
Computing and Informatics, Vol. 35, 2016, 1277–1306

TRACO: SOURCE-TO-SOURCE PARALLELIZING
COMPILER

Marek Palkowski, Wlodzimierz Bielecki

Faculty of Computer Science
West Pomeranian University of Technology
Zolnierska 49, 70-210 Szczecin, Poland
e-mail: {mpalkowski, wbielecki}@wi.zut.edu.pl

Abstract. The paper presents a source-to-source compiler, TRACO, for automatic
extraction of both coarse- and fine-grained parallelism available in C/C++ loops.
Parallelization techniques implemented in TRACO are based on the transitive clo-
sure of a relation describing all the dependences in a loop. Coarse- and fine-grained
parallelism is represented with synchronization-free slices (space partitions) and
a legal loop statement instance schedule (time partitions), respectively. TRACO
enables also applying scalar and array variable privatization as well as parallel re-
duction. On its output, TRACO produces compilable parallel OpenMP C/C++
and/or OpenACC C/C++ code. The effectiveness of TRACO, efficiency of parallel
code produced by TRACO, and the time of parallel code production are evaluated
by means of the NAS Parallel Benchmark and Polyhedral Benchmark suites. These
features of TRACO are compared with closely related compilers such as ICC, Pluto,
Par4All, and Cetus. Feature work is outlined.

Keywords: Source-to-source parallelizing compiler, loop parallelization, iteration
space slicing, fine- and coarse-grained parallelism, free scheduling, transitive closure

Mathematics Subject Classification 2010: 68N20, 65Y05, 52Bxx, 97E60, 05-
XX

1 INTRODUCTION

Parallel computer programs are more difficult to write than sequential ones. Expos-
ing parallelism in serial programs and writing parallel programs without applying

1278 M. Palkowski, W. Bielecki

parallelizing compilers decreases the productivity of programmers and increases the
time and cost of producing parallel programs. Because for many applications, most
computations are contained in program loops, automatic extraction of parallelism
available in loops is extremely important for multi-core systems.

There is a large volume of published studies describing techniques and tools
for automatic parallelism extraction, for example [16, 17, 22, 23, 24, 29, 30, 31,
35, 37, 41, 43]. Most researchers have studied how affine transformations can be
applied to extract both coarse- and fine- grained parallelism available in loops.
However, far too little attention has been paid to apply the transitive closure of
a program dependence graph (hereafter we refer to it simply as transitive clo-
sure) to extract parallelism, only few studies have been carried out in this field
[1, 2, 3, 7, 10, 15, 21]. Those studies demonstrate that parallelization techniques
based on transitive closure open new possibilities in extracting parallelism and build-
ing optimizing compilers: they permit us to parallelize more loops than those paral-
lelized by means of affine transformations providing similar parallel program perfor-
mance. But the main limitations of those studies are an unsatisfactory evaluation
of effectiveness and computational complexity of techniques based on transitive clo-
sure, an insufficient evaluation of performance of parallel programs produced by
means of those techniques, the lack of a detail comparison with techniques imple-
mented in such popular compilers as, for example, Pluto, Par4all, Cetus, ICC, and
PPCG.

There are still many questions to be answered: whether well-known techniques
and tools to calculate transitive closure are mature enough to be used in parallelizing
compilers; what are strong and weak features of techniques based on transitive
closure; what is performance of parallel programs generated by means of techniques
based on transitive closure; how techniques based on affine transformations and ones
based on transitive closure behave on the same benchmarks; what are well-known
complementary techniques that can be integrated with those based on transitive
closure to improve compiler effectiveness and parallel program performance.

The goal of this paper is to answer some questions above. For this purpose,
we have reviewed published studies dealing with the transitive closure of a program
dependence graph as well as those presenting loop parallelization approaches based
on transitive closure. We have chosen most advanced published techniques and
implemented them in a novel source-to-source compiler called TRACO.

The input of TRACO is a C program, while the output is an OpenMP C/C++
or OpenACC C/C++ program. TRACO extracts both coarse- and fine-grained
parallelism. It also uses variable privatization and parallel reduction techniques to
reduce the number of dependence relations; this leads to reducing parallelization
time and extending the scope of the TRACO applicability. The compiler includes
a preprocessor of the C program, data dependence analyzer, parallelization engine,
code generator, and post-processor.

Applying TRACO, an experimental study has been carried out to evaluate the
effectiveness of algorithms implemented as well as the performance of parallel pro-
grams produced by means of TRACO. A comparative analysis of results yielded

TRACO: Source-to-Source Parallelizing Compiler 1279

with TRACO and those demonstrated by Pluto, Par4all, Cetus, ICC, and PPCG
has been fulfilled.

The contributions of this paper over related work are as follows.

• An overview of parallelizing techniques based on the transitive closure of a pro-
gram dependence graph.

• A novel algorithm integrating privatization and reduction with techniques ex-
tracting synchronization-free slices.

• Presentation of the open source TRACO compiler implementing chosen loop
parallelization approaches based on transitive closure.

• An evaluation of the effectiveness of TRACO for the NAS and PolyBench bench-
marks.

• An evaluation of the performance of parallel programs produced by TRACO for
the NAS and PolyBench benchmarks.

• A comparative analysis of the TRACO effectiveness and that demonstrated by
Pluto, Par4all, Cetus, and ICC.

• Defining strong and weak features of techniques based on transitive closure and
pointing out research directions to enhance the power of techniques based on
transitive closure.

The rest of the paper is organized as follows. Section 2 introduces background.
Section 3 presents iteration space slicing algorithms. Section 4 considers combining
variable privatization and parallel reduction with iteration space slicing. Section 5
discusses (free) scheduling approaches. Section 6 introduces details of the TRACO
implementation. Section 7 presents results of an experimental study. Section 8 de-
scribes related work. Section 9 draws conclusions and briefly outlines future research
to enhance the power of TRACO.

2 BACKGROUND

In this paper, we deal with affine loop nests where, for given loop indices, lower and
upper bounds as well as array subscripts and conditionals are affine functions of
surrounding loop indices and possibly of structure parameters (defining loop indices
bounds), and the loop steps are known constants.

A dependence analysis is required for loop parallelization. Two statement in-
stances I and J are dependent if both access the same memory location and if at
least one access is a write. I and J are called the source and destination of a de-
pendence, respectively, provided that I is lexicographically smaller than J (I ≺ J ,
i.e., I is executed before J).

Algorithms implemented in TRACO require an exact representation of loop-
carried dependences and consequently an exact dependence analysis which detects

1280 M. Palkowski, W. Bielecki

a dependence if and only if it actually exists. To describe and implement par-
allelization algorithms, we chose the dependence analysis proposed by Pugh and
Wonnacott [8], where dependences are represented with dependence relations.

A dependence relation is a tuple relation of the form [input list]→ [output list]:
formula, where input list and output list are the lists of variables and/or expressions
used to describe input and output tuples and formula describes the constraints
imposed upon input list and output list and it is a Presburger formula built of
constraints represented with algebraic expressions and using logical and existential
operators [8].

Standard operations on relations and sets are used, such as intersection (∩),
union (∪), difference (−), domain (dom R), range (ran R), relation application
(S ′ = R(S) : e′ ∈ S ′ iff exists e s.t. e→ e′ ∈ R, e ∈ S). In detail, the description of
these operations is presented in [8, 9].

The positive transitive closure for a given relation R, R+, is defined as follows [9]:

R+ = {e→ e′ : e→ e′ ∈ R ∨ ∃e′′ s.t. e→ e′′ ∈ R ∧ e′′ → e′ ∈ R+}. (1)

It describes which vertices e′ in a dependence graph (represented by relation R) are
connected directly or transitively with vertex e.

Transitive closure, R∗, is defined as follows [10]: R∗ = R+ ∪ I, where I is
the identity relation. It describes the same connections in a dependence graph
(represented by R) that R+ does plus connections of each vertex with itself.

To facilitate the exposition and implementation of TRACO algorithms, we have
to preprocess dependence relations making their input and output tuples to be of
the same dimension and to contain the identifiers of statements responsible for the
source and destination of each dependence. The preprocessing algorithm is presented
in paper [1].

Given a relation R, found as the union of all (preprocessed) dependence rela-
tions extracted for a loop, the iteration space, SDEP , including dependent statement
instances is formed as domain(R) ∪ range(R). A set, SIND, comprising indepen-
dent statement instances is calculated as the difference between the set of all state-
ment instances, SSI , and the set of all dependent statement instances, SDEP , i.e.
SIND = SSI − SDEP . To scan elements of sets SDEP and SIND in the lexicographic
order, we can apply any well-known code generation technique [9, 16].

3 COARSE-GRAINED PARALLELISM EXTRACTION
USING ITERATION SPACE SLICING

Algorithms presented in papers [1, 11, 12, 13, 14] are based on transitive closure and
allow us to generate parallel code representing synchronization-free slices or slices
requiring occasional synchronization. Below, we present basic definitions and a way
to extract synchronization-free parallelism implemented in TRACO. A (iteration-
space) slice is defined as follows.

TRACO: Source-to-Source Parallelizing Compiler 1281

Definition 1. Given a dependence graph defined by a set of dependence relations,
a slice S is a weakly connected component of this graph, i.e., a maximal sub-graph
such that for each pair of vertices in the sub-graph there exists a forward or inverse
path.

If there exist two or more slices in a dependence graph, the above definition
guarantees that all these slices are independent when executed as concurrent threads
(there is no dependence among them).

Definition 2. An ultimate dependence source is a source that is not the destination
of another dependence. Ultimate dependence sources and destinations represented
by relation R can be found by means of the following calculations: domain(R) −
range(R). The set of ultimate dependence sources of a slice forms the set of its
sources.

Definition 3. The representative source of a slice is its lexicographically minimal
source.

An approach to extract synchronization-free slices implemented in TRACO takes
two steps [1]. First, for each slice, a representative statement instance is defined (it
is the lexicographically minimal statement instance from all the sources of a slice).
Next, slices are reconstructed from their representatives and the code scanning these
slices is generated.

Given a dependence relation R describing all the dependences in a loop, a set
of statement instances, SUDS, is calculated. It describes all ultimate dependence
sources of slices as

SUDS = domain(R)− range(R). (2)

In order to find elements of SUDS that are representatives of slices, we build a re-
lation, RUSC , that describes all pairs of the ultimate dependence sources being
transitively connected in a slice, as follows:

RUSC = {[e]→ [e′] : e, e′ ∈ SUDS, e ≺ e′, (R∗(e) ∩R∗(e′))}. (3)

The condition (e ≺ e′) in the constraints of relation RUSC above means that e is
lexicographically smaller than e′. Such a condition guarantees that the lexicograph-
ically smallest element can be represented by the input tuple of RUSC only. The
intersection (R ∗ (e) ∩ R ∗ (e′)) in the constraints of RUSC guarantees that ver-
tices e and e′ are transitively connected, i.e., they are the sources of the same
slice.

Next, set Srepr containing representatives of each slice is found as Srepr = SUDS−
range(RUSC). Each element e of set Srepr is the lexicographically minimal statement
instance of a synchronization-free slice. If e is the representative of a slice with
multiple sources, then the remaining sources of this slice can be found applying
relation (RUSC)∗ to e, i.e. (RUSC) ∗ (e). If a slice has the only source, then (RUSC) ∗

1282 M. Palkowski, W. Bielecki

(e) = e. The elements of a slice represented with e can be found applying relation
R∗ to the set of sources of this slice:

Sslice = R∗((RUSC)∗(e)). (4)

Any tool to generate code for scanning polyhedra can be applied to produce
parallel pseudo-code, for example, the CLOOG library [16] or the codegen function
of the Omega project [17].

The presented technique is illustrated by means of the following imperfectly
nested loop.

for (i=1; i<=n; i++)

s1: b[i][i]=a[i-3][i];

for (j=1; j<=n; j++)

s2: a[i][j]=a[i][j-1]+b[i][i];

There are the following three dependence relations returned by the Omega depen-
dence analyzer, Petit [18].

R12 = {[i]->[i,j]: 1<=i<n & 1<=j<=n};

R21 = {[i,i+3]->[i+3]: 1<=i<=n-3};

R22 = {[i,j]->[i,j+1]: 1<=i<=n & 1<=j<n}.

Dependences are illustrated in Figure 1. The dependence relations after preprocess-
ing are as follows:

R12 = {[i,-1,1]->[i,j,2]: 1<=i<n & 1<=j<=n};

R21 = {[i,i+3,2]->[i+3,-1,1]: 1<=i<=n-3};

R22 = {[i,j,2]->[i,j+1,2]: 1<=i<=n & 1<=j<n}.

For these relations, the Omega calculator [9] produces RUSC = ∅ and Srepr =
{[i,−1, 1] : 1 ≤ i ≤ min(n, 3)}.

Set Sslice is of the form: Sslice = {[i,−1, 1] : ∃(α : i = t1 + 3α & 1 ≤ t1 ≤
i − 3 & i ≤ n)} ∪ {[t1, j, 2] : 1 ≤ t1 ≤ n & 1 ≤ j ≤ n} ∪ {[i, j, 2] : ∃(α : i =
t1 + 3α & 1 ≤ t1 ≤ i− 3 & 1 ≤ j ≤ n & i ≤ n)} ∪ {[i,−1, 1] : i = t1}.

Finally, applying CLOOG and inserting the parallel and for OpenMP direc-
tives [4], we obtain the following parallel code

#pragma omp parallel for

for (int t1 = 1; t1 <= min(n, 3); t1 += 1){

b[t1][t1]=a[t1-3][t1]; //s1(t1, -1, 1);

for (int c1 = 1; c1 <= n; c1 += 1)

a[t1][c1]=a[t1][c1-1]+b[t1][t1]; //s1(t1, c1, 2);

for (int c0 = t1 + 3; c0 <= n; c0 += 3) {

b[c0][c0]=a[c0-3][c0]; // (c0, -1, 1);

for (int c1 = 1; c1 <= n; c1 += 1)

a[c0][c1]=a[c0][c1-1]+b[c0][c0]; // s1(c0, c1, 2);

}}

TRACO: Source-to-Source Parallelizing Compiler 1283

Figure 1. Dependences for the loop example, n = 6

4 USING VARIABLE PRIVATIZATION
AND PARALLEL REDUCTION

Extracting parallelism by means of TRACO relies on the transitive closure of an affi-
ne dependence relation describing all the dependences in a loop. Algorithms aimed
at calculating transitive closure are presented in papers [10, 19, 20, 21] and they
are out of the scope of this paper. The time and memory complexities of calculat-
ing transitive closure depend considerably on the number of dependence relations
representing all the dependences in the loop. In many cases, when the number of de-
pendence relations is more than several hundreds, known algorithms [10, 19, 20, 21]
fail to produce transitive closure due to limited resources of computers or because
time of calculating transitive closure is not acceptable in practice (from several hours
to several days). That is why reducing the number of dependence relations is very
important prior to calculate transitive closure.

In this section, we present a technique implemented in TRACO that automat-
ically defines loop variables that can be safely privatized and/or can be used for
parallel reduction. Applying this technique permits us to reduce the number of
dependence relations.

Privatization is a technique that allows each concurrent thread to allocate a vari-
able in its private storage such that each thread accesses a distinct instance of a vari-
able.

Definition 4. A scalar variable x defined within a loop is said to be privatizable
with respect to that loop if and only if every path from the beginning of the loop
body to a use of x within that body must pass through a definition of x before
reaching that use [22].

1284 M. Palkowski, W. Bielecki

Definition 5. Given n inputs x1, x2, . . . , xn and an associative operation ⊗, a par-
allel reduction algorithm computes the output x1 ⊗ x2 ⊗ . . .⊗ xn [23].

Parallel reduction is a frequent operation in parallel algorithms. It is applied for
parallel execution of: dot products, matrix multiplications, counting, etc.

The idea of the algorithm presented in this section is the following. The first
step of the algorithm is to search for scalar or one dimensional array variables for
privatization. A variable can be privatized if the lexicographically first statement in
the loop body referring to this variable does not read its value, i.e., the first access
to this variable is a write operation [22].

Next, we seek for variables that are involved in reduction dependences [18] only
(they cannot be involved in other types of dependences). Then we check whether
there exist dependence relations referring to variables which cannot be privatized
or used for parallel reduction. If no, this means that privatization and parallel
reduction eliminate all the dependences in the loop, thus its parallelization is trivial.
Otherwise, we form a set including

1. dependence relations not being eliminated by means of variable privatization
and reduction and

2. dependence relations describing dependences not carried by loops and referring
to variables to be privatized. Finally, we generate output code using the set
mentioned above and a set including variables to be used for parallel reduc-
tion.

Below, we present the algorithm that implements the idea above in a formal
way.

Algorithm 1 Extracting synchronization-free-slices applying variable privatization
and/or reduction

Input: Set of relations S = {Ri, 1 ≤ i ≤ n} whose union describes all the
dependences in a loop, where n is the number of relations.
Output: Code representing synchronization-free slices with variables to be pri-
vatized and/or used for parallel reduction.

1. For each scalar/one-dimensional array variable X, originating dependences,
find the lexicographically first statement, referring X. If the statement only
writes a value to X, put X into set PrivSet.

2. Put each relation Ri describing dependences involving variable X,
X ∈ PrivSet, into set PC.

3. Put each relation Ri involving a shared variable that is not involved in de-
pendences other than reduction, into set RED and put this variable together
with its associative operations into set D.

4. Rslice = S − PC − RED.

TRACO: Source-to-Source Parallelizing Compiler 1285

5. If Rslice = ∅, then privatize all variables in set PrivSet and make the outer-
most loop to be parallel. Goto step 7.

6. For each variable X in set PrivSet do

(a) z = the minimal number of inner loops surrounding all statements refer-
ring X

(b) SET X = ∅.

(c) For each relation Rq, 1 ≤ q ≤ m, from set PC do

(d) Form new relation Pq in the following way:
Pq = {[e1, e2, . . . , ek] → [e′1, e

′
2, . . . , e

′
k] : constraints(Rq)

∧z
j=1(ej = e′j)}

where e1, e2, . . . , ek and e′1, e
′
2, . . . , e

′
k are the variables of the input and

output tuples of Rq, respectively; k is the number of loop indices; con-
straints(Rq) are the constraints of relation Rq.
/* the constraints

∧z
j=1(ej = e′j) mean that relation Pq does not describe

dependences carried by z inner loop nests. */

(e) SET X = SET X ∪ Pq

end for each

(f) Rslice = Rslice ∪ SET X;

end for each

7. Apply any technique presented in [1] to set Rslice to extract synchronization-
free slices and generate code as below:

parallel block shared(D_s_1,D_s_2,...) private(D_p_1,D_p_2,...){

D_p_1 = 0; D_p_2 = 0; ...

parallel loop scanning slices private(X){

... }

crtical{

D_s_1 = D_s_1 op_1 D_p_1;

D_s_2 = D_s_2 op_2 D_p_2;

...

}

}

where parallel block is a part of code that may be executed by multiple
threads; each parallel reduction for a variable in set D is represented by shared
variable D si, private variable D pi and operation, opi; private(X) means
that all threads have their own copies of all variables contained in set X;
critical specifies a region of code that must be executed by only one thread
at a time.

Let us illustrate the presented algorithm by means of the following loop:

1286 M. Palkowski, W. Bielecki

1: for(i=1; i<=n; i++){

2: c = 0;

3: for(j=1; j<=n; j++){

4: a[i][j] = a[i][j-1] + c;

5: b += a[i][j];

6: }

7: }

The set of dependence relations for this loop is the following:

R1 = {[i,−1, 2]→ [i, j′, 4] : 1 ≤ i ≤ n && 1 ≤ j′ ≤ n};
R2 = {[i,−1, 2]→ [i′, j′, 4] : 1 ≤ i < i′ ≤ n && 1 ≤ j′ ≤ n};
R3 = {[i,−1, 2]→ [i′,−1, 2] : 1 ≤ i < i′ ≤ n};
R4 = {[i, j, 4]→ [i′,−1, 2] : 1 ≤ i < i′ ≤ n && 1 ≤ j ≤ n};
R5 = {[i, j, 4]→ [i, j + 1, 4] : 1 ≤ i ≤ n && 1 ≤ j < n};
R6 = {[i, j, 4]→ [i, j, 5] : 1 ≤ i ≤ n && 1 ≤ j ≤ n};
R7 = {[i, j, 5]→ [i, j′, 5] : 1 ≤ j < j′ ≤ n && 1 ≤ i ≤ n};
R8 = {[i, j, 5]→ [i′, j′, 5] : 1 ≤ i < i′ ≤ n && 1 ≤ j ≤ n&&1 ≤ j′ ≤ n},

where relations R1, R2, R3, R4 describe dependences involving variable c, rela-
tions R5, R6 involve variable a, R7, R8 (represent reduction dependences) involve
variable b. Applying the algorithm, we get:

1. PrivSet = {c},
2. PC = {R1, R2, R3, R4},
3. RED = {R7, R8}, D = {b,+},
4. Rslice = {R5, R6},
5. Rslice 6= ∅.

6. For variable c do

(a) z = 1,

(b) SET X = ∅,

(c) PC = {R1, R2, R3, R4},
(d) P1 = R1; P2 = P3 = P4 = ∅,

(e) SET X = {P1},
(f) Rslice = {R1, R5, R6}, R = R1 ∪R5 ∪R6.

end for

7. Srepr(R) = {[i,−1, 2] : 1 ≤ i ≤ n && 2 ≤ n}.
Applying algorithm Gen affine [1], we extract n slices represented with the
following loop in the OpenMP standard [4].

TRACO: Source-to-Source Parallelizing Compiler 1287

#pragma omp parallel for private(c) reduction(+:b) shared(a)

for(c0 = 1; c0 <= n; c0 += 1)

if (c0 >= 1 && n >= c0) {

c = 0 ; // s1(c0,-1,2);

for(c1 = 1; c1 <= n; c1 += 1){

a[c0][c1] = a[c0][c1-1] + c; // s1(c0,c1,4);

b += a[c0][c1]; // s1(c0,c1,5);

}

}

5 FINDING (FREE) SCHEDULING FOR PARAMETRIZED LOOPS

The algorithm, presented in our paper [3], allows us to generate fine-grained parallel
code based on the free schedule representing time partitions; all statement instances
of a time partition can be executed in parallel, while partitions are enumerated
sequentially. The free schedule function is defined as follows.

Definition 6 ([24, 25]). The free schedule is the function that assigns discrete time
of execution to each loop statement instance as soon as its operands are available,
that is, it is mapping σ : LD→ Z such that

σ(p) =

 0 if there is no p1 ∈ LD s.t. p1 → p;
1 + max(σ(p1), σ(p2), . . . , σ(pn)); p, p1, p2, . . . , pn ∈ LD;
p1 → p, p2 → p, . . . , pn → p,

where p, p1, p2, . . . , pn are loop statement instances, LD is the loop domain, p1 →
p, p2 → p, . . . , pn → p mean that the pairs p1 and p, p2 and p, . . . , pn and p are
dependent, p represents the destination while p1, p2, . . . , pn represent the sources of
dependences, n is the number of operands of statement instance p (the number of
dependences whose destination is statement instance p).

The free schedule is the fastest legal schedule [24].
The idea of the algorithm to extract time partitions is as follows [3]. Given

preprocessed relations R1, R2, . . . , Rm, we firstly calculate R =
⋃m

i=1Ri. Next we
create a relation R′ by inserting variables k and k + 1 into the first position of the
input and output tuples of relation R; variable k is to present the time of a partition
(a set of statement instances to be executed at time k). Next, we calculate the
transitive closure of relation R′, R′∗, and form the following relation:

FS = {[X]→ [k, Y] : X ∈ UDS(R) ∧ (k, Y) ∈ Range((R′)∗ \ {[0, X]})
∧¬(∃k′ > k s.t. (k′, Y) ∈ Range(R′)+ \ {[0, X]})},

where UDS(R) is a set of ultimate dependence sources calculated as Domain(R)−
Range(R); (R′)∗ \{[0, X]} means that the domain of relation R′∗ is restricted to the
set including ultimate dependences sources only (elements of this set belong to the

1288 M. Palkowski, W. Bielecki

first time partition); the constraint ¬(∃k′ > k s.t. (k′, Y) ∈ Range(R′)+ \ {[0, X]})
guarantees that partition k includes only those statement instances whose operands
are available, i.e., each statement instance will belong to one time partition only.

It is worth to note that the first element of the tuple representing the set
Range(FS) points out the time of a partition while the last element of that ex-
poses the identifier of the statement whose instance (iteration) is defined by the
tuple elements 2 to n− 1, where n is the number of the tuple elements of a prepro-
cessed relation. Taking the above consideration into account and provided that the
constraints of relation FS are affine, the set Range(FS) is used to generate parallel
code applying any well-known technique to scan its elements in the lexicographic
order, for example, the techniques presented in papers [9, 16].

The outermost sequential loop of such code scans values of variable k (repre-
senting the time of partitions) while inner parallel loops scan independent instances
of partition k.

Finally, we expose independent statement instances, that is, those that do not
belong to any dependence and generate code enumerating them. According to the
free schedule, they are to be executed at time k = 0.

Let us illustrate the presented technique by means of the following imperfectly
nested loop.

for(i=1; i<=n; i++){

s1: a[i][0] = 1;

for(j=1; j<=n; j++){

s2: a[i][j] = a[i-1][j] + a[i][j-1];

}

}

There are the three dependence relations returned by Petit

R1 = {[i,−1, 1]→ [i, 1, 2] : 1 ≤ i ≤ n};
R2 = {[i, j, 2]→ [i+ 1, j, 2] : 1 ≤ i < n && 1 ≤ j ≤ n};
R3 = {[i, j, 2]→ [i, j + 1, 2] : 1 ≤ i ≤ n && 1 ≤ j < n}.

Figure 2 presents the free schedule for the loop when n = 5, where the number
into a circle indicates the time when a correspondent statement instance has to be
executed.

Applying the presented technique, we get the following results being produced
by means of the Omega calculator.

1. R′ = {[k, i,−1, 1] → [k + 1, i, 1, 2] : 1 ≤ i ≤ n && 0 ≤ k} ∪ {[k, i, j, 2] →
[k + 1, i + 1, j, 2] : 1 ≤ i < n && 1 ≤ j ≤ n && 0 ≤ k} ∪ {[k, i, j, 2] →
[k + 1, i, j + 1, 2] : 1 ≤ i ≤ n && 1 ≤ j < n && 0 ≤ k}.

2. R′+ = {[k, i, j, 2] → [k′, i′, i − k + j − i′ + k′, 2] : 1 ≤ i ≤ i′ ≤ n && 0 ≤ k <
k′ && 1 ≤ j && k+i′ ≤ i+k′ && i+j+k′ ≤ n+k+i′}∪{[k, i,−1, 1]→ [k′, i′, i−
k+k′− i′, 2] : 1 ≤ i ≤ i′ ≤ n &&k+ i′ < i+k′ && 0 ≤ k && i+k′ ≤ n+k+ i′}.

TRACO: Source-to-Source Parallelizing Compiler 1289

Figure 2. The free schedule for the loop when n = 5. The solid lines represent dependences,
the dotted lines represent synchronization barriers between time partitions

3. FS = {[1,−1, 1]→ [k, i′, k−i′+1, 2] : 1 ≤ i′ ≤ k, n && k < n+i′}∪{[i,−1, 1]→
[0, i,−1, 1] : 1 ≤ i ≤ n}.

4. Range(FS) = {[k, i, k− i+ 1, 2] : 1 ≤ i ≤ k, n && k < n+ i}∪ {[0, i,−1, 1] : 1 ≤
i ≤ n}.
The loop scanning elements of the set Range(FS) for k ≥ 0 and being produced
by TRACO is as follows.

if (n >= 1) {

for(k=0;k<=2*n-1;k++) { //serial loop

if (k == 0) {

#pragma omp parallel for // parallel loop

for(i=1;i<=n;i++) {

a[i][0]=1; //s1(0,i,-1,1);

}}

#pragma omp parallel for //parallel loop

for(i=max(1,k-n+1);i<=min(k,n);i++) {

a[i][k-i+1]=a[i-1][k-i+1]+a[i][k-i+1-1];

// s1(k,i,k-i+1,2);

}}}

5. IND = ∅. There are no independent statement instances in the loop.

1290 M. Palkowski, W. Bielecki

The calculation of the transitive closure for relation R′ can be impossible for
some cases of loops [10]. TRACO can be configured to enable another approach
dedicated for fine-grained parallelism extraction based on the power k of relation R.

The idea of the algorithm is the following [2]. Given preprocessed relations R1,
R2, . . . , Rm, we first calculate R =

⋃m
i=1Ri and then Rk, where Rk = R ◦R ◦ . . . R︸ ︷︷ ︸

k

,

“◦” is the composition operation. Techniques of calculating the power k of relation
R are presented in the following publications [10, 26, 20, 19, 27] and they are out of
the scope of this paper. Let us only note that given transitive closure R+, we can
easily convert it to the power k of R, Rk, and vice versa, for details see [19, 26].

Each vertex, represented with the set S(k) = Rk(UDS) − R+ ◦ Rk(UDS), is
connected in the dependence graph, defined by relation R, with some vertex(s)
represented by set UDS. Hence, at time k, all the statement instances belonging
to the set S(k) can be scheduled for execution and it is guaranteed that k is as
few as possible. Examples illustrating this approach can be found in the paper [2].
TRACO implements both techniques mentioned above.

6 IMPLEMENTATION

Figure 3 shows the details of the TRACO implementation. Currently, it supports
C/C++ programs on its input. A preprocessor, written in the Python language,
recognizes loops in a source program and converts them to the format acceptable
by the Omega dependence analyzer, Petit [18], which returns a set of dependence
relations representing all dependences in a loop. Then TRACO recognizes variables
to be privatized and/or used for parallel reduction. If privatization and/or reduction
remove all dependence relations, parallelization is trivial, all loops can be made
parallel. For such a case, TRACO makes the outermost loop to be parallel while
the remaining loops it makes serial to produce coarse-grained code.

preprocessor
Petit

dependence
analyzer

Loop
sequence

Input C/C++
program

Coarse- or fine-
grained parallelism

extractor

Dependence
relations

CLOOG /
Omega

Codegen

sets for
pseudo-code
generation

postprocessor

pseudocodeCompilable
targer code

OpenMP

C/C++

OpenACC

C/C++

Figure 3. TRACO organization

TRACO: Source-to-Source Parallelizing Compiler 1291

When a set of dependence relations after applying privatization and/or paral-
lel reduction is not empty, the number of synchronization-free slices is calculated.
If this number is not equal to one, then data necessary for generating pseudo-
code representing slices are calculated and forwarded to a pseudo-code generator.
Otherwise, data necessary for extracting (free) scheduling are prepared and di-
rected to the pseudo-code generator. A post-processor generates parallel code in
OpenMP/OpenACC. Below, we present some details concerned code generation.
TRACO permits also for a manual choice of a parallelization technique.

Figure 4. Code generation details: a), b), c) synchronization-free slices; d), e), f) free-
scheduling

6.1 Parallel Pseudo-Code Generation

Input for the pseudo-code generator is a set representing slices or scheduling. For the
first case, the first element of the set states for slice representatives, all the following
elements, but the last one, describe statement instances of a parametrized slice,
and the last one represents a statement identifier, which may be skipped when all
dependent statement instances are originated by the same statement. An example
set is illustrated in Figure 4 a). In this set, the first element is responsible for slice
representatives while the second one together with the first one presents statement
instances of a slice. There is no element describing a statement identifier.

Taking such a set as input, CLOOG generates pseudo-code (Figure 4 b)), where
by default the outermost loop is to scan slice representatives (this loop is paral-
lel), while the inner loop (serial) enumerates statement instances of the slice with
a representative presented by the outermost loop.

Any other code generator, permitting to scan set elements in the lexicographic
order, can be applied in TRACO, for example, the codegen function of Omega or
Omega+ [28].

When a set S represents scheduling, then the first element of the set is respon-
sible for the time partition representation, all the following elements, but the last

1292 M. Palkowski, W. Bielecki

one, describe statement instances of a parametrized time partition, and the last one
represents a statement identifier, which may be absent when all statement instances
are originated from the same statement. An example set is given in Figure 4 d),
where the first element represents time partitions, while the second and third ones
are to enumerate statement instances of a particular time partition defined by the
first element.

Taking such a set as input, CLOOG generates pseudo-code (Figure 4 e)), where
by default the outermost loop scans times (this loop is serial), while the remain-
ing loops (parallel) enumerate statement instances of the time partition for a time
represented by the outermost loop.

6.2 Parallel Compilable Code Generation

Compilable OpenMP/OpenACC code is produced by means of the post-processor
written in Python. It inserts source loop statements with proper index expressions
into pseudo-code. Original index variables are replaced with variables represented
with the tuple elements of a set representing polyhedra taking into account the role
of particular tuple elements (see Section 6.1). For example, provided that the set
S in Figure 4 a) is associated with the statement a[i][j] = a[i][j − 1], in the pseudo
statement s1(c0, c1) in Figure 4 b), variables c0, c1 correspond to variables i, j which
are substituted for c0, c1 in the source statement (Figure 4 c)).

Given the set S in Figure 4 d) is associated with the source statement a[i][j] =
a[i][j + 1] + a[i + 1][j], the code generator recognizes that in the pseudo code in
Figure 4 e) c0 states for time of partitions, c1 corresponds to variable i, while c0−
c1+2 corresponds to variable j. So it generates the following statement in the output
loop (see Figure 4 f)) a[c1][c0− c1 + 2] = a[c0][c0− c1 + 2 + 1] +a[c0 + 1][c0− c1 + 2].

Depending on whether pseudo-code represents slices or scheduling, the post-
processor inserts proper OpenMP pragmas such as Parallel, For, Critical and proper
clauses to define private and/or reduction variable or OpenACC pragmas such as
Kernel, Data, Loop.

The source repository of the TRACO compiler is available on the website http:

//traco.sourceforge.net.

7 RELATED WORK

TRACO implements algorithms based on the calculation of the transitive closure
of a relation describing all the dependences in the loop. These algorithms can be
divided into the two classes: the first one is to extract coarse-grained parallelism
represented with synchronization-free slices while the second one is to extract fine-
grained parallelism represented with time partitions.

Papers [7, 10] demonstrate how transitive closure can be used for building op-
timizing compilers, namely how to optimize inter-processor communication, remove
dependences, finding induction variables; however, it does not clarify how to extract

TRACO: Source-to-Source Parallelizing Compiler 1293

synchronization-free slices and the free schedule. The paper [1] presents different
algorithms to extract synchronization-free slices but without applying variable pri-
vatization and parallel reduction as well as without any details of the TRACO
implementation.

Algorithms presented in the papers [1, 2, 3] produce pseudo-code only, while
TRACO generates compilable code.

Variable privatization and parallel reduction techniques are the well-known pop-
ular techniques used for dependence elimination [22]. Algorithm 1, presented in this
paper, is based on these techniques, it includes the following novel elements:

1. integrates both the variable privatization and parallel reduction techniques to
eliminate loop carried dependences;

2. demonstrates how to eliminate dependences carried by private and reduction
variables from dependence relations (step 6 (d) in Algorithm 1);

3. clarifies how to manage private and reduction variables in techniques aimed at
extracting synchronization-free slices (step 7 of Algorithm 1).

The affine transformation framework (ATF), considered in the papers [29, 30, 31]
unifies a large number of previously proposed loop transformations. The paper [1]
demonstrates that ATF does not exploit all synchronization-free parallelism available
in affine loops, while the techniques implemented in TRACO really do. The paper [2]
shows that for particular loops algorithms based on calculating a transitive closure
(those implemented in TRACO) do expose the free schedule while ATF fails to
extract such parallelism.

Different source-to-source compilers have been developed to extract coarse-grain-
ed parallelism available in loops. To choose compilers to be compared with TRACO,
we have applied the following criteria: it has to

1. be a source-to-source compiler;

2. support the C language;

3. produce compilable code in OpenMP/ACC C/C++.

The following compilers were chosen to be compared with TRACO: ICC (XE 2013),
Pluto (0.10), Cetus (1.3.1), and Par4All (1.4.5). We have omitted other projects,
for example, Bones [32] that is not a fully automated compiler, it inserts special
directives (skeletons) into input code; Kremlin [33] is a profiler and provides only
a list of regions that have to be parallelized.

Polyhedral Parallel Code Generator (PPCG) is a source-to-source compiler ba-
sed on the polyhedral model and affine transformations to extract loop parallelism
[44]. It produces host and GPU code for any static control loop nest with affine
loop bounds and affine subscripts. PPCG implements tiling algorithms that are
not implemented in the current version of TRACO, this makes impossible a correct
comparison of codes produced with TRACO and PPCG. We intend to compare
them in another paper after implementing tiling in TRACO.

1294 M. Palkowski, W. Bielecki

Below, we shortly describe compilers being classified for comparison with TRA-
CO.

ICC, [34]. The Intel Compilers enable threading through automatic parallelization
and OpenMP support. With automatic parallelization, the compilers detect
loops that can be safely and efficiently executed in parallel and generate multi-
threaded code. They search for loops that are candidates for parallel execution
and perform data-flow analysis to verify the correctness of parallel execution.
The Intel Compilers support variable privatization, loop distribution, and per-
mutation. Unfortunately, they can only effectively analyze loops with a relatively
simple structure [34].

Pluto, [35]. An automatic parallelization tool based on the polyhedral model [37].
Pluto transforms C programs from source to source for coarse- or fine-grained
parallelism and data locality simultaneously. The core transformation frame-
work mainly works to find affine transformations for efficient tiling and fu-
sion, but not limited to those [37]. Though the tool is fully automatic (C to
OpenMP C), a number of options are provided (both command-line and through
meta files) to tune aspects like tile sizes, unroll factors, and outer loop fusion
structures. A version with support for generating CUDA code is also available.
However, Pluto does not support variable privatization and reduction recogni-
tion.

Par4All, [38]. A project aims at easing code generation for parallel architectures
from sequential source code written in C or Fortran with almost no manual code
modification required. Par4All is currently composed of different components:
the PIPS tool [39], the Polylib library [40], and internal parsers. Program trans-
formations available by the compiler include loop distribution, scalar and array
privatization, atomizers (reduction of statements to a three-address form), loop
unrolling (partial and full), stripmining, loop interchanging and others.

Cetus, [41]. It provides an infrastructure for research on multi-core compiler opti-
mizations that emphasizes automatic parallelization by means of the Java API.
The compiler targets C programs and supports source-to-source transformations.
The tool performs a loop dependence analysis and generates parallel loop an-
notations. The tool is limited only to basic transformations: induction variable
substitution, reduction recognition, array privatization, pointers, alias and range
analysis. However, the tool is able to parallelize a wide range of program loops.

PIT, [45]. It combines polyhedral model with iterative compilation for loop trans-
formations. PIT finds the optimal sequence of non-parametric loop transforma-
tions in the first phase. Next, it defines the perfomance model using hardware
monitoring tools and search transformation parameters by means of the Nelder-
Mead simplex algorithm in the three-phase loop optimization engine. The paper
[46] describes the iterative compilation algorithm for parameter search in detail.
Hardware performance counters based model of the PIT compiler reduces also
the set of useless loop transformations.

TRACO: Source-to-Source Parallelizing Compiler 1295

8 EXPERIMENTAL STUDY

The goals of experiments were to evaluate such features of TRACO as: effectiveness,
the kind of parallelism extracted (coarse- or fine-grained), efficiency of parallel loops
produced, and the time of parallel code generation. Another goal was to compare
these features of TRACO with those demonstrated by the compilers classified for
comparison (see Section 7).

To evaluate the effectiveness of TRACO, we have experimented with NAS Par-
allel Benchmarks 3.3 (NPB) [5] and Polyhedral Benchmarks 3.2 (PolyBench) [6].
NPB are developed at the NASA Ames Research Centre to study performance of
parallel supercomputers. Benchmarks are derived from computational fluid dynam-
ics (CFD) applications, they consist of five kernels and three pseudo-applications [5].
PolyBench are developed at the Ohio State University and its benchmarks are de-
rived from linear-algebra kernels and solvers, datamining, medley, and stencils ap-
plications.

From 431 loops of the NAS benchmark suite, Petit is able to analyse 257 loops,
and dependences are available in 134 loops (the rest 123 loops do not expose any
dependence). For these 134 loops, TRACO is able to extract: synchronization-free
parallelism for 109 (81 %) loops and fine-grained parallelism for 22 (16 %) loops when
it fails to extract synchronization-free parallelism.

Table 1 presents techniques used by TRACO which acts as follows. First of all, it
tries to extract coarse-grained parallelism by applying privatization only, for 39 NAS
loops, variable privatization eliminates all dependences, hence loop parallelization
is trivial. Next to the remanding benchmarks, the technique presented in Section
4 is applied, this results in parallelization of 70 NAS loops. Finally, to the rest
benchmarks, techniques extracting (free) scheduling are applied that yields 22 NAS
loops representing fine-grained parallelism. TRACO fails to extract parallelism for
the three loops for which each iteration (except the first one) depends on the previous
one: CG cg 6, CG cg 8, and MG mg 4.

Technique NAS PolyBench

Privatization only 39 0

Slicing with privatization and reduction 70 30

Free scheduling 22 15

All techniques 131 45

All loops 134 48

Table 1. Techniques of loop parallelization

For the PolyBench suite, there exist 48 loops exposing dependences. TRACO is
able to parallelize 45 (94 %) loops. One of the LU decomposition loops (ludcmp 3)
is serial (each iteration depends on the previous one). For the Seidel-2D and Floyd-
Warshall loops, TRACO fails to extract any parallelism because all known to us
tools permitting for calculating the transitive closure of a dependence representing
all the dependences in a loop [10, 20, 21] are not able to produce transitive closure

1296 M. Palkowski, W. Bielecki

for these loops. There exists a strong need to improve the existing algorithms for
calculating the transitive closure to enhance their effectiveness. 30 PolyBench loops
were parallelized by applying algorithms of synchronization-free slices extraction [1].
For 15 PolyBench loops, only the fine-grained parallelism was found (the outermost
loop is serial).

Figure 5. Times of program loops execution for various numbers of threads

To check the performance of coarse-grained parallel code, produced with TRA-
CO, the following criteria were taken into account for choosing NAS and PolyBench
loops:

1. a loop must be computatively heavy (there are many NAS benchmarks with
constant upper bounds of loop indices, hence their parallelization is not justi-
fied),

2. structures of chosen loops must be different (there are many loops of a similar
structure).

Applying these criteria, we have selected the following four NAS loops: BT rhs 1
(Block Tridiagonal Benchmark), FT auxfnct.f2p 2 (Fast Fourier Transform Bench-
mark), LU HP rhs 1 (Lower-Upper symmetric Gauss-Seidel Benchmark),
UA diffuse 5 (Unstructured Adaptive Benchmark) and the three PolyBench loops:
fdtd-2d-apml (FDTD using Anisotropic Perfectly Matched Layer), symm (Symmet-
ric Matrix-multiply), and syr2k (Symmetric Rank-2k Operations).

For each loop qualified for experiments, we have measured execution time, then
speed-up and efficiency have been calculated. Speed-up is a ratio of sequential time
and parallel time, S = T (1)/T (P), where P is the number of processors. Efficiency,
E = S/P , tells us about usage of available processors while parallel code is executed.
Table 2 shows time (in seconds), speed-up, and efficiency for 2, 6, and 12 processors.

TRACO: Source-to-Source Parallelizing Compiler 1297

L
o
op

P
ar

am
et

er
s

1
C

P
U

2
C

P
U

s
6

C
P

U
s

12
C

P
U

s
T

im
e

T
im

e
S

E
T

im
e

S
E

T
im

e
S

E
B

T
rh

s
1

N
1,

N
2,

N
3

=
20

0
3.

93
7

2.
14

2
1.

84
0.

92
0.

87
4

4.
50

0.
75

0.
48

9
8.

05
0.

67
N

1,
N

2,
N

3
=

30
0

15
.9

8
7.

93
8

2.
01

1.
01

2.
93

3
5.

45
0.

91
1.

68
9

9.
46

0.
79

F
T

au
x
fn

ct
2

N
1,

N
2,

N
3

=
20

0
0.

30
9

0.
17

6
1.

76
0.

88
0.

15
9

1.
94

0.
32

0.
13

3
2.

32
0.

19
N

1,
N

2,
N

3
=

50
0

13
.0

85
7.

45
4

1.
76

0.
88

2.
99

9
4.

36
0.

73
2.

00
4

6.
53

0.
54

L
U

H
P

rh
s

1
N

1,
N

2,
N

3
=

10
0

0.
44

6
0.

24
1

1.
85

0.
93

0.
12

3.
72

0.
62

0.
07

6.
37

0.
53

N
1,

N
2,

N
3

=
20

0
6.

04
3

3.
02

2.
00

1.
00

1.
17

7
5.

13
0.

86
0.

64
2

9.
41

0.
78

U
A

d
iff

u
se

5
N

1,
N

2,
N

3,
N

4
=

10
0

1.
39

1
0.

87
5

1.
59

0.
79

0.
30

8
4.

52
0.

75
0.

17
1

8.
13

0.
68

N
1,

N
2,

N
3,

N
4

=
20

0
5.

54
8

3.
70

4
1.

50
0.

75
1.

25
4.

44
0.

74
0.

65
3

8.
50

0.
71

fd
td

-2
d
-a

p
m

l
C

Z
,

C
X

M
,

C
Y

M
=

25
6

1.
35

5
0.

68
3

1.
98

0.
99

0.
25

5.
42

0.
90

0.
13

8
9.

82
0.

82
C

Z
,

C
X

M
,

C
Y

M
=

51
2

10
.8

8
5.

42
5

2.
01

1.
00

1.
91

2
5.

69
0.

95
1.

00
6

10
.8

2
0.

90
sy

m
m

N
I,

N
J

=
1

02
4

19
.1

99
14

.9
99

1.
28

0.
64

6.
18

2
3.

11
0.

52
3.

12
9

6.
14

0.
51

N
I,

N
J

=
2

04
8

17
1.

45
9

13
1.

18
1.

31
0.

65
53

.7
63

3.
19

0.
53

28
.9

12
5.

93
0.

49
sy

r2
k

N
I,

N
J

=
10

24
2.

78
2

1.
40

6
1.

98
0.

99
0.

50
1

5.
55

0.
93

0.
26

10
.7

0
0.

89
N

I,
N

J
=

2
04

8
23

.2
41

11
.6

23
2.

00
1.

00
4.

00
3

5.
81

0.
97

2.
24

10
.3

8
0.

86

T
ab

le
2
.

T
im

e
(i

n
se

co
n
d
s)

,
sp

ee
d
-u

p
an

d
effi

ci
en

cy

1298 M. Palkowski, W. Bielecki

Experiments were carried out on an Intel Xeon Processor E5645, 12 threads, 2.4 GHz,
12 MB Cache and 16 GB RAM.

Loop Parameters
CUDA cores

1 2 8 32

CG cg 4
N = 100 K 0.488 0.269 0.077 0.019
N = 200 K 1.036 0.519 0.158 0.039

LU pintgr 4
N2 = N4 = 1 024, N1 = N3 = 1 1.082 0.561 0.199 0.046
N2 = N4 = 2 048, N1 = N3 = 1 4.466 2.256 0.866 0.174

adi
n = 500, tsteps = 10 9.89 4.97 1.24 0.31
n = 100, tsteps = 100 3.50 1.88 0.45 0.11

jacobi-2D
n = 500, tsteps = 10 2.82 1.62 0.39 0.09
n = 100, tsteps = 100 1.06 0.64 0.16 0.04

reg-detect
length = 256, maxgrid = iter = 64 26.58 16.41 5.41 1.89
length = 128, maxgrid = iter = 32 1.77 1.05 0.38 0.16

Table 3. Time (in seconds) of fine-grained loops execution for 1, 2, 8, and 32 CUDA cores

�

�

��

��

��

��

��

��

� � ��

��	
���	��� ���������� ������� ����	������

����������	��
��������������������������������
����

������
������
����

�

�

��

��

��

��

��

��

� � ��

��	
���	��� ���������� ������� ����	������

��
�������	��
����������
��������������������������

�������������
����

Figure 6. Speed-up of loops representing fine-grained parallelism for various numbers of
CUDA cores and loop upper bounds

Figure 5 illustrates the times presented in Table 2 in a graphical way. Analysing
the data in Table 2, we may conclude that for all coarse-grained parallel loops, pos-
itive speed-up is achieved. Efficiency depends on the problem size defined by index
loop upper bounds and the number of CPUs used for parallel program execution.
For most cases, efficiency increases with increasing the problem size for the same
number of processors used.

To check the efficiency of fine-grained parallel code, we have selected (considering
the previously mentioned criteria) two NBP loops: CG cg 4 (Conjugate Gradient

TRACO: Source-to-Source Parallelizing Compiler 1299

Benchmark), LU pintgr 4 (Lower-Upper symmetric Gauss-Seidel Benchmark) and
three PolyBench loops: adi (Alternating Direction Implicit solver), jacobi-2D (2-D
Jacobi stencil computation), and reg-detect (2-D Image processing).

Let us cite the the following fragment of paper [42]:

“Relatively small tasks do not always boost OpenMP programs for multi-
core CPUs, because thread creation and scheduling are computationally heavy,
since they can involve the saving and restoration of the processor state and
expensive calls to the operating system kernel. In contrast, the parallel thread-
ing model of GPU can provide high scalability of fine-grained programs, when
a set of operations are performed on data in the form of a pipeline and thread
scheduling is essentially without cost.”

I.e., if fine-grained code demonstrates poor performance on multi-core CPUs, it may
still provide sufficient performance on multiple GPUs. This is why we have studied
speed-up of GPU codes for above mentioned loops by means of 2, 8, and 32 scalar
processor cores of a multi-core graphic card, NVIDIA Tesla S1070 with 16 GB RAM.

Table 3 and Figure 6 present the experimental results: time and speed-up, re-
spectively. There exist log2N , log2(N2−N1), 6∗TSTEPS, 2∗STEPS, and 4∗ITER
synchronization points for the fine-grained versions of the CG cg 4, LU pintgr 4, adi,
jacobi-2D, and reg-detect benchmarks, respectively. But despite numerous synchro-
nization points, for studied parallel fine-grained loops, positive speed-up is achieved.

Next, we present the comparison of TRACO features with those of the compilers
chosen (see Section 7).

Benchmark Parallelism TRACO Pluto Par4All Cetus ICC

NAS synchronization-free 109 35 79 107 45
fine-grained 22 7 25 19 9
total 131 42 104 126 56

PolyBench synchronization-free 30 29 30 29 28
fine-grained 15 10 10 8 9
total 45 39 39 38 37

Table 4. Number of NPB and PolyBench loops parallelized by various compilers

Table 4 presents the effectivenesses of the studied compilers. TRACO is able
to parallelize 131 NAS loops and 45 PolyBench loops. Pluto exposes parallelism
for 42 NAS and 39 PolyBench loops, it does not support variable privatization and
parallel reduction, whereas Cetus and Par4All support these transformations and
parallelize more NAS loops. ICC parallelizes 56 NAS loops only.

Table 4 shows also what kind of parallelism the compilers extract. All of the
studied tools extract more synchronization-free parallelism than the fine-grained
one.

Table 5 presents the time of code production by means of the studied compilers.
The tools were written in C++ with the exception of Cetus, which was developed

1300 M. Palkowski, W. Bielecki

by means of Java. Each of them generates parallel OpenMP code. For time mea-
suring, the Linux/Unix time command was used. The fastest tool is ICC, but it
fails to transform loops with relatively simple structures, for example (BT rhs 1,
LU HP rhs 1, and UA setup 16). The times of code generation for Pluto and
TRACO are comparable. Cetus is written in Java and it is a much slower tool
than Traco and Pluto, particularly when it parallelizes PolyBench loops. The most
time consuming is Par4All, it takes more than one second to produce code for most
of the benchmarks.

The most time consuming part in TRACO is transitive closure calculation.
There is a strong need in improving algorithms for calculating transitive closure
to reduce their time complexity and enhance their effectiveness.

Loop TRACO Pluto Par4All Cetus ICC

BT rhs 1 0.344 0.428* 1.533 1.003 0.233

CG cg 4 0.221 0.191* 0.883* 0.608 0.073

FT auxfnct 2 0.154 0.109 1.158 0.882 0.213

LU HP rhs 1 0.188 0.219* 1.481 1.058 0.189**

LU pintgr 3 0.158 0.115* 1.158* 0.588 0.212*

UA diffuse 5 0.289 0.113 1.176** 1.062** 0.254

adi 1.562 1.392 3.805 7.472 0.444

fdtd-2d-apml 1.625 8.630* 0.360* 10.416 0.631**

jacobi-2d 0.489 0.434 2.437 7.108 0.309

reg-detect 1.990 2.048 2.804 7.468 0.368

symm 0.590 0.361* 3.895** 9. 405 1.600**

syr2k 0.285 0.129 3.986 9.295 0.329

Table 5. Time of parallelization (in seconds) for studied loops by means of the related
compilers. (*) means that output code is serial, (**) means that the number of
synchronization events in a correspondent parallel code is greater than that in the
code produced with TRACO.

We have compared speed-up of parallel code produced by means of TRACO
with that of Pluto, Cetus, Par4all, and ICC. The results are presented in Figure 7.
Analyzing these results, we can derive the following conclusions. For all benchmarks,
except from jacobi-2d, TRACO produces parallel code where speed-up is the same
or comparable with that demonstrated by the best code among codes produced by
means of Pluto, Cetus, Par4all, and ICC. For the jacobi-2d benchmark, TRACO
produces fine-grained code with more number of synchronization events than that
of code produced by Pluto. This is due to the fact that any known tool fails to
calculate transitive closure for the entire iteration space for this benchmark, hence
TRACO seeks for parallelism only in a loop iteration sub-space being defined with
inner loops only; i.e., this weakness is caused by the immaturity of existing transitive
closure calculation algorithms.

Summing up, we may derive the following conclusions. For NAS and PolyBench
benchmarks, the strong feature of techniques implemented in TRACO is high ef-

TRACO: Source-to-Source Parallelizing Compiler 1301

2 6 12
0
1
2
3
4
5
6
7
8
9

S
p
e
e
d
-u
p

CPUs

BT_rhs_1 (N1,N2,N3=300)

2 6 12
0

1

2

3

4

5

6

7

S
p
e
e
d
-u
p

CPUs

FT_auxfnct_2 (N1,N2,N3=500)

2 6 12
0

2

4

6

8

10

S
p
e
e
d
-u
p

CPUs

LU_HP_rhs_1 (N1,N2,N3=200)

2 6 12
0

2

4

6

8

10

S
p
e
e
d
-u
p

CPUs

UA_diffuse_5 (N1,N2,N3,N4=200)

2 6 12
0

2

4

6

8

10

12

S
p
e
e
d
-u
p

CPUs

fdtd-2d-apml (CZ,CXM,CYM=512)

2 6 12
0

2

4

6

8

S
p
e
e
d
-u
p

CPUs

jacobi-2D (N,TSTEPS=100)

2 6 12
0

1

2

3

4

5

6

7

S
p
e
e
d
-u
p

CPUs

symm (NI=NJ=1024)

2 6 12
0

2

4

6

8

10

12

S
p
e
e
d
-u
p

CPUs

syr2k (NI=NJ=2048)

TRACO PLUTO CETUS PAR4ALL ICC

Figure 7. Speed-up of parallel codes produced by TRACO and other compilers

fectiveness: they extract more parallelism than that extracted by means of Pluto,
Par4All, Cetus, ICC; performance (speed up and efficiency) of TRACO parallel code
is the same or comparable to that of parallel code generated by means of the compil-
ers mentioned above. For most benchmarks, the time complexity of techniques im-
plemented in TRACO is less or comparable with that of techniques implemented in
Pluto, Par4All, Cetus, ICC. The weaknesses of techniques implemented in TRACO
are the following:

1. the immaturity of algorithms of calculating the transitive closure of a param-
eterized loop dependence graph: the time complexity of calculating transitive
closure for some loops is very high (the time of calculation takes several hours),

1302 M. Palkowski, W. Bielecki

there is a strong need in answering the following questions: why for these loops
it is extremely high and how it can be reduced;

2. the lack of tiling algorithms implemented in TRACO: tiling algorithms based
on transitive closure have to be developed and implemented in TRACO to per-
mit for a correct comparison with techniques and compilers implementing such
techniques (Pluto, PPCG).

9 CONCLUSION

We have presented a source-to-source compiler, TRACO, permitting for extract-
ing both coarse- and fine-grained parallelism available in loops represented in the
C/C++ language. It produces compilable parallel OpenMP C/C++ or OpenACC
C/C++ code. TRACO implements parallelization algorithms based on the transi-
tive closure of a relation describing all the dependences in the loop. Coarse- and
fine-grained parallelism is represented with synchronization-free slices (space parti-
tions) and a legal loop statement instance schedule (time partitions), respectively.

An experimental study carried out demonstrates a wide scope of the TRACO
applicability and good speed-up of parallel applications (produced with TRACO)
on memory-shared machines with multi-core processors as well as on graphic cards.
Generated code is competitive with that generated by related tools. The time of
compilable parallel code generation by TRACO is comparable or less than that
yielded by related tools.

In the future, we plan to add the following features to TRACO: induction vari-
able recognition and substitution; locality enhancement techniques such as tiling,
array contraction, interleaving inner loops and statements in a parallel loop; while
loop parallelization; handling loops with pointers.

We plan to combine iteration space slicing [1] and free scheduling [2] in one
framework to permit users to manage the granularity and/or parallelism degree of
target code by means of iterative compilation. We intend also to adjust TRACO to
produce code for embedded and mobile platforms.

REFERENCES

[1] Beletska, A.—Bielecki, W.—Cohen, A.—Palkowski, M.—Siedlecki, K.:
Coarse-Grained Loop Parallelization: Iteration Space Slicing vs. Affine Transforma-
tions. Parallel Computing, Vol. 37, 2011, pp. 479–497.

[2] Bielecki, W.—Palkowski, M.—Klimek, T.: Free Scheduling for Statement
Instances of Parameterized Arbitrarily Nested Affine Loops. Parallel Computing,
Vol. 38, 2012, No. 9, , pp. 518–532.

[3] Bielecki, W.—Palkowski, M.: Using Free Scheduling for Programming Graphic
Cards. In: Keller, R., Kramer, D., Weiss, J.-P. (Eds.): Facing the Multicore – Chal-
lenge II. Springer Berlin Heidelberg, Lecture Notes in Computer Science, Vol. 7174,
2012, pp. 72–83.

TRACO: Source-to-Source Parallelizing Compiler 1303

[4] OpenMP Architecture Review Board, OpenMP Application Program Interface Ver-
sion 4.0, 2012. Available on: http://www.openmp.org/mp-documents/OpenMP4.

0RC1_final.pdf.

[5] NAS Benchmarks Suite, 2013. Available on: http://www.nas.nasa.gov.

[6] The Polyhedral Benchmark Suite, 2012. Available on: http://www.cse.

ohio-state.edu/~pouchet/software/polybench/.

[7] Pugh, W.—Rosser, E.: Iteration Space Slicing and Its Application to Communica-
tion Optimization. International Conference on Supercomputing, 1997, pp. 221–228.

[8] Pugh, W.—Wonnacott, D.: An Exact Method for Analysis of Value-Based Array
Data Dependences. Sixth Annual Workshop on Programming Languages and Com-
pilers for Parallel Computing, Springer-Verlag, 1993.

[9] Kelly, W. et al.: The Omega Library Interface Guide. Technical Report. College
Park, MD, USA, 1995.

[10] Kelly, W.—Pugh, W.—Rosser, E.—Shpeisman, T.: Transitive Closure of In-
finite Graphs and Its Applications. International Journal of Parallel Programming,
Vol. 24, 1996, No. 6, pp. 579–598.

[11] Beletska, A.—Bielecki, W.—Cohen, A.—Palkowski, M.: Synchronization-
Free Automatic Parallelization: Beyond Affine Iteration-Space Slicing. Languages
and Compilers for Parallel Computing (LCPC ’09). SpringerVerlag, Lecture Notes in
Computer Science, Vol. 5898, 2010, pp. 233–246.

[12] Bielecki, W.—Beletska, A.—Palkowski, M.—San Pietro, P.: Finding Syn-
chronization – Free Parallelism Represented with Trees of Dependent Operations.
8th International Conference on Algorithms Architectures for Parallel Processing
(ICA3PP ’08), 2008, pp. 185–195.

[13] Bielecki, W.—Palkowski, M.: Extracting Both Affine and Non-Linear Synchro-
nization – Free Slices in Program Loops. 8th International Conference on Parallel
Processing and Applied Mathematics (PPAM ’09). Springer Verlag, Lecture Notes in
Computer Science, Vol. 6067, 2010, pp. 196–205.

[14] Bielecki, W.—Palkowski, M.: Using Message Passing for Developing Coarse-
Grained Applications in OpenMP. 3rd International Conference on Software and Data
Technologies (ICSOFT), 2008, pp. 145–152.

[15] Beletska, A.—Bielecki, W.—Cohen, A.—Palkowski, M.—Siedlecki, K.:
Coarse-Grained Parallelization: Beyond Affine Iteration Space Slicing. Parallel Com-
puting, Vol. 37, No. 8, pp. 479–497.

[16] Bastoul, C.: Code Generation in the Polyhedral Model is Easier Than you Think.
Proceedings of the 13th International Conference on Parallel Architecture and Com-
pilation Techniques (PACT ’04), Juan-les-Pins, 2004, pp. 7–16.

[17] Wonnacott, D. G.: A Retrospective of the Omega Project. Technical Report 2010-
01, Haverford College, 2010.

[18] Kelly, W. et al.: New User Interface for Petit and Other Extensions. 1996, Available
on: www.cs.umd.edu/projects/omega/petit.ps.Z.

[19] Verdoolaege, S.: Integer Set Library – Manual. Technical Report, 2011. Available
on: www.kotnet.org/~skimo/isl/manual.pdf.

1304 M. Palkowski, W. Bielecki

[20] Bielecki, W.—Klimek, T.—Palkowski, M.—Beletska, A.: An Iterative Al-
gorithm of Computing the Transitive Closure of a Union of Parameterized Affine In-
teger Tuple Relations. In: Wu, W., Daescu, O. (Eds.): Combinatorial Optimization
and Applications. Fourth International Conference on Combinatorial Optimization
and Applications (COCOA 2010). Lecture Notes in Computer Science, Vol. 6508,
2010, pp. 104–113.

[21] Verdoolaege, S.—Cohen, A.—Beletska, A: Transitive Closures of Affine Inte-
ger Tuple Relations and Their Overapproximations. In: Yahav, E. (Ed.): Static Anal-
ysis. Proceedings of the 18th International Conference on Static Analysis (SAS ’11).
Springer, Lecture Notes in Computer Science, Vol. 6887, 2011, pp. 216–232.

[22] Kennedy, K.—Allen, J. R.: Optimizing Compilers for Modern Architectures:
A Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[23] Padua, D. A. (Ed.): Encyclopaedia of Parallel Computing. Springer, 2011.

[24] Darte, A.—Robert, Y.—Vivien, F.: Scheduling and Automatic Parallelization.
Birkhauser, 2000.

[25] Darte, A.—Khachiyan, L.—Robert, Y.: Linear Scheduling is Nearly Optimal.
Parallel Processing Letters, Vol. 1, 1991, No. 2, pp. 73–81.

[26] Beletska, A.—Barthou, D.—Bielecki, W.—Cohen, A.: Computing the
Transitive Closure of a Union of Affine Integer Tuple Relations. In: Du, D. Z., Hu, X.,
Pardalos, P. M. (Eds.): Combinatorial Optimization and Applications. Third Interna-
tional Conference on Combinatorial Optimization and Applications (COCOA 2009),
Springer, Lecture Notes in Computer Science, Vol. 5573, 2009, pp. 98–109.

[27] Bielecki, W.—Klimek, T.—Trifunovic, K.: Calculating Exact Transitive Clo-
sure for a Normalized Affine Integer Tuple Relation. Electronic Notes in Discrete
Mathematics, Vol. 33, 2009, pp. 7–14.

[28] Chen, C.: Omega+ Library. School of Computing University of Utah, 2011. Avail-
able on: http://www.cs.utah.edu/~chunchen/omega.

[29] Lim, A. W.—Cheong, G. I.—Lam M. S.: An Affine Partitioning Algorithm
to Maximize Parallelism and Minimize Communication. Proceedings of the 13th

ACM SIGARCH International Conference on Supercomputing, ACM Press, 1999,
pp. 228–237.

[30] Feautrier, P.: Some Efficient Solutions to the Affine Scheduling Problem: I. One-
Dimensional Time. International Journal of Parallel Programming, Vol. 21, 1992,
No. 5, pp. 313–348.

[31] Feautrier, P.: Some Efficient Solutions to the Affine Scheduling Problem: II. Multi-
Dimensional Time. International Journal of Parallel Programming, Vol. 21, 1992,
No. 5, pp. 389–420.

[32] Nugteren, C.—Corporaal, H.: Introducing ‘Bones’: A Parallelizing Source-
to-Source Compiler Based on Algorithmic Skeletons. Proceedings of the 5th An-
nual Workshop on General Purpose Processing with Graphics Processing Units
(GPGPU-5), ACM, New York, NY, USA, 2012, pp. 1–10.

[33] Garcia, S.—Jeon, D.—Louie, C.—Taylor, M.: The Kremlin Oracle for Se-
quential Code Parallelization. IEEE Micro 32, Vol. 32, 2012, No. 4, pp. 42–53.

TRACO: Source-to-Source Parallelizing Compiler 1305

[34] Intelr Compilers, 2013. Available on: http://software.intel.com/en-us/

intel-compilers.

[35] Bondhugula, U.—Hartono, A.—Ramanujam, N.—Sadayappan, N.: A Prac-
tical Automatic Polyhedral Parallelizer and Locality Optimizer. SIGPLAN No-
tices – PLDI 2008, Vol. 43, 2008, No. 6, pp. 101–113. Available on: http://

pluto-compiler.sourceforge.net.

[36] Bondhugula, U.—Baskaran, M.—Krishnamoorthy, S.—Ramanujam, J.—
Rountev, A.—Sadayappan, P.: Automatic Transformations for Communication –
Minimized Parallelization and Locality Optimization in the Polyhedral Model. In:
Hendren, L. (Ed.): Compiler Construction (CC 2008). Springer, Lecture Notes in
Computer Science, Vol. 4959, 2008, pp. 132–146.

[37] Bondhugula, U.: Effective Automatic Parallelization and Locality Optimization
Using the Polyhedral Model. Ph.D. Thesis. Columbus, OH, USA, 2008.

[38] Mehdi, A.: Par4All User Guide. 2012, Available on: http://www.par4all.org.

[39] Amini, M. et al.: PIPS Is Not (Just) Polyhedral Software. First International Work-
shop on Polyhedral Compilation Techniques (IMPACT 2011), Chamonix, France,
2011.

[40] Polylib – A Library of Polyhedral Functions. 2014. Available on: http://icps.

u-strasbg.fr/polylib.

[41] Dave, C.—Bae, H.—Min, S.-J.—Lee, S.—Eigenmann, R.—Midkiff, S.: Ce-
tus: A Source-to-Source Compiler Infrastructure for Multicores. Computer, Vol. 42,
2009, No. 12, pp. 36–42.

[42] Garland, M.—Kirk, D. B.: Understanding Throughput-Oriented Architectures.
Communication of the ACM, Vol. 53, 2010, No. 11, pp. 58–66.

[43] Shajulin, B.—Gerndt, M.: Scalablity and Perfomance Analysis of OpenMP
Codes Using the Periscope Toolkit. Computing and Informatics, Vol. 33, 2014,
pp. 921–942.

[44] Verdoolaege, S.—Juega, J. C.—Cohen, A.—Gómez, J. I.—Tenllado, C.—
Catthor, F.: Polyhedral Parallel Code Generation for CUDA. ACM Transactions
on Architecture and Code Optimization (TACO), Vol. 9, 2013, No. 4, Article No. 54.

[45] Lu, P.—Li, B.—Che, Y.—Wang, Z.: PIT: A Framework for Effectively Com-
posing High-Level Loop Transformations. Computing and Informatics, Vol. 30, 2010,
No. 5, pp. 943–963.

[46] Lu, P.—Che, Y.—Wang, Z.: UMDA/S: An Effective Iterative Compilation Al-
gorithm for Parameter Search. Computing and Informatics, Vol. 29, 2010, No. 6+,
pp. 1159–1179.

1306 M. Palkowski, W. Bielecki

Marek Palkowski has graduated and received his Ph.D. de-
gree in computer science from the Technical University of
Szczecin, Poland. The main goal of his research is extracting
parallelism and tiling from program loops, and developing the
TRACO compiler.

Wlodzimierz Bielecki is Head of the Software Technology
Department of the West Pomeranian University of Technology,
Szczecin. His research interest includes parallel and distributed
computing, optimizing compilers, extracting both fine- and co-
arse-grained parallelism available in program loops.

