actually
just different concepts of a host language.

A language specifies the ways how concepts can be composed. It can support
several types of composition with different rules and constraints and different types
of concepts may be composed differently. We have identified four basic composition
approaches. Composition rules in languages are mostly based on these types:

1. structural composition (composition of code elements),

2. functional composition (composition of data flow),

3. object composition (composition of data structures),

4. aspect composition (composition by interweaving).

These types are not mutually exclusive. In reality they are just different views
on the composition based in different properties of the program. For this reason they
are usually not used in a pure form but rather combined. For example procedural
languages usually use both the structural and functional composition. Procedures
are composed from statements using structural composition, and statements can be
composed from several functions using functional composition. At the same time
functional composition uses structural composition on the level of program code.

3.1 Structural Composition

The essence of structural composition is combination of concepts based on their
position in the program code. Remarkable example is the composition of elements in
XML based languages. Language specification in this case defines allowed elements
and places in the document structure, where they can be placed. One of the XML
schema languages (like DTD, W3C XML Schema or Relax NG) can be used to
express these composition rules.

The rules of structural composition define how concepts can be combined and
nested in the program code. Structural composition actually corresponds to the lan-
guage syntax and rules of structural composition can be described using a grammar.
This means that the composition of concepts based on the language grammatical
structure is actually an instance of the structural composition.

However, rules of the structural composition do not need to be described directly
in the language syntax. Part of them can be moved into semantic processing of the

90 S. Chodarev, J. Kollár

program. This means that they are checked only at the stage of semantic analysis
or execution.

This is used by many internal DSLs, or even libraries. For example OpenGL
interface defines special functions like glBegin() and glEnd() that actually provide
new control structures and new rules of structural composition that are not checked
by the compiler of programming language.

Structural composition can be considered as a low-level composition approach
the other approaches build on. It itself is useful for languages oriented towards
expressing structured data, where other types of composition may not be needed.

3.2 Functional Composition

The basic principle of functional composition is the application of a function result-
ing from other functions. This can be expressed using the composition operator:

(f ◦ g) x = f(g x)

Functional composition expresses the flow of data between functions that process
it. It is commonly used in languages as a way to form expressions, where functions
and operators (that can be treated a special notation for functions) are composed. In
addition to functions, literals and variables are used in such composition to describe
data used in computation.

Functional composition can be restricted by a type system, so functions cannot
be composed in arbitrary way. In this case, every function has declared types of
their arguments and produced value. Composition f ◦ g is possible only if argument
type of f is compatible with the type of g. This means that the type of functions
and values defines composition constraints.

In functional programming languages, functional composition is a basic tool for
constructing programs. In these languages the program is formed using functions
that are defined as expressions composed from other functions. However, function
composition can be used to express manipulation not only with data, but also with
computations. This is done using monads [30]. Monad is a data type that allows to
abstract execution and data flow between computation steps.

3.3 Object Composition

In this section we would use the term object to describe a data structure containing
named elements of possibly different types. The elements can be data (simple or
other objects) or functions (called methods of the object). Functions associated with
an object define its behavior. Objects with the same structure are usually grouped
into classes and their properties are then described in the classes.

If all data members of an object are hidden and the only way to manipulate
with object state is provided by its methods, then we can consider the object as
an abstract data structure. However, this is not always the case.

Extensible Host Language for DSLs 91

Therefore, the basis of the object composition is the composition of data struc-
tures. We can distinguish two basic types of the object composition:

Composition and aggregation (term “composition” is used in a narrower mean-
ing there) is a definition of data structure consisting of other data structures that
become its elements. More strength relation, where elements cannot exist with-
out a compound structure, is usually called composition. The weaker relation,
where elements of a composed structure can also exist separately, can be called
aggregation.

Inheritance or extension of data structures is a construction of data structure
based on other structure (parent). Child structure inherits elements and be-
havior from parent structure and can redefine some of them and add its own
elements.

Relations between classes of objects can be expressed graphically using UML
class diagrams [17]. This allows to visualize relations of structures that are mostly
scattered in the program code.

Object composition is suitable to express different types of data structures.
So if we consider a program code to be the data structure (for example abstract
syntactic tree of graph), then we can see object composition as a generalization
of structural composition. This property is used to describe abstract syntax of
a programming language using the relations of object composition. For example
in [33] programming language syntax is defined using annotated classes and their
interconnection.

3.4 Aspect Composition

The aspect composition is an approach where some concepts, called aspects, can
alter other concepts behavior in a way that was not envisaged ahead [23]. In other
words, “AOP (aspect-oriented programming) can be understood as the desire to
make quantified statements about the behavior of programs, and to have these
quantifications on hold over programs written by oblivious programmers” [14].

Aspects can be described as statements in a form “In programs P, whenever
condition C arises, perform action A” [14], where condition may be evaluated stati-
cally based on the program code or dynamically based on its execution state. The
program P itself does not have information on what aspects may be applied to it.
The final program is then interweaved from separately defined concepts based on
rules specified in aspects.

The aspect composition is not completely independent from other composition
types. We can look at the aspects weaving as at the objects modification. Mon-
ads from functional programming can also be used for adding aspects into pro-
grams [8].

92 S. Chodarev, J. Kollár

4 TRANSITION FROM LANGUAGE COMPOSITION
TO CONCEPT COMPOSITION

While the language composition is still a complex task despite of research in this
area [10, 22, 25, 5, 11], the concept composition is well understood and widely used.
This is the reason that leads us to use the methods of concept composition for the
composition of languages.

This transition requires to lower the role of grammar in language definition.
Basically, language elements need to become concepts in some host language. There
are at least two ways how to achieve this:

1. to use the same concrete syntax for composed languages,

2. to use projectional editing.

The first way is used in the internal domain-specific languages. They are based
on the syntax of the existing general-purpose language, and so their elements are
just concepts of the host language.

Another example is provided by languages based on XML or some other existing
generalized language. These languages define concepts that use syntactic shapes
provided by a generalized language, for example XML elements and attributes.

Projectional editing of the program code, on the other hand, keeps different
notations for languages on the surface when using unified representation internally.
The main form of program code is an internal graph-based representation. Program
is displayed to a programmer using a projection that is directed by a set of rules for
transformation of internal structure to a visual form, for example text, diagram, or
table [15]. Programmer is then allowed to issue editing commands at the projection
which modify the internal structure and the projection is updated accordingly. In
case of textual projection, it is important to make editing commands similar to
editing text in a conventional editor.

In this case, the syntax becomes only a matter of projection and actual informa-
tion of a program code is stored in a different form, not visible for a language user.
At the same time, there is no text parsing involved, since internal representation
is edited directly. Therefore, the elements of languages developed using a language
workbench are actually only concepts of an internal representation language (which
is usually not textual). This means that in this case the composition of languages
corresponds to the composition of concepts inside a single language. Textual com-
position is only its projection which is not required to be unambiguous.

Projectional editing is used by some language workbenches, for example Jet-
Brains MPS [9] or Intentional Workbench [34].

5 LANGUAGE CONSTRUCTION ON COMMON HOST SYNTAX

The transition described above allows to build tools for language development that
would embrace composition in language development process. This would make
possible to construct languages based on the existing language components.

Extensible Host Language for DSLs 93

Different approaches can be taken to achieve this goal leading to different re-
sulting tools. For example, the choice to use projectional editing may lead to a tool
similar to existing language workbenches. We decided to base our approach on the
following principles:

1. Concept composition instead of language composition and a common generalized
language as a tool for this transition.

2. Functional composition (and eventually structural composition) for intercon-
necting language elements in programs.

3. Definition of language semantics using a general-purpose language that would
allow integration of a developed language into a wider software system.

Common host syntax was chosen instead of projectional editing because it al-
lows to keep textual form of code as a primary form. This makes it possible to
use existing tools expecting textual representation of programs, for example version
control systems.

Moreover, textual representation of a program is more transparent. This means
that all properties of a program are visible directly in the code and it is possible to
use any tool to read and manipulate them. On the other hand, projectional editing
can hide some program properties from textual projection and it may be required
to use different projections to change them.

Another important advantage of common syntax is the reuse of knowledge of
language users. In a case where several languages are used in a project, the time of
learning a new language can be decreased by the use of a common particular syntax.

However, the use of common host syntax is not suitable for all languages. Host
language introduces restrictions on the notation used by a developed language.
While it is possible to design a host language that is quite flexible, it obviously
cannot match the custom grammar. Increased flexibility of notations can also make
the host language more complex and reduce advantages of this approach. So it
is possible to effectively use a host language only if notations that it provides are
sufficient for description of domain concepts and operations.

Functional composition is used as a basis for composition of language elements
in our approach. This allows to nest elements, so inner elements become arguments
of outer element. Using this, the flow of data in a program can be expressed natu-
rally. This also allows to express structure of a program by allowing blocks of code to
be arguments of other program elements effectively using a structural composition.

Semantics of language elements is expressed using code in a general-purpose lan-
guage. Fragments of code are associated with each language element and control
transformation of elements input into its output together with the manipulation
of the execution environment. The implementation general-purpose language plays

94 S. Chodarev, J. Kollár

the role of meta-language for a developed language, because it allows to manipulate
values and code of DSL programs.

This approach makes it possible to easily integrate developed language with
the rest of the developed software system. It also allows to implement actions
performed by language elements using tools and methods familiar to a programmer.
In addition, thanks to the use of functional composition, the definition of language
semantics is similar to the definition of functions.

6 EXTENSIBLE HOST LANGUAGE FRAMEWORK

A framework for domain-specific language development was designed based on the
described principles. It uses a generic language that defines common syntax for
a whole family of domain-specific languages. We would call it Extensible Host Lan-
guage Framework 1. It consists of the host language and a set of tools for processing
languages based on it (see Figure 4).

Host Language Parser

Validator Language Schema
Development
Environment

Interpreter Evaluation Functions

Language
Definition

Figure 4. Extensible Host Language architecture

The basic tool is a parser of the generic host language that analyses program
text and produces a skeleton syntax tree (SST) based on it. Unlike the abstract
syntax tree that contains concrete elements, the skeleton syntax tree contains generic
language elements that correspond to basic syntactic shapes provided by the host
language [3].

These shapes are used to define elements of the concrete DSL. A DSL is actually
a subset of the generic language. Its elements with their properties are defined in
a language schema. This information is used by other tools to properly process
programs in the language. The most notable of these tools is a validator, that
performs static checking of programs based on a language schema. This makes
possible to detect some errors before program evaluation.

The next part of the architecture is an interpreter. Its task is to evaluate a pro-
gram after it is parsed and validated. The interpreter is actually a framework that
allows language author to define subprograms in form of evaluation functions that
would take care of actual evaluation of DSL elements. The interpreter then tra-
verses a DSL program and executes evaluation functions corresponding to language

1 This is obviously an allusion to Extensible Markup Language (XML).

Extensible Host Language for DSLs 95

elements. This allows to process a program in different ways depending on language
needs. It is possible to immediately execute actions specified in a program, create
a model based on it, or translate a program into other language.

Evaluation functions are implemented in a general-purpose language. In our
case the implementation language is Java, and evaluation functions have a form of
Java methods.

The language definition is also divided into composable modules. A module
is a language definition unit, that contains several language elements with their
declaration and implementation. A language based on the generic syntax can be
constructed from one or several modules.

6.1 Syntax

A language that is designed only as a host language for other languages cannot
define concrete language structures. These are provided by guest languages. Host
language can define only basic simple structures (like symbol or number literal)
and generic shapes that allow to create composed structures. Concrete elements
of a guest language must be defined as a specializations of these shapes. Result of
parsing in case of host language is then a skeleton syntax tree.

Well-known examples of generic host languages include XML [6] and S-exp-
ressions [26]. However, both these languages have a significant disadvantage in
readability. While XML syntax is too noisy [31], S-expressions are too uniform
making it difficult to visually distinguish different language structures.

For this reason the syntax of the proposed host language was designed to make it
flexible and yet easily readable. It includes several shapes for common structures (see
Figure 5). Two of them are data structures: lists and maps (associative arrays), and
other two are control structures that allow to express structure of code: combinations
and blocks. Combination is simply a sequence of language elements written on the
same line. They can be nested using parentheses and by default they are interpreted
as a function or operator application. In that way they are quite similar to lists
in Lisp. On the other hand, block is a sequence of language elements written on
separate lines, but with the same level of indentation. We can see combinations as
horizontal structures and blocks as vertical ones.

Besides that, the host language defines literals for values of basic data types like
numbers, strings, and booleans. There are also symbols, that have a special role –
they are used to express names of both language elements and user defined concepts.

The concrete syntax was chosen to avoid unnecessary noise and to make its
constructs similar to popular general-purpose languages. Notation for data literals
is similar to JSON – data exchange format derived from common data structures in
JavaScript [7].

Syntax for combinations is similar to function application in Haskell or a list
in Lisp (but with parentheses only for nested combinations). Additionally, infix
notation is supported – symbols constructed from special characters are considered
as operators and combinations with infix operators are translated into combination

96 S. Chodarev, J. Kollár

Language Elements

Structures

Lists
[1, 2, 3]

Maps
{a: 1, b: 2}

Data Structures

Combinations
add 1 2

Blocks
if (a > b):

foo x
bar y

Control Structures

Numbers
3.14

Strings
"hello"

Booleans
true

Symbols
alpha

Atoms

Figure 5. Elements of the proposed generic host language

with operator in the first position. Blocks are defined using indentation, similarly
to Haskell or Python. This makes scripts concise and clean.

In Figure 6 you can see the specification of context free grammar of the pro-
posed host language in extended BNF (braces represent repetition of an element 0
to n times). Special lexical symbols INDENT and DEDENT denote the increase
and decrease of line indentation level.

block ::= { expression NEWLINE | expression-with-block }
expression ::= combination { operator combination }
expression-with-block ::= combination ‘:’ NEWLINE INDENT block DEDENT

combination ::= term { term }
term ::= literal | ‘(’ expression ‘)’

literal ::= symbol | string | number | boolean | list | map | ‘none’

boolean ::= ‘true’ | ‘false’

list ::= ‘[]’ | ‘[’ expression { ‘,’ expression } ‘]’

map ::= ‘{}’ | ‘{’ key-value { ‘,’ key-value } ‘}’

key-value ::= symbol ‘:’ expression

Figure 6. Grammar of the proposed generic host language

Extensible Host Language for DSLs 97

6.2 Evaluation

As we have said, the programming language is defined as a set of sentences that can
be constructed using some alphabet. Usually, the alphabet is simply a set of ASCII
or Unicode characters. However, if we define lexical analysis as a separate step, we
can say that the alphabet is formed by the whole lexical units.

In case of languages based on a generic language, the alphabet consists of the
elements or shapes (composed elements) of the generic language, for example S-ex-
pressions or XML elements. In Figure 7 you can see the example sentence written
as S-expression and its division into basic units that can be considered as units of
the alphabet.

(l i s t 1 2 (l i s t 3 4))

(l i s t 1 2 (l i s t 3 4))

l i s t

1 2 l i s t

3 4

a)

b)

c)

Figure 7. Different views on language alphabet: a) characters, b) lexical units, c) generic
language elements

What is important, the elements of the generic language alphabet are not orga-
nized in a sequence, but they have a hierarchical structure – they form a skeleton
syntax tree. These structured elements are then used as a basis for definition of new
languages.

To define a language based on the generic host syntax, it is needed to specify
a set of language elements and their properties. Every language element in XHL is
represented using a symbol. These symbols can occur in a program. In case where
element symbol is the first item of a combination, the rest of the combination is
considered as arguments of element application, including a block, that may follow
a combination.

The processing of a program consists of several steps, where each step receives
results of the previous one:

1. syntactical analysis (producing a skeleton syntax tree),

2. static checking (producing an enriched SST),

3. evaluation (potentially producing a model of the program or other representa-
tion),

4. execution of the model (if it was produced).

98 S. Chodarev, J. Kollár

6.3 Evaluation Functions

Every application of language element in a program is processed by its evaluation
function. Arguments of the application are passed as arguments to the evaluation
function and a return value of the function becomes the result of application. In
XHL, evaluation functions are implemented in the Java language as methods of
an object corresponding to a language module. During the evaluation, a module
instance is created and for each application of language element, corresponding
method is executed using Java reflection mechanism.

For example, in Figure 8 an evaluation function for addition operator is pre-
sented. Evaluation functions are marked with special annotation @Element with
optional parameter for element name (for cases where it does not match the method
name). If program code would include the combination like “1 + 2”, the evaluation
function would be executed with arguments 1 and 2 and would compute the result
of the expression.

@Element(name = "+")

public Double plus(Double arg1, Double arg2) {

return arg1 + arg2;

}

Figure 8. Evaluation function for addition operator

If some combination is part of another combination (e.g. f (g 1)), the result
from the evaluation function of the inter element is passed as an argument to the
evaluation function of the outer element.

Although the evaluation function is implemented as a method, it have several
special properties:

1. It can process code of its parameters instead of evaluating them.

2. It can manipulate the environment of evaluation that contains bindings of pro-
gram names.

3. It can return a special object instead of the value that will be evaluated on
request or will generate code corresponding to the operation in a target language.

The control over the evaluation of arguments is based on the fact that arguments
of evaluation function can be passed using one of the two modes:

1. By value, where an element representing the argument is evaluated (using its
evaluation function) and the result is passed to the evaluation function.

2. Symbolically, where the evaluation function receives code of an element repre-
senting the argument as a fragment of the skeleton syntax tree.

These properties allow evaluation functions to flexibly evaluate instances of lan-
guage elements in a program. They can also introduce and manipulate names in

Extensible Host Language for DSLs 99

a program and implement custom evaluation strategies using the ability to process
code of parameters.

Example in Figure 9 presents evaluation function for the define element that
allows to define named constants. It has two parameters – the name to be defined
and the value that would be assigned to the name. The first parameter is marked
as symbolic, it cannot be evaluated since the name should not be defined yet. The
function is also an example of a manipulation with the environment – it defines
a new binding using the putSymbol method. Evaluation function could also create
a new environment for local variables.

@Element

public void const(@Symbolic Symbol symbol, Double value)

throws EvaluationException {

if (evaluator.hasSymbol(symbol))

throw new EvaluationException(symbol.getPosition(),

String.format("Symbol %s is already defined", symbol));

evaluator.putSymbol(symbol, value);

}

Figure 9. Evaluation function for define element

6.4 Schema

It is useful to perform checking of a program before its evaluation, especially in
cases where evaluation includes complex computations or has side effects. Static
checking can be performed even interactively while a programmer is writing code.
The checking system is based on properties of a language and its elements specified
in the language schema.

Language schema provides description of language elements defined by a partic-
ular module. It is described using a language that is itself based on XHL. Schema
contains a list of all elements and their properties including:

• Type of the value produced by the element.

• Parameters – their type and passing method (by value or symbolically).

• Symbols defined by element application.

• Human-readable description of the language element.

Example of the language schema declaring two elements from previous examples
is in Figure 10. Element “+” is an operator with two numeric parameters that are
passed by a value. Operator produces a numeric value as a result. Second declara-
tion describes element “const”, used to define a numeric constant. Its parameters
are a symbol that would be bound, and a value. First parameter must be passed
symbolically, because at the point of element application it cannot be evaluated.

100 S. Chodarev, J. Kollár

The defines section says that the element binds a symbol that is given as its first
argument to the value of type Numbers.

element (+):

doc "Add two numbers."

params [val Number, val Number]

type Number

element const:

doc "Define a numeric constant."

params [sym Symbol, val Number]

defines 1 Number

Figure 10. Example of language schema definition

Static checking is based on the type system. An element has specified its type
and types of expected parameters. Language schema also declares what new names
are defined by each language element and what are types of objects bound to these
names. Relation of generalization between types can also be specified. The va-
lidity of a program is then checked based on the compatibility of types of nested
elements.

Language schema is a source of knowledge about the language the use of which is
not limited to the static checking. One of the other uses of the knowledge is an inter-
active help system in a development environment. It can display the documentation
for language elements and also provide the automatic completion of code.

6.5 Composition

Presented approach supports composition of languages based on the provided frame-
work by the way of composing language concepts. Language module can import
selected concepts from other modules. By this way both language extension and
language unification according to [10] are supported, as well as composition of exten-
sions. In case of extension, a new language would add concepts to existing language,
or it may also replace existing concepts or remove them. In case of unification, uni-
fied languages are imported as modules into a new language and interconnecting
concepts are added.

The composition is, however, limited on the level of semantics of language
elements. Since semantics is expressed using evaluation functions in the general-
purpose language, it cannot be easily altered. This means that the element definition
must be replaced with a new one in cases where its modification is required.

Another issue is interconnection of composed elements. XHL provides three way
of communication for evaluation functions:

1. values passed as arguments and results of application,

Extensible Host Language for DSLs 101

2. evaluation environment – assignment of values to names in program,

3. internal environment – internal state of a module.

The third one poses potential problem for composition because internal environ-
ment may not be accessible for other modules and therefore their communication
would not be possible. To enable composition, modules should define complete
interface for accessing their internal state.

7 EXPERIMENTS

A prototype of the system based on presented concepts, with Java language as
an implementation language and a language for definition of evaluation functions,
was used to implement several experimental domain-specific languages. There we
present two of them to illustrate the use of proposed approach.

7.1 State Machine Language

The state machine language is based on the example from [16]. It allows to define
events, commands and states. Each state can execute some commands and allows
transitions to different states on specified events.

An example program in the language is presented in Figure 11. You can see that
events and commands are defined inside corresponding blocks. A colon operator (:)
is used to connect event (or command) name and its code. The colon there is used
as a language element in a form of infix operator that binds a new object to a name
in the evaluation environment2. The elements events and commands each define its
own version of the colon operator locally inside a block. State definition also uses
a block and the arrow operator (->) to express transitions.

You can see a fragment of the language schema in Figure 12. Notice a nested
element declaration (the colon operator inside the events element). This is used to
declare local elements that will be accessible only inside a block defined by the outer
element.

The schema also contains information about new names defined by the elements.
For example, the colon operator defines a global name corresponding to its first
parameter for an object of type Event. The state element also defines a new name,
but in this case it is defined backward. This means that the name can be used in
a program before its declaration. Language implementation can retrieve a list of all
backward defined symbols and initialize them in the beginning of the evaluation.

A fragment of the implementation is presented in Figure 13. It shows evaluation
functions for elements state and ->. The implementation of evaluation functions
is very simple. Most of them only alter internal processing state in some way to
construct the model representing the state machine.

2 While the colon can be used as custom operator, it is also a part of the host language
syntax – it is used to introduce blocks and to separate key from value in maps.

102 S. Chodarev, J. Kollár

events:

doorClosed: "D1CL"

drawOpened: "D2OP"

lightOn: "L1ON"

doorOpened: "D1OP"

panelClosed: "PNCL"

resetEvents [doorOpened]

commands:

unlockPanel: "PNUL"

lockPanel: "PNLK"

lockDoor: "D1LK"

unlockDoor: "D1UL"

state idle:

actions [unlockDoor, lockPanel]

doorClosed -> active

state active:

drawOpened -> waitingForLight

lightOn -> waitingForDraw

state waitingForLight:

lightOn -> unlockedPanel

state waitingForDraw:

drawOpened -> unlockedPanel

state unlockedPanel:

actions [unlockPanel, lockDoor]

panelClosed -> idle

Figure 11. Example program in the state machine language

newtype State

newtype Event

newtype Command

element events:

params [val Block]

element (:):

params [sym Symbol, val String]

defines_global 1 Event

element state:

params [sym Symbol, val Block]

defines_backward 1 State

element (->):

params [val Event, val State]

Figure 12. Fragment of the state machine language schema

Extensible Host Language for DSLs 103

public class StateMachineModule extends GenericModule {

private Event[] resetEvents = null;

private State startState = null;

private State currentState = null;

@Element

public void state(@Symbolic Symbol name, @Symbolic Block blk) {

currentState = (State) evaluator.getSymbol(name);

evaluator.eval(blk);

if (startState == null)

startState = currentState;

currentState = null;

}

@Element(name = "->")

public void transition(Event trigger, State target) {

currentState.addTransition(trigger, target);

}

Figure 13. Fragment of the state machine language implementation

7.2 Entities Language

Another developed language provides an example of the composition of language
libraries. The language allows to define entities and their properties. It also pro-
vides a way to define validation rules as boolean expressions. The language includes
modules providing relational and logical operators. In this case, the result of pro-
gram evaluation is the generated Java code containing classes representing specified
entities.

The example program in the entities language is presented in Figure 14. It
defines two entities: Employee and Department and lists their properties with types.
Definition also contains validation constraints on length of some properties.

The language implementation defines only a few elements such as module, entity,
or validate and property types like int and string. Operators used in validation
rules are imported from external modules. An exception is the length function that
provides values for operators to work on.

Validation expressions cannot be evaluated in the time of the DSL program
evaluation, since they operate on values that would be known only at the stage of
execution of the generated code. This means, that the result of validation rules
evaluation would be the generated Java code representing these expressions. This
requires to use evaluation on request, where language elements do not execute their
corresponding operations, but instead return special objects, called producers, con-
taining all operation parameters and a method for evaluation of the operation. These
objects also provide a method for generation of Java code corresponding to the op-
eration.

104 S. Chodarev, J. Kollár

module company:

entity Employee:

id : int

name : string

role : string

worksAt : Department

validate:

(length name < 20) & (length name > 0)

entity Department:

id : int

description : string

validate:

length description < 20

Figure 14. Example of a program defining entities a validation rules

Actually, most of the elements from language libraries (reusable language mod-
ules) return producers instead of values. This allows libraries to be used in both
cases: where direct evaluation is needed and also for the code generation. At the
same time, if other language elements expect result of the evaluation, producers
are transparently evaluated by the framework. Other way round, if an element ex-
pects a producer, but receives a value, it is automatically wrapped – a new constant
producer is created based in the specified value.

An example of this technique is presented in the implementation of the length
element in Figure 15. It returns a special object implementing the Producer interface
with toCode method for code generation.

8 RELATED WORKS

The goal of the proposed framework is to simplify development of domain-specific
languages compared to external DSLs by leaving out the need to specify details of
concrete syntax. It also allows the composition of languages and reuse of their parts
thanks to the common concrete syntax and evaluation system.

However, several other tools and techniques exist with similar goals. First of all,
there are language workbenches that provide integrated development environments
for development of languages and for the use of the languages [15]. Some of them,
like Intentional Workbench [34] and JetBrains MPS [9], use projectional editing.
Projectional editing allows composition of languages and language libraries, because
it avoids problems of grammar composition [39]. On the other hand, it does not
allow to use existing tools expecting textual representation of the code, like revision
control systems.

Graphical modeling tools like MetaEdit+ [36] are in the similar position as
language workbenches, because they use projectional editing with graphical repre-
sentation. Multilevel language infrastructure approach [2] even provides support

Extensible Host Language for DSLs 105

public class EntityModule extends GenericModule {

...

@Element

public Producer<Double> length(Attribute attr) {

return new LengthProducer(attr);

}

public static class LengthProducer implements Producer<Double> {

public final Attribute attr;

public LengthProducer(Attribute attr) { this.attr = attr; }

@Override

public Double toValue() {

throw new UnsupportedOperationException("...");

}

@Override

public String toCode() { return attr.getName() + ".size()"; }

}

}

Figure 15. Evaluation function for the length element

for self-extension by allowing to define new concept types in a modeling language
itself.

There are also language workbenches that are based on textual representation
of programs, for example Spoofax [21] and Xtext [12]. They provide tools to de-
fine syntax and semantics of a language and its editor with support for language
composition. In contrast to this, the proposed framework does not require to de-
fine concrete syntax of a language. This makes language definition simpler, but at
the same time less flexible. More detailed discussion of composition in language
workbenches is provided in [39].

Composition of languages is also supported by other language processor gener-
ators including Lisa that supports composition based on multiple attribute gram-
mar inheritance [27, 29]. A language specification can inherit from several exist-
ing languages and inherited properties can be extended or overridden. The use of
attribute grammar to express language semantics allows to easily modify seman-
tic rules in language extensions. In contrast to this, in our approach evaluation
functions that describe semantics cannot be altered and must be replaced in or-
der to change their behavior. On the other hand, definition of languages based
on the generic syntax leads to reuse of lexical and basic syntactic rules across all
languages.

Another example is YAJCo parser generator [33] which uses object model as
a basis for language definition. A model is implemented using Java classes with
annotations that specify concrete syntax and other properties of language element.
Composition of languages is therefore based on the object composition, while ap-
proach presented in this paper is based on functional composition.

106 S. Chodarev, J. Kollár

There is another proposal for generic language called Gel [13]. It defines rich
generic syntax similar to existing languages like Java or CSS. However, it is focused
only on the syntax and does not propose tools for language definition and processing.
Even though the Gel syntax is much richer than our proposal which also makes it
more complex, it could also be used as a syntactic basis in our approach.

In addition, this paper discusses the problem of language composition that was
covered also in [10, 39]. Our work adds the notion of concept composition and its
relation with the composition of languages.

9 CONCLUSION

In this paper we presented our proposal of a new language development approach
based on the use of concept composition and generic syntax. For this reason a con-
siderable attention was given to the language and concept composition problem.

First of all, we presented a definition of language composition that should clarify
the use of the term. We also analyzed and classified concept composition approaches
and discussed the relation between composition of languages and concepts.

Presented knowledge was used to propose a new approach for DSL development
based on common generic syntax and functional composition. It allows to define
a language as a collection of elements. Elements are grouped in modules that can
be included in other languages as language libraries.

For the purpose of presented approach the new generic host language was de-
signed. Although it is based on elements used in common programming languages,
it generalizes them to allow flexible definition of new languages.

A new approach for evaluation was designed based on evaluation functions in
the implementation language. They have the metaprogramming capabilities includ-
ing the possibility to manipulate directly with the program code and to evaluate
operations on request and in different ways depending on actual context. Proposed
concept also includes a system for static checking of programs based on properties
of the elements defined in the language schema.

The approach was demonstrated on example languages developed using the pro-
totype of the proposed framework. They show that it is possible to modularize
language definition based on the proposed approach and to use defined language
modules in languages with different evaluation models.

Limitations of the approach are fixed syntax that would not be suitable for
every domain and the way of semantic definition that does not allow an extension
of already defined concepts, but only their replacement.

Our further research in this area may include development of additional tools
for language processing and use including development environment [18]. It may
be also possible to automatize the creation of semantic model from the language or
even consider different, more declarative, way of the semantic definition.

Other goal is to raise the expressive power of the language schema by support-
ing more constraints that would check validity of programs and therefore allowing

Extensible Host Language for DSLs 107

more precise declarative specification of language properties. This would allow more
precise static and also dynamic checking of programs.

Acknowledgement

This work was supported by project VEGA 1/0341/13 “Principles and methods of
automated abstraction of computer languages and software development based on
the semantic enrichment caused by communication”.

REFERENCES

[1] Apple Inc.: Blocks Programming Topics. 2011, Available on: http:

//developer.apple.com/library/mac/documentation/Cocoa/Conceptual/

Blocks/Blocks.pdf.

[2] Atkinson, C.—Gutheil, M.—Kennel, B.: A Flexible Infrastructure for Mul-
tilevel Language Engineering. IEEE Transactions on Software Engineering, Vol. 35,
2009, No. 6, pp. 742–755.

[3] Bachrach, J.—Playford, K.: D-Expressions: Lisp Power, Dylan Style. 1999,
Available on: http://people.csail.mit.edu/jrb/Projects/dexprs.pdf.

[4] Bravenboer, M.—Visser, E.: Designing Syntax Embeddings and Assimilations
for Language Libraries. In: Giese, H. (Ed.): Models in Software Engineering. Work-
shops and Symposia at MoDELS 2007. Springer Heidelberg, Lecture Notes in Com-
puter Science, Vol. 5002, 2008, pp. 34–46.

[5] Bravenboer, M.—Visser, E.: Parse Table Composition. Separate Compilation
and Binary Extensibility of Grammars. In: Gasevic, D., van Wyk, E. (Eds.): Software
Language Engineering (SLE 2008), Springer Heidelberg, Lecture Notes in Computer
Science, Vol. 5452, 2009, pp. 74–94.

[6] Bray, T.—Paoli, J.—Sperberg-McQueen, C.—Maler, E.—Yergeau, F.:
Extensible Markup Language (XML) 1.0. 1998.

[7] Crockford, D.: The Application/JSON Media Type for JavaScript Object Nota-
tion (JSON). RFC 4627 (Informational), July 2006. Available on: http://www.ietf.
org/rfc/rfc4627.txt.

[8] De Meuter, W.: Monads as a Theoretical Foundation for AOP. International Work-
shop on Aspect-Oriented Programming at ECOOP, Vol. 25, 1997, pp. 31–36.

[9] Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
November 2004. Available on: http://www.jetbrains.com/mps/docs/Language_

Oriented_Programming.pdf.

[10] Erdweg, S.—Giarrusso, P. G.—Rendel, T.: Language Composition Untangled.
Proceedings of Workshop on Language Descriptions, Tools and Applications (LDTA),
2012, Article No. 7.

[11] Erdweg, S.—Rendel, T.—Kästner, C.—Ostermann, K.: SugarJ: Library-
Based Syntactic Language Extensibility. Proceedings of Conference on Object-

108 S. Chodarev, J. Kollár

Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2011,
ACM, pp. 391–406.

[12] Eysholdt, M.—Behrens, H.: Xtext: Implement Your Language Faster Than
the Quick and Dirty Way. Proceedings of the ACM SIGPLAN International Confer-
ence on Object Oriented Programming Systems, Languages and Applications (OOP-
SLA ’10), The ACM SIGPLAN Conference on Systems Programming Languages and
Applications: Software for Humanity (SPLASH ’10), ACM, 2010, pp. 307–309.

[13] Falcon, J.—Cook, W. R.: Gel: A Generic Extensible Language. Proceedings
of the IFIP TC 2 Working Conference on Domain-Specific Languages (DSL 2009),
Springer-Verlag, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 5658,
2009, pp. 58–77.

[14] Filman, R. E.—Friedman, D. P.: Aspect-Oriented Programming Is Quantification
and Obliviousness. Technical report, RIACS, 2000. Available on: http://www.riacs.
edu/research/technical_reports/TR_pdf/TR_01.12.pdf.

[15] Fowler, M.: Language Workbenches: The Killer-App for Domain Spe-
cific Languages? 2005. Available on: http://martinfowler.com/articles/

languageWorkbench.html.

[16] Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 2010.

[17] Fowler, M.—Scott, K.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language. 2nd Ed. Addison-Wesley, Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[18] Henriques, P.—Pereira, M. J. V.—Mernik, M.—Lenic, M.—Gray, J.—
Wu, H.: Automatic Generation of Language-Based Tools Using the Lisa System.
IEEE Proceedings – Software, Vol. 152, 2005, No. 2, pp. 54–69.

[19] Hudak, P.: Modular Domain Specific Languages and Tools. Proceedings of the
5th International Conference on Software Reuse (ICSR ’98), IEEE Computer Society,
1998, pp. 134–142.

[20] Johnson, S.: Yacc: Yet Another Compiler-Compiler. Technical report, Bell Labo-
ratories Murray Hill, NJ, 1978.

[21] Kats, L. C. L.—Visser, E.: The Spoofax Language Workbench. Rules for Declar-
ative Specification of Languages and IDEs. Proceedings of the ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’10), ACM, 2010, pp. 444–463.

[22] Kats, L. C. L.—Visser, E.—Wachsmuth, G.: Pure and Declarative Syntax Defi-
nition: Paradise Lost and Regained. Proceedings of the ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’10), ACM, 2010, pp. 918–932.

[23] Kiczales, G.—Lamping, J.—Mendhekar, A.—Maeda, C.—Lopes, C.—
Loingtier, J.-M.—Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Mat-
suoka, S. (Eds.): Object-Oriented Programming (ECOOP ’97), Springer Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 1241, 1997, pp. 220–242.

[24] Kosar, T.—Oliveira, N.—Mernik, M.—Pereira, M. J. V.—Črepin-
šek, M.—da Cruz, D.—Henriques, P. R.: Comparing General-Purpose and

Extensible Host Language for DSLs 109

Domain-Specific Languages: An Empirical Study. Computer Science and Informa-
tion Systems, Vol. 7, 2010, No. 2, 247–264.

[25] Krahn, H.—Rumpe, B.—Völkel, S.: Monticore: Modular Development of Tex-
tual Domain Specific Languages. In: Paige, R. F., Meyer, B., Aalst, W., Mylopou-
los, J., Rosemann, M., Shaw, M. J., Szyperski, C. (Eds.): Objects, Components, Mod-
els and Patterns, Springer Berlin Heidelberg, Lecture Notes in Business Information
Processing, Vol. 11, 2008, pp. 297–315.

[26] McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part I. Communications of the ACM, Vol. 3, 1960, No. 4,
pp. 184–195.

[27] Mernik, M.: An Object-Oriented Approach to Language Compositions for Soft-
ware Language Engineering. Journal of Systems and Software, Vol. 86, 2013, No. 9,
pp. 2451–2464.

[28] Mernik, M.—Heering, J.—Sloane, A. M.: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys (CSUR), Vol. 37, 2005, No. 4,
pp. 316–344.

[29] Mernik, M.—Žumer, V.: Incremental Programming Language Development. Com-
puter Languages, Systems & Structures, Vol. 31, 2005, No. 1, pp. 1–16.

[30] Moggi, E.: Notions of Computation and Monads. Information and Computation,
Vol. 93, 1991, No. 1, pp. 55–92.

[31] Parr, T.: Humans Should Not Have to Grok XML. 2001, Available on: http:

//www-106.ibm.com/developerworks/xml/library/x-sbxml.html.

[32] Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007.

[33] Porubän, J.—Forgáč, M.—Sabo, M.—Běhálek, M.: Annotation Based
Parser Generator. Computer Science and Information Systems, Vol. 7, 2010, No. 2,
pp. 291–307.

[34] Simonyi, C.—Christerson, M.—Clifford, S.: Intentional Software. Proceed-
ings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’06), ACM, 2006, pp. 451–464.

[35] Spinellis, D.: Notable Design Patterns for Domain-Specific Languages. Journal of
Systems and Software, Vol. 56, 2001, No. 1, pp. 91–99.

[36] Tolvanen, J.-P.—Pohjonen, R.—Kelly, S.: Advanced Tooling for Domain-
Specific Modeling: Metaedit. Proceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling (DSM ’07), 2007.

[37] van Deursen, A.—Klint, P.—Visser, J.: Domain-Specific Languages: An An-
notated Bibliography. SIGPLAN Notices, Vol. 35, 2000, pp. 26–36.

[38] Voelter, M.: From Programming to Modeling – and Back Again. IEEE Software,
Vol. 28, 2011, pp. 20–25.

[39] Voelter, M.: Language and IDE Modularization, Extension and Composition with
MPS. Pre-Proceedings of Summer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE), 2011, pp. 395–431.

[40] Voelter, M.—Visser, E.: Language Extension and Composition with Language
Workbenches. Proceedings of the ACM SIGPLAN International Conference on Object

110 S. Chodarev, J. Kollár

Oriented Programming Systems, Languages and Applications (OOPSLA ’10), The
ACM SIGPLAN Conference on Systems Programming Languages and Applications:
Software for Humanity (SPLASH ’10), ACM, 2010, pp. 301–304.

[41] Ward, M. P.: Language-Oriented Programming. Software, Concepts and Tools,
Vol. 15, 1994, No. 4, pp. 147–161.

Sergej Chodarev is Assistant Professor of informatics in the
Department of Computers and Informatics, Faculty of Electri-
cal Engineering and Informatics, Technical University of Košice,
Slovakia. He received his M.Sc. degree in computer science in
2009 and his Ph.D. degree in computer science in 2012. The sub-
ject of his research includes domain-specific languages, metapro-
gramming and programming paradigms.

Ján Koll�ar is Full Professor of Informatics in the Department
of Computers and Informatics, Technical University of Košice,
Slovakia. He received his M.Sc. summa cum laude in 1978 and
his Ph.D. degree in computer science in 1991. In 1978–1981
he worked with the Institute of Electrical Machines in Košice.
In 1982–1991 he worked with the Institute of Computer Sci-
ence at P. J. Šafárik University in Košice. Since 1992 he is with
the Department of Computers and Informatics at the Technical
University of Košice. In 1985 he worked 3 months in the Joint
Institute of Nuclear Research in Dubna, USSR. In 1990 he spent

2 months at the Department of Computer Science at Reading University, UK. He was
involved in research projects dealing with real-time systems, the design of microprogram-
ming languages, image processing and remote sensing, dataflow systems, implementation
of programming languages, and high performance computing. He is the author of process
functional programming paradigm. Currently his research area covers formal languages
and automata, programming paradigms, implementation of programming languages, func-
tional programming, and adaptive software and language evolution.

