
Computing and Informatics, Vol. 35, 2016, 391–410

PROPAGATION-BASED BICLUSTERING ALGORITHM
FOR EXTRACTING INCLUSION-MAXIMAL MOTIFS

Patryk Orzechowski

AGH University of Science and Technology, Kraków
Faculty of Electrical Engineering, Automatics, Computer Science
and Biomedical Engineering
Department of Automatics and Biomedical Engineering
e-mail: patrick@agh.edu.pl

Krzysztof Boryczko

AGH University of Science and Technology, Kraków
Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science
e-mail: boryczko@agh.edu.pl

Abstract. Biclustering, which is simultaneous clustering of columns and rows in
data matrix, became an issue when classical clustering algorithms proved not to
be good enough to detect similar expressions of genes under subset of conditions.
Biclustering algorithms may be also applied to different datasets, such as medical,
economical, social networks etc. In this article we explain the concept beneath
hybrid biclustering algorithms and present details of propagation-based biclustering,
a novel approach for extracting inclusion-maximal gene expression motifs conserved
in gene microarray data. We prove that this approach may successfully compete
with other well-recognized biclustering algorithms.

Keywords: Biclustering, bioinformatics, pattern matching, data mining, microar-
ray gene expression data, conserved gene expression motifs

392 P. Orzechowski, K. Boryczko

1 INTRODUCTION

Discovering group of genes responsible for different processes remains one of the
challenges in genetics. DNA microarrays usually comprise expression levels of thou-
sands of genes under hundreds of conditions. The values of gene expression data
are real numbers, usually the logarithms of the relative abundance of gene’s mRNA
under the specified condition. Similar expression patterns of genes are evidence of
their similar function. Isolated gene does not control any biological function by
itself, usually a set of genes is responsible for its management.

Biclustering is one of data mining techniques that proves to be extremely useful
in detecting local patterns in gene microarray datasets. In contrast to classical
clustering algorithms, biclustering algorithms are designed to take into account rows
and columns simultaneously. The object of interest are local patterns, i.e. gene
expression level under subset (but not all) conditions [27]. Clustering algorithms may
only distinguish genes by their response to all conditions, or differentiate conditions,
by analysing whole gene expression profile.

Several studies have already been conducted in the subject of biclustering [23].
Different bicluster types and naming conventions have been proposed in [18]. De-
tailed comparison of algorithms and their applications to specific problems has been
conducted in [5]. Out of multiplicity of biclustering methods, sole basis of biclus-
tering could be narrowed to the following ones: Cheng and Church [4], Plaid [16],
SAMBA [31], OPSM [2], xMotif [21], Spectral Biclustering [15], ISA [14], Bimax [27],
BBC [9], QUBIC [17] and FABIA [11].

In this article, we present a novel biclustering technique that combines strengths
of two algorithms: speed of Bimax and applicability of xMotif. The proposed
method, based on propagation of information through data matrix, has been suc-
cessfully applied to a couple of biological [24] and text datasets [25]. Our method
may be considered as a basis for further experiments that will improve bicluster-
ing quality by omitting (substantially overlapping) biclusters. The flexibility of the
approach allows to construct more advanced methods tailored to specific proposes
that could challenge well-esteemed biclustering methods.

2 MOTIVATION

With multiplicity of existing biclustering approaches almost every novel bicluster-
ing algorithm to some extent retains similarity to the previously developed methods.
This resemblance usually involves reuse of existing mechanisms (i.e. classifiers, met-
rics etc.) or adaptation of some concepts (such as techniques, motivation) of other
algorithms, but in an unusual manner. Thus, many novel solutions are inspired by
existing ones and merge underneath some of their strategies.

Realizing this fact lied upon the emergence of hybrid biclustering algorithms.
These are the methods which reinvent the development process of new algorithms, as
they require understanding the benefits and drawbacks of each of the components

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 393

of merged mechanisms beforehand. Combining existing mechanisms requires also
attention, as the resulting algorithm doesn’t necessarily lead to better solutions.

One of the representatives of hybrid biclustering algorithms is Propagation-
Based Biclustering Algorithm (PBBA), which has been proposed herein. The al-
gorithm combines two different approaches: detecting a similar pattern for a set
of genes, called xMotif [21], and finding inclusion-maximal biclusters [27]. Our ap-
proach may be considered as an aggregated approach, as it uses in a some of features
of both algorithms.

The definition and classification of biclusters as well as background for both
algorithms (xMotif and Bimax) are presented in this section.

2.1 Biclustering

Biclustering problem may be formulated as finding one (or a couple) of biclusters in
data matrix that meet specific homogeneity criterion. (Definition 1).

Definition 1 (Definition of bicluster). For a given dataset A = {aij}m×n with rows
X = {x1,, . . . , xn} and columns Y = {y1,, . . . , ym}, subset of rows I and subset of
columns J is called a bicluster B = (I, J) = {aij ∈ A : i ∈ I, j ∈ J} if I ⊆ X
and J ⊆ Y and rows I are similar across columns J according to a homogeneity
criterion.

Biclustering algorithms are usually designed to identify one or more of the fol-
lowing major classes of biclusters [18]:

Constant biclusters. All values within the bicluster are exactly the same.

Biclusters with constant rows (columns). In each row (column) of bicluster
values are the same. Values in different rows (columns) may differ.

Coherent biclusters (additive model). Values in each row (column) are ob-
tained by adding a constant to some other row (column).

Coherent biclusters (multiplicative model). Values in each row (column) are
obtained by multiplying some other row (column) by a constant value.

Biclusters with coherent evolutions. The elements of matrix are considered
only as categorical variables, coherent biclusters are identified regardless of the
same values in data matrix.

The aim of biclustering is to obtain a single or set of biclusters at a time. Bi-
clusters returned at each run of algorithm (or during a single run) may overlap with
each other (on rows, columns or both) or are completely separated [18]. An accept-
able compromise improving relevance of the results of Bimax algorithm allows 25 %
overlap between biclusters [5].

394 P. Orzechowski, K. Boryczko

2.2 Conserved Gene Expression (xMotif) Algorithm

Conserved gene expression motif or xMotif proposed by Murali may be considered
as a synonym for a bicluster, which is described as subset of genes simultaneously
conserved across a subset of samples [21].

Definition 2 (xMotif algorithm). Bicluster B = (R,C) needs to satisfy all the fol-
lowing conditions in order to be called xMotif:

Size. Bicluster B needs to contain at least α% of all columns (i.e. at least αm
columns), where α > 0.

Conservation. Every row R in bicluster B follows the same motif, i.e. has the same
value in each column C in bicluster. Values in different columns may differ.

Maximality. Outside the bicluster B, the motif may be localized in at most β
percent of the number of columns in B, i.e. in subset of at most βC size, where
β < 1.

The xMotif algorithm assumes a uniform distribution of data and uses the prob-
abilistic approach to find for each gene statistically significant set of states. After
randomly picking seed column and discriminating set of columns, the algorithm it-
eratively searches for rows that are in the same state in both seed and discriminating
set [21].

In its original form, xMotif algorithm is designed to identify a coherent evolution
of rows [18]. It finds constant values on rows as well [5].

2.3 Bimax Algorithm

Bimax algorithm uses divide-and-conquer strategy. Input matrix is discretized (usu-
ally with threshold equal to the mean of data [27]) and then considered as adjacency
matrix of bipartite graph consisting of columns and rows. The method finds all
inclusion-maximal biclusters, i.e. that cannot be included in any other bicluster
(refer to Definition 3 for details).

Definition 3 (Inclusion maximal bicluster). The pair of rows R and columns C
forming a bicluster B = (R,C) ∈ 21,...,n × 21,...,m within binary matrix A = [aij]m×n
is called an inclusion-maximal bicluster if and only if ∀i ∈ R, j ∈ C : a(i, j) = 1
and 6 ∃(R′, C ′) ∈ 21,...,n × 21,...,m : ∀i′ ∈ R′, j′ ∈ C ′ : a(i′, j′) = 1 ∧ R′ ⊇ R ∧ C ′ ⊇
C ∧ (R′, C ′) 6= (R,C)

Bimax algorithm divide set of columns according to first pattern to Cu and Cv.
Then rows are resorted to form matrix U of rows responding only to conditions
within Cu (and not within Cv), and matrix V with rows responding to conditions
within both Cu and Cv plus rows responding to conditions Cv only. After decompo-
sition, the algorithm is executed recursively for matrices U and V (Figure 1).

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 395

U

GU

GV

GW

CU CV

V

Figure 1. Schema of Bimax algorithm. Discretized matrix A is divided into two matrices U
and V on which the algorithm is executed recursively

Bimax is limited to finding only constant upregulated biclusters. It has a rea-
sonable running-time complexity of order O(nmβmin(n,m)), where β is number of
all inclusion-maximal biclusters in A. Bimax is considered as fast and more noise
resilient than other biclustering algorithms [5]. Yet, there are some limitations con-
cerning its application.

Low discretization parameter value may result in excessive computation time
and producing millions of biclusters [6]. No filtering procedure results in many
spurious and overlapping biclusters that would impoverish the relevance score.

3 PROPOSED APPROACH

In this section, we expand Definition 3 of inclusion-maximal bicluster and introduce
preprocessing technique called vicinity transformation. Properties of vicinity trans-
formation are presented as well as definition of propagation-based biclustering is
proposed.

3.1 Pattern-Inclusion-Maximal Biclusters

Our model adapts and extends definition of inclusion-maximal bicluser proposed by
Prelić [27]. Noteworthy, that inclusion-maximal bicluster is only a special case of
pattern-inclusion-maximal bicluster, when all columns of bicluster have equal values
to each other.

396 P. Orzechowski, K. Boryczko

Definition 4 (Pattern inclusion-maximal bicluster). The pair of rows R and the
pair of columns C forming a bicluster B = (R,C) ∈ 21,...,n×21,...,m within real matrix
A = [aij]m×n is called an pattern inclusion-maximal bicluster with respect to pattern
v = (v1, v2, . . . , vm) if and only if ∀i ∈ R, j ∈ C : aij = vi and 6∃(R′, C ′) ∈ 21,...,n×
21,...,m : ∀i′ ∈ R′, j′ ∈ C ′ : ai′j′ = vi′ ∧ R′ ⊇ R ∧ C ′ ⊇ C ∧ (R′, C ′) 6= (R,C), where
vi, vi′ ∈ 21,...,m.

In other words, Definition 4 ensures that pattern inclusion-maximal bicluster B
cannot be further expanded by adding a new column with equal value in every row
of the considered bicluster, nor by adding a new row, such that all its values remain
equal to the values in the pattern (i.e. values in columns remain equal in each row).
Moreover, it guarantees that each pattern inclusion-maximal bicluster B = (R,C) is
not a subset of any other inclusion maximal bicluster B′ = (R′, C ′) (i.e. intersections
of rows of biclusters B and B′ as well as intersection of columns of biclusters B and
B′ are not empty).

3.2 Vicinity Transformation

Vicinity transformation is a conversion of input matrix, which locates similar el-
ements across rows (columns). The approach was inspired by neural networks,
maximal flow problem [7], water flow simulations [32] and associative artificial in-
telligence [12, 13].

Definition 5 (Vicinity transformation). Vicinity transformation v of a given ma-
trix of integers A = [aij]m×n to an integer matrix B = [bij]m×n is defined as follows:

bij = v(aij) =

maxk{k : k < i : akj = aij}, aij = sj ∧ ∃k : 0 < k < i : akj = sj
i, aij = sj ∧ 6 ∃k : 0 < k < i : akj = sj
0, aij = 0.

(1)
where s = (s1, s2, . . . , sm) – is set of values characteristic for row i motif.

For each non-zero element aij vicinity transformation of the element bij = v(aij)
returns the index of the nearest row k : k ≤ i with non-zero element akj occurring in
the same column j (or its own index i, if such an element does not exist). Schema
of vicinity transformation is presented in Figure 2.

Theorem 1 (Properties of vicinity transformation). The list of the following prop-
erties results straightforwardly from the definition of vicinity transformation:

Column independence. Vicinity transformation performed on the set of columns
simultaneously is equal to performing vicinity transformation on each column
separately.

Non-negative. Vicinity transformation of each non-zero element aij is positive,
and for element v(aij) = 0 is equal to zero if and only if aij = 0:

{∀aij : aij > 0⇔ v(aij) > 0} ∧ {∀aij : aij = 0⇔ v(aij) = 0} (2)

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 397

Figure 2. Vicinity transformation. The arrows indicate the position of the nearest same
element in each column.

Reachability. If there exists a non-zero element akj in a column with lower index
than k, then the corresponding bkj element of vicinity matrix B is reachable
from every non-zero element with higher indices than k by performing finite
times iterated composition of vicinity transformation.

{∃k : 0 < k < i : akj = sj} ⇒ {∀i : i > k : aij = sj ⇔ ∃c > 0 : vc(aij) = bkj}
(3)

Termination. Iterated composition of vicinity transformation on any element aij
is finite, i.e. it finally locates the first occurrence of 1 (i.e. the one with the lowest
row index) in each column. Any further composition of vicinity transformation
returns the same element.

∀aij > 0 : ∃c > 0, k ≥ 0 : ∀p ≥ 0 : vcb(aij) = vc+p
b (akj) = k (4)

3.3 Propagation

Propagation is based on an observation that for a given set A = {a1, a2, . . . an}
its power set 2A = {∅, {a1}, {a2}, . . . , {an}, {a1, a2}, {an−1, an}, . . . , {a1, a2, . . . , an}}
could be also denoted as the union of disjoint sets: 2A = ∅ ∪ P1 ∪ P2 ∪ . . . ∪ Pn,
where Pi ∪ Pj = ∅ and Pi is a family of sets that matches the following rule: the
last element in each of its subsets is equal to ai irrespective of the cardinality of the

398 P. Orzechowski, K. Boryczko

set. For example, the third family of sets is equal to: P3 = {{a3}, {a1, a3}, {a2, a3},
{a1, a2, a3}}.

Definition 6 (Motif propagation). A family of sets is called a propagation of motif
m and denoted as Pm if each of its subsets has its uttermost element equal to m.

Propagation of seed motif to any row r could be considered as simultaneously
performing vicinity transformation on each column, until row r is reached in each
column independently. Noteworthy, that based on Theorem 1, vicinity transforma-
tion will obtain intersection of seed and r.

Theorem 2. Every intersection of row ai is a subset of Pi or is a subset of Pk,
where k > i.

Proof. Suppose there existed a set S that contained an intersection of the element
ai and had uttermost element equal to ak. If k ≤ i, basing on Definition 6, ai is the
uttermost element of S and k = i, which is false. Hence, there must be k = i or
k ≥ i and basing on the Definition 6, there must be S = Pi or S = Pk, where k > i.
which ends the proof. 2

Theorem 2 assures that all possible new inclusion-maximal biclusters containing
ai row will be generated by propagation of ai motif (apart from intersections of
ai with rows with higher index than i). Restricting intersection that have already
been found in rows with higher index and contain ai will result in obtaining all
inclusion-maximal biclusters, featuring row ai.

3.4 Propagation-Based Biclustering Algorithm (PBBA)

The proposed solution called Propagation-Based Biclustering Algorithm (PBBA)
adapts the main idea used in incremental algorithm version of Bimax, which bases
on finding all inclusion-maximal cliques in graph. Visiting each node in Bimax finds
all cliques containing the node, which involves iteration through all other nodes and
extending localized biclusters to their maximality.

The main difference between PBBA and Bimax is the type of biclusters extracted
from the input matrix. Bimax algorithm does not differentiate row patterns. In-
stead, it applies a threshold globally on the whole input matrix. All values above the
threshold are considered equal. For instance, the values in two rows of the original
input matrix may differ significantly, but if they are both above specified threshold,
they will be assigned ‘1’ by Bimax. Taking this into account, PBBA resembles xMo-
tif with the difference, that PBBA aims at identifying all possible conserved motifs
within the database, whereas xMotif does not.

The details of the algorithm have been presented in Algorithm 1 section.
The algorithm requires as input a matrix vicinity transformed according to Def-

inition 5. By iterating through all rows of the input matrix (lines 4–16 of Algo-
rithm 1), each one is regarded as a potentially new pattern. An array Mall of un-
ordered maps Mi is used to store all retrieved biclusters. Combinations of columns

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 399

Algorithm 1 Propagation-based biclustering algorithm (PBBA)

1: procedure pbba(matrix A) . A – vicinity-transformed matrix
2: Mall ← ∅ . unordered map to store all biclusters
3: Rall ← ∅ . no restriction in each of restriction sets
4: for i← n . . . 1 do . set each row as seed
5: Mi ← ∅ . store all biclusters common with ith pattern
6: Mi ← insert(Mi, Ri, B(i, Ai∗)) . adding seed to retrieved biclusters
7: mask← Ai∗ . priority queue with all column transitions from ith row
8: {lev, pat} ← next level(mask)
9: while pat 6= ∅ do . proceed through all rows similar to seed

10: Mi ← insert(Mi, Ri, B(lev ∪ i, pat)) . intersect lev with Mi

11: Rlev ← Rlev ∪ {pat} . forbid addition of any subset of pat
12: mask({j : mask(j) = lev})← v(mask(j)) . proceed to next row
13: {lev, pat} ← next level(mask)
14: end while
15: Mall ←Mall ∪Mi;
16: end for
17: print(Mall)
18: end procedure

that have already been indicated, as well as their subsets, are stored separately for
each row in Ri unordered maps. Motif propagation, described in Definition 6, is
implemented as a priority queue containing only active indices of columns, where
vicinity transformation has not reached the first similar row to pattern.

Propagation starts from seeding the first pattern (nth row), by calling insert
function (line 6). Then a vicinity transformed matrix is used to find the next
row lev with at least one element common with the i row. The next row, which
has non-empty intersection with row i is determined by extracting top elements of
priority queue within next level function (lines 8 and 13). Propagation is continued
(lines 9–14) until all rows with non-empty intersection with i row are visited.

1: function next level(mask)
2: lev ← 0 . index of next row similar to seed (top of mask priority queue)
3: pat← ∅ . similarity between seed row and lev row
4: lev ← max{j : v(mask(j)) 6= j} . highest index of row is on top of queue
5: pat← {j : v(mask(j)) = lev} . determine set of similar columns
6: return lev, pat
7: end function

Expansion of biclusters containing row i is performed in insert function. A re-
sulting set of biclusters similar to i, called Mi, is extended to its maximality by
intersecting it with subsequent rows. This is achieved in each step by adding new
sub-patterns to Mi or updating the existing ones with a new row.

400 P. Orzechowski, K. Boryczko

1: function insert(unordered map Mi, unordered map Ri, bicluster B(x, y))
2: if restricted(Ri, y) ∨ y = ∅ then
3: return∅ . empty row or all subsets already identified
4: end if
5: if Mi[y] = ∅ then . adding new bicluster: pattern or its intersection
6: Mi[y]← x
7: else
8: Mi[y]← r ∪ x
9: end if

10: for all biclusters B(r, c) : Mi do
11: col← c ∩ y
12: if (¬ restricted(Ri, col) ∧ col 6= ∅) then
13: if Mi[col] = ∅ then . find if col exists in unordered map
14: Mi[col]← x . subset of columns not found – adding
15: else
16: Mi[col]← r ∪ x . subset of columns found – updating
17: end if
18: end if
19: end for
20: return Mi

21: end function

Prior to indicating any new bicluster, we need to check if each new pattern has
not already been discovered in one of the earlier propagations. Otherwise, we might
not achieve not maximal patterns. This verification is performed within restricted
function (lines 2 and 12 of insert function).

1: function restricted(unordered map Mi, columns c)
2: for all columns k : Mi do
3: if k ⊇ c then . new biclusters will not be maximal
4: return TRUE
5: end if
6: end for
7: return FALSE
8: end function

All restrictions for ith row (i.e. intersection of ith row with the rows that prop-
agated to i) are stored within unordered map Ri. Before claiming any bicluster as
pattern inclusion-maximal, its columns are compared with keys of Ri. Only those
biclusters may be considered maximal, where propagation starts within ith row. As
the restriction set does not contain all of even 2m subsets, which may be used as
potential patterns, checking the restrictions requires verifying if the pattern is not
a subset of any of pattern contained in Ri.

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 401

After considering intersections of seed row with lev row, the intersection pattern
is considered as restricted for row lev in order to assure that non-maximal bicluster
will not be generated when lev row becomes a seed (line 11 of Algorithm 1).

PBBA does not require discretized data as input. Values may be compared per
se or be discretized into intervals (multi-level threshold). The algorithm does not
aim at finding all constant bicluster from the matrix, but similar patterns appear-
ing across columns. Achieving similar goal with Bimax algorithm would be quite
challenging: initial discretization (same for the whole input matrix) would need to
be performed separately for each row, as pattern uniqueness is an issue (that would
increase Bimax complexity by N times). If any row contained the same value in
column as the pattern, it would be given ‘1’, otherwise ‘0’. After application of
Bimax for each of N discretized datasets, an extra procedure should be executed
that would filter out not maximal or repeating (i.e. with the same columns or same
rows) biclusters.

3.5 Discussion on Algorithm Complexity

The main loop of the PBBA algorithm is executed n-times, where n is number of
rows (genes). Inner loop of an algorithm, which may be executed up to n-times,
includes execution of next level and insert function.

Function next level, which uses a priority queue of size m, involves pushing and
popping and determining the maximal element. In each iteration, all elements may
be popped and pushed back into queue (if rows are exactly the same). Access to
the top element in the queue is considered constant, the popping element is up to
twice logarithmic in size and the pushing element is considered amortized constant
(if no reallocation happens, reallocation is linear in size). Therefore complexity of
next level is Θ(logm) and in worst case O(m).

The inner loop of Insert function (lines 10-19) is executed at most σ times,
where σ is the number of pattern inclusion-maximal biclusters, associated with each
of n patterns. It involves computing intersection (line 11) and union (line 16) of
rows, which take O(m) time, and calling Restricted function.

Restricted function verifies if a pattern found in a process of propagation has not
been already discovered in earlier propagations. Restrictions are realized as an array
of unordered map. Each unordered map stores intersection of the corresponding row
with rows with higher indices. Finding if a subset does not belong to an unordered
map may be accomplished in Θ(1) time. Detecting if a pattern is not a subset of
a pattern requires iterating through all subsets of an unordered map. There may
be at most n subsets, thus it may take up to O(mn) to check column subsets of all
succeeding rows, as for each pattern column comparison is necessary.

This gives O(mnσ) for Insert function and final time complexity of O(mn3σ)
for PBBA. This means that complexity of PBBA is not far from Bimax, which has
O(mnβmin{m,n}) time complexity, where β is the number of all inclusion-maximal
biclusters in a dataset [27]. Taking into account that PBBA stores the results of
propagation separately in unordered maps we may assume β ≈ nσ.

402 P. Orzechowski, K. Boryczko

4 RESULTS

Our implementation of PBBA algorithm was written in C++ using Standard Tem-
plate Library (STL – priority queue) and Boost C++ Library (dynamic bitset, un-
ordered map). Tests involved artificial datasets as well as real microarray datasets.
For tests we used the authors’ implementation in C++ of Bimax [27]. Implementa-
tion of xMotif written in C++ was taken directly from Biorithm-1.1 package [26].
We observed that Bimax algorithm is very sensitive to implementation. In many
cases the results (number and sizes of biclusters) on 32-bits and 64-bits machines
differed. Our implementation of Bimax for 32-bits and 64-bits worked slower, be-
cause of bit-tricks used in the original implementation, but the results were exactly
the same. The algorithm xMotif required an extra input parameter, such as dis-
criminating set of columns initial assignment (‘c’ option). We assigned all columns
to one class and used default settings for further tests. Specifying different options
for the xMotif algorithm resulted in Segmentation Fault errors, though the input
was properly formatted.

4.1 Verification Test

In order to verify if the concept of algorithm is correct, a specific scenario was
considered where the input dataset is binary. The tests included a comparison of
the results yielded by PBBA and Bimax, xMotif algorithm was excluded from the
tests. For binary datasets, PBBA and Bimax should yield exactly the same set of
biclusters (possibly in a different order). The following datasets were used for tests:

• datasets in artificial scenario I and II from [27], including overlapping biclusters
and noise – 182 datasets in total

• dataset with bio-synthetic pathways of Arabidopsis thaliana [33, 27]

• two datasets of yeast cell-cycle Saccharomyces cerevisiae [8, 29] included in
BicAT-Plus package [1].

Artificial datasets from [27] involved cases of different sizes of input matrix and
different noise levels. Within each matrix, ten different biclusters (overlapping or
not) were planted. In this scenario, each of the artificial datasets was binarized with
a threshold equal to the mean of the data, similarly to [27]. Real datasets were
discretized within a threshold of 5 % in order to shorten computations. In each case,
the results obtained by PBBA (after reordering) were exact to the Bimax results.
This proved that PBBA algorithm is capable of finding inclusion-maximal biclusters.

The verification tests were performed in order to prove that PBBA algorithm
for a specific (binary) dataset yields the same results as Bimax algorithm. Therefore
Bimax algorithm may be considered as a special case of PBBA, in which the input
data is discretized.

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 403

4.2 Binary Dataset Timings

For the running time analysis of the algorithms, we used the Arabidopsis thaliana
dataset [33], provided by [27] and covered 734 rows and 69 columns. The dataset was
discretized with consecutive thresholds. For each threshold, the test was repeated
5 times, the lowest and highest results were disregarded, others were averaged. The
results of this test are presented in Table 4. For this test xMotif algorithm failed
to discover any bicluster for every threshold. The average running times for three
algorithms are presented in Table 1.

PBBA Bimax xMotif

Binary 5 %
0.305 s 0.034 s xMotif failed
2 211 biclusters to detect

Binary 10 %
2.125 s 0.257 s any bicluster
15 615 biclusters in discretized data.

Binary 15 %
17.615 s 1.788 s On row data
97 024 biclusters it worked on

Binary 20 %
122.528 s 10.905 s average 99.349 s
518 650 biclusters and found

Binary 25 %
741.137 s 64.771 s 77.0 biclusters.
2 516 709 biclusters

Table 1. Running times of algorithms per discretization threshold

We conclude that xMotif algorithm is not suitable for binary datasets. PBBA
and Bimax are very dependent on the level of binarization. The number of generated
biclusters as well as running time increase where binarization level increases.

4.3 Input Parameters Evaluation

After confirming the PBBA’s propriety, different tests were performed in order to
determine algorithm’s sensitivity for input data. As PBBA requires vicinity trans-
formed matrix as input, for real datasets, the input matrix needs to be computed
based on certain number of ranks. All values are sorted and assigned into speci-
fied number of ranks, providing approximately equal number of elements in each
rank. Then, vicinity transformation is computed, according to Definition 5. The
tests performed on Spellmen dataset included different number of ranks and differ-
ent minimal sizes of the requested bicluster. The results are presented in Table 2.
The tests show that input parameter (number of ranks) has huge impact on time of
computations as well as the number of returned biclusters.

4.4 Biological Relevance

For testing biological significance, we used two well-established databases of Sac-
charomyces cerevisiae. The Gasch database [8] originally covered 6 152 genes under

404 P. Orzechowski, K. Boryczko

Ranks Minimal size Number of Biclusters Running Time

8 levels 14× 14 100 779 14 h 51 m 58 s

8 levels 20× 20 4 1 h 16 m 37 s

10 levels 16× 16 2 221 30 m 1 s

12 levels 16× 16 622 8 m 4 s

16 levels 10× 10 41 766 14 m 54 s

16 levels 14× 14 963 2 m 8 s

20 levels 12× 12 1 899 1 m 25 s

Table 2. Number of biclusters of minimal size and running time of PBBA depending on
number of ranks for Spellman dataset

173 different conditions, but it was narrowed to 2 993 genes by removing merged,
deleted and retired genes by [1]. Similarly Spellman dataset was reduced from
6 778 down to 2 467 genes under 79 (of 82) conditions. The datasets are publicly
available within the software BicAT-Plus from http://www.bioinformatics.org/

ftp/pub/bicat-plus/. The original data was modified by background correction,
normalization and missing value imputation by [1]. For calculating biological sig-
nificance we used GeneMerge [3], which performs modified Bonferroni correction for
over-representation. We used GO ontologies provided by [1] in BicAT-Plus pack-
age.

Before providing input for PBBA algorithm, data was ranked into an arbitrary
number of steps, assuring that the input matrix has approximately the same num-
ber of elements of each value. Due to very long computation the minimal size of
a bicluster needed to be set up. For Spellman dataset, PBBA was provided with
data with 12 levels (minimal bicluster’s size: 16 × 16) and 16 levels (12 × 12), and
for Gasch with 25 levels (30× 30).

The match score of overlapping biclusters was adapted from [27] and is similar

to Jaccard index [10]: J(G1, G2) = |G1∩G2|
|G1∪G2| . It presents the number of genes common

for both biclusters, divided by number of genes appearing in any of biclusters. We
modified a standard procedure of postprocessing biclustering results used by [27,
17, 5] to filter out substantially overlapping biclusters. Instead of greedily choosing
the largest bicluster (i.e. with the largest number of genes) non overlapping with
previously selected more than 25 %, we firstly determined biological enrichment of
each biclusters and then in increasing order of p-values we accepted those biclusters
that do not overlap with others for more than 25 %.

We reckon that filtering out overlapping biclusters with p-value information pro-
vided beforehand is more objective and may take into account also those enriched
biclusters, which could be disregarded in the standard procedure. The proposed fil-
tering procedure asserts that most enriched biclusters are not lost before performing
the comparison of algorithms.

In order to compare, in terms of biological relevance, after filtering procedure for
each algorithm the 100 best biclusters were selected, similarly to [27]. Biclusters were
considered enriched if any GO term was enriched with p = 0.05 level after performing

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 405

a modified Bonferroni correction based on the number of terms by GeneMerge [3].
Figure 3 shows the proportion of filtered enriched biclusters per the different level
of significance.

Figure 3. Proportion of biclusters significantly enriched by any GO Biological Process
category for Spellman dataset

The most enriched GO terms for each of algorithms tested for Spellman dataset
are presented in Table 3 and for Gasch dataset in Table 4.

The most enriched biclusters were found by xMotif algorithm, but only 3 man-
aged to outlast a filtering procedure for overlapping biclusters in Spellman dataset.
Filtering was sustained by 25 Bimax biclusters, 10 PBBA biclusters (with Spellman
dataset discretized to 12 levels) and 27 PBBA biclusters (with data discretized to
16 levels). We conclude that xMotif algorithm returned mainly overlapping biclus-
ters. The number of ranks for the PBBA algorithm has significant impact on the
quality of the results, and the number and sizes of returned biclusters.

The running time of PBBA for the algorithms considering Spellman dataset
are still within the level of acceptance. PBBA-12 on Intel Pentium M 2 GHz with
1.5 GB RAM needed 12 minutes 12 seconds to produce 622 biclusters (of at least
16× 16 size) and PBBA-16 only 1 minute 10 seconds for 26 biclusters (16× 16) and
2 minutes 57 seconds for 963 biclusters (14×14), respectively. In comparison, Bimax
needed 6 minutes 32 seconds for computing 69 004 biclusters (min. size 16 × 16)
and xMotif 46 minutes 18 seconds to return 23 biclusters (any size of biclusters
accepted).

406 P. Orzechowski, K. Boryczko

Name p-value Functionally most enriched BP/MF/CC
of bicl.
min. size

Bimax BP: 2.443e−3 GO:0006414: translational elongation
69 004 MF: 3.550e−4 GO:0004814: arginine-tRNA ligase activity
16× 16 CC: 2.349e−3 GO:0005940: septin ring

PBBA12 BP: 3.793e−5 GO:0005981: regulation of glycogen catabolic process
622 MF: 4.636e−3 GO:0016538: cyclin-dep. protein kinase reg. activity

16× 16 CC: 6.020e−4 GO:0000307: cycl.-dep. prot. kinase holoenzyme compl.

PBBA16 BP: 1.335e−5 GO:0005981: regulation of glycogen catabolic process
963 MF: 5.365e−4 GO:0003843: 1,3-beta-glucan synthase activity

14× 14 CC: 3.073e−4 GO:0000307: cycl.-dep. prot. kinase holoenzyme compl.

xMotif BP: 2.927e−10 GO:0006412: translation
23 MF: 2.512e−13 GO:0003735: structural constituent of ribosome
all CC: 2.629e−13 GO:0005842: cytosolic large ribosomal subunit

Table 3. The most enriched GO term: Biological Process (BP), Molecular Function (MF)
and Cellular Component (CC) found by algorithms for Spellman dataset

Name p-value Functionally most enriched BP/MF/CC
bicl. #

Bimax BP: 5.339e−3 GO:0006281: DNA repair
375 935 MF: 1.475e−3 GO:0003704: specific RNA polymerase II TF activity

CC: 1.574e−2 GO:0000228: nuclear chromosome

PBBA BP: 1.481e−4 GO:0005981: regulation of glycogen catabolic process
69004 MF: 1.378e−3 GO:0004596: peptide alpha-N-acetyltransferase activity

CC: 2.054e−3 GO:0000307: cyclin-dep. prot. kinase holoenzyme complex

xMotif BP: 1.164e−15 GO:0042254: ribosome biogenesis and assembly
19 MF: 1.850e−9 GO:0003735: structural constituent of ribosome

CC: 5.146e−14 GO:0005842: cytosolic large ribosomal subunit

Table 4. The most enriched GO term: Biological Process (BP), Molecular Function (MF)
and Cellular Component (CC) found by algorithms for Gasch dataset

The number of input ranks for the algorithm as well as the minimal size of the
bicluster play a significant role in the time of computation. Overbalanced input
parameters may end up in excessive time of computations and producing millions of
biclusters, similarly to Bimax. We reckon that the proper specification of input pa-
rameters enables PBBA to easily compete in terms of running times against Bimax,
which is considered as a very fast biclustering approach [5].

5 SUMMARY

In this article, we propose theoretical background of vicinity transformation for
detecting column similarities within the input matrix. The proposed PBBA al-

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 407

gorithm, which uses vicinity transformed matrix, is able to compute all pattern
inclusion-maximal biclusters in the acceptable time.

We reckon that Bimax may be considered as a special case of PBBA for dis-
cretized input. Preparing data for PBBA may be considered as performing multi-
level threshold for real datasets. We proved that PBBA algorithm may easily extend
Bimax in terms of the flexibility as well as the quality of results. The proper setting
of PBBA input parameters makes PBBA challenge other algorithms also in the term
of speed.

PBBA, similarly to Bimax, may return a large number (hundreds of thousands
or even millions) of partially overlapping biclusters. Special procedure needs to be
performed in order to filter unique results. Computations may exceed even to hours
on Intel Xeon 2.4 GHz processor. Therefore a special caution needs to be taken when
determining the number of levels of the input data for PBBA algorithm, as well as
the size of minimal bicluster. Increasing the number of levels usually increases the
algorithm’s sensitivity, but causes a larger dispersion of biclusters and reduces the
sizes of returned biclusters.

The proposed algorithm may be successfully applied to biological data potential
and flexibility. PBBA may be regarded as a hybrid combining speed of Bimax and
the concept of conserved gene expression motif of xMotif. Further tests are required
to prove PBBA usability on different biological datasets.

Further research will include verification if a pruning procedure for propagations
may be applied in order to reduce running times of the algorithm. A separate study
on elimination of multiple overlaps should be performed. Rough biclustering [19]
may be used as a good starting point.

Consecutive propagations may use the same pattern, therefore there is a poten-
tial to halt propagation prematurely before reaching the first similar row. Tests on
other datasets, for example on protein databases [22] and comparison with other
biclustering algorithms, for example eBi [30] or HRoBi [20], may also determine the
exact application areas of the algorithm.

Separate tests need to be performed for adjusting values of the input parameters.
Determining number of ranks in input matrix and including data-specific issues,
such as opposite effect of up/down-regulated genes, may also improve algorithm’s
accuracy.

Acknowledgements

This research was funded by the Polish National Science Center (NCN), grant
No. 2013/11/N/ST6/03204. This research was supported in part by PL-Grid Infras-
tructure. The authors would like to express their sincere appreciation to prof. Jacek
Kitowski for his valuable remarks and to the Academic Computer Centre CYFRO-
NET AGH for providing computing power within the POWIEW project.

408 P. Orzechowski, K. Boryczko

REFERENCES

[1] Alakwaa, F.—Solouma, N.—Kadah, Y.: Construction of Gene Regulatory Net-
works Using Biclustering and Bayesian Networks. Theoretical Biology and Medical
Modelling, Vol. 8, 2011, No. 1, Art. No. 39.

[2] Ben-Dor, A.—Chor, B.—Karp, R.—Yakhini, Z.: Discovering Local Structure
in Gene Expression Data: The Order-Preserving Submatrix Problem. Journal of
Computational Biology, Vol. 10, 2003, No. 3-4, pp. 373–384.

[3] Castillo-Davis, C. I.—Hartl, D. L.: GeneMerge – Post-Genomic Analysis. Data
Mining, and Hypothesis Testing. Bioinformatics, Vol. 19, 2003, No. 7, pp. 891–892.

[4] Cheng, Y.—Church, G.: Biclustering of Expression Data. Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology. Vol. 8,
2000, pp. 93–103.

[5] Eren, K.—Deveci, M.—Küçüktunç, O.—Çatalyürek, Ü.: A Comparative
Analysis of Biclustering Algorithms for Gene Expression Data. Briefings in Bioinfor-
matics, Vol. 14, 2013, No. 3, pp. 93–103.

[6] Erten, C.—Sözdinler, M.: Biclustering Expression Data Based on Expanding
Localized Substructures. Bioinformatics and Computational Biology, Lecture Notes
in Computer Science, Vol. 5462, 2009, pp. 224–235.

[7] Ford, L. R.—Fulkerson, D. R.: Maximal Flow Through a Network. Canadian
Journal of Mathematics, Vol. 8, 1956, No. 3, pp. 399–404.

[8] Gasch, A.—Spellman, P.—Kao, C.—Carmel-Harel, O.—Eisen, M.—
Storz, G.—Botstein, D.—Brown, P.: Genomic Expression Programs in the
Response of Yeast Cells to Environmental Changes. Science Signalling, Vol. 11, 2000,
No. 12, pp. 4241–4257.

[9] Gu, J.—Liu, J.: Bayesian Biclustering of Gene Expression Data. BMC Genomics,
Vol. 9, 2008, Suppl. 1, S4, 10 pp. doi: 10.1186/1471-2164-9-S1-S4.

[10] Halkidi, M.—Batistakis, Y.—Vazirgiannis, M.: On Clustering Validation
Techniques. Journal of Intelligent Information Systems, Vol. 17, 2001, No. 2,
pp. 107–145.

[11] Hochreiter, S.—Bodenhofer, U.—Heusel, M.—Mayr, A.—Mitter-
ecker, A.—Kasim, A.—Khamiakova, T.—Van Sanden, S.—Lin, D.—Tal-
loen, W. et al.: FABIA: Factor Analysis for Bicluster Acquisition. Bioinformatics,
Vol. 26, 2010, No. 12, pp. 1520–1527.

[12] Horzyk, A.: Information Freedom and Associative Artificial Intelligence. Artificial
Intelligence and Soft Computing, Springer Verlag Berlin Heidelberg, Lecture Notes
in Artificial Intelligence, Vol. 7267, 2012, pp. 81–89. ISBN 978-3-642-29346-7.

[13] Horzyk, A.: How Does Human-Like Knowledge Come into Being in Artificial As-
sociative Systems. Proceedings of the 8th International Conference on Knowledge,
Information and Creativity Support Systems, Krakow, Poland, 2013, pp. 189–200.

[14] Ihmels, J.—Bergmann, S.—Barkai, N.: Defining Transcription Modules Us-
ing Large-Scale Gene Expression Data. Bioinformatics, Vol. 20, 2004, No. 13,
pp. 1993–2003.

Propagation-Based Biclustering Algorithm for Extracting Inclusion-Maximal Motifs 409

[15] Kluger, Y.—Basri, R.—Chang, J. T.—Gerstein, M.: Spectral Biclustering
of Microarray Data: Coclustering Genes and Conditions. Genome Research, Vol. 13,
2003, No. 4, pp. 703–716.

[16] Lazzeroni, L.—Owen, A.: Plaid Models for Gene Expression Data. Statistica
Sinica, Vol. 12, 2002, No. 1, pp. 61–86.

[17] Li, G.—Ma, Q.—Tang, H.—Paterson, A.—Xu, Y.: QUBIC: A Qualitative Bi-
clustering Algorithm for Analyses of Gene Expression Data. Nucleic Acids Research,
Vol. 37, 2009, No. 15, Art. No. e101, 10 pp. doi: 10.1093/nar/gkp491.

[18] Madeira, S.—Oliveira, A.: Biclustering Algorithms for Biological Data Analysis:
A Survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), Vol. 1, 2004, No. 1, pp. 24–45.

[19] Michalak, M.: Foundations of Rough Biclustering. Artificial Intelligence and
Soft Computing, Springer Berlin Heidelberg, Lecture Notes in Computer Science,
Vol. 7268, 2012, pp. 144–151.

[20] Michalak, M.—Stawarz, M.: HRoBi – The Algorithm for Hierarchical Rough
Biclustering. Artificial Intelligence and Soft Computing, Springer Berlin Heidelberg,
Lecture Notes in Computer Science, Vol. 7895, 2013, pp. 194–205.

[21] Murali, T.—Kasif, S.: Extracting Conserved Gene Expression Motifs from Gene
Expression Data. Proceedings of Pacific Symposium on Biocomputing. Vol. 8, 2003,
pp. 77–88.

[22] Orzechowski, P.—Boryczko, K.: Parallel Approach for Visual Clustering of
Protein Databases. Computing and Informatics, Vol. 29, No. 6+, 2010, pp. 1221–1231.

[23] Orzechowski, P.: Proximity Measures and Results Validation in Biclustering –
A Survey. Artificial Intelligence and Soft Computing, Springer Berlin Heidelberg,
Lecture Notes in Computer Science, Vol. 7895, 2013, pp. 206–217.

[24] Orzechowski, P.—Boryczko, K.: Hybrid Biclustering Algorithms for Data Min-
ing. Applications of Evolutionary Computation, 19th European Conference, EvoAp-
plications 2016, Porto, Portugal, March 30–April 1, 2016, Proceedings, Part I, 2016,
pp. 156–168, ISBN 978-3-319-31204-0.

[25] Orzechowski, P.—Boryczko, K.: Text Mining with Hybrid Biclustering Algo-
rithms. Artificial Intelligence and Soft Computing, 15th International Conference,
ICAISC 2016, Zakopane, Poland, June 12-16, 2016, Proceedings, Part II, Springer
International Publishing, 2016, pp. 102–113. ISBN 978-3-319-39384-1.

[26] Poirel, C. L.—Rahman, A.—Rodrigues, R. R.—Krishnan, A.—Adde-
sa, J. R.—Murali, T. M.: Reconciling Differential Gene Expression Data with
Molecular Interaction Networks. Bioinformatics, Vol. 29, 2013, No. 5, pp. 622–629.

[27] Prelić, A.—Bleuler, S.—Zimmermann, P.—Wille, A.—Bühlmann, P.—
Gruissem, W.—Hennig, L.—Thiele, L.—Zitzler, E.: A Systematic Compari-
son and Evaluation of Biclustering Methods for Gene Expression Data. Bioinformat-
ics, Vol. 22, 2006, No. 9, pp. 1122–1129.

[28] Schrijver, A.: On the History of the Transportation and Maximum Flow Problems.
Mathematical Programming, Vol. 93, 2002, No. 3, pp. 437–445.

[29] Spellman, P.—Sherlock, G.—Zhang, M.—Iyer, V.—Anders, K.—Ei-
sen, M.—Brown, P.—Botstein, D.—Futcher, B.: Comprehensive Identifica-

410 P. Orzechowski, K. Boryczko

tion of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microar-
ray Hybridization. Molecular Biology of the Cell, Vol. 9, 1998, No. 12, pp. 3273–3297.

[30] Stawarz, M.—Michalak, M.: eBi – The Algorithm for Exact Biclustering. Arti-
ficial Intelligence and Soft Computing, Springer Berlin Heidelberg, Lecture Notes in
Computer Science, Vol. 7268, 2012, pp. 327–334.

[31] Tanay, A.—Sharan, R.—Shamir, R.: Discovering Statistically Significant Biclus-
ters in Gene Expression Data. Bioinformatics, Vol. 18, 2002, Suppl. 1, pp. S136–S144.

[32] Topa, P.—M locek, P.: Using Shared Memory as a Cache in Cellular Au-
tomata Water Flow Simulations on GPUs. Computer Science, Vol. 14, 2013, No. 3,
pp. 385–401.

[33] Wille, A.—Zimmermann, P.—Vranová, E.—Fürholz, A.—Laule, O.—
Bleuler, S.—Hennig, L.—Prelic, A.—Von Rohr, P.—Thiele, L.—Zitz-
ler, E.—Gruissem, W.—Bühlmann, P.: Sparse Graphical Gaussian Modeling of
the Isoprenoid Gene Network in Arabidopsis Thaliana. Genome Biology, Vol. 5, 2004,
No. 11, Art. No. R92.

Patryk Orzechowski received his Ph.D. degree in computer
science in 2015 from AGH University of Science and Technology,
Krakow, Poland, where he works as a research-and-teaching as-
sistant. His scientific interests include bioinformatics, artificial
intelligence and data mining. He is also interested in mobile
technologies and big data.

Krzysztof Boryczko received his Ph.D. degree in computer
science in 1996 from the Department of Computer Science, AGH
University of Science and Technology, Krakow, Poland, where he
is now Associate Professor. His research interests focus on large
scale simulations with particle methods. He is also interested in
feature extraction, clustering methods for analysis of simulation
data and scientific visualization.

